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Abstract: In cu�ing processes, tool condition affects the quality of the manufactured parts. As such, 

an essential component to prevent unplanned downtime and to assure machining quality is having 

information about the state of the cu�ing tool. The primary function of it is to alert the operator that 

the tool has reached or is reaching a level of wear beyond which behaviour is unreliable. In this 

paper, the tool condition is being monitored by analysing the electric current on the main spindle 

via an artificial intelligence model utilising an LSTM neural network. In the current study, the tool 

is monitored while working on a cylindrical raw piece made of AA6013 aluminium alloy with a 

custom polycrystalline diamond tool for the purposes of monitoring the wear of these tools. Spindle 

current characteristics were obtained using external measuring equipment to not influence the op-

eration of the machine included in a larger production line. As a novel approach, an artificial intel-

ligence model based on an LSTM neural network is utilised for the analysis of the spindle current 

obtained during a manufacturing cycle and assessing the tool wear range in real time. The neural 

network was designed and trained to notice significant characteristics of the captured current signal. 

The conducted research serves as a proof of concept for the use of an LSTM neural network-based 

model as a method of monitoring the condition of cu�ing tools. 
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1. Introduction 

The state of the cu�ing tool is a vital part of reaching the quality targets for machined 

components. As such, the lack of this information leads to uncertainty in manufacturing 

and has various consequences for the process as a whole. These consequences include a 

drop in product quality, unplanned downtime causing losses in productivity, and, of 

course, all the economic losses associated. During the machining of aluminium alloys, a 

turning tool experiences different mechanisms of wear; the primary mechanism of wear 

is adhesion, followed by diffusion at elevated temperatures, as well as oxidative wear [1]. 

The unplanned downtime that occurs as a direct consequence of excessive tool wear was 

estimated to be 7 to 20 percent [2]. 

For Industry 4.0, a major component is prognostic and health management systems 

(PHM) [3] that focus on efficiently detecting industrial components that have deviated 

from normal operation parameters or predicting when failures are likely to occur. 

Thus, a reliable, real-time tool condition monitoring system is the heart of intelligent 

manufacturing and autonomous production lines [4]. There are two categories of tool con-

dition monitoring systems, i.e., direct and indirect methods. With direct methods, the state 

of the cu�ing tool is evaluated visually through an optical microscope. The method has a 

high degree of accuracy and gives the best evaluation of the tool condition. It has, how-

ever, serious real-time limitations as it requires the cu�ing process to be interrupted to 
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analyse the tool. Further, it requires specific optical equipment, which is not appropriate 

for the industrial environment in which these systems are to be installed. The indirect 

methods, despite providing lower accuracy, are much simpler to implement in industrial 

applications for economic reasons and their resistance to contaminated environments. 

They rely on correlating one or more sensor signals to the tool wear state. For this, multiple 

variables and detection methods can be used [5]. 

The cu�ing force signal is one of the most reliable, as it is in direct correlation to the 

state of the cu�ing edge and is therefore very sensitive to changes in tool state [5,6]. In 

their research, Li et al. [6] introduced a force-based system, with experimental results 

reaching 96.76% accuracy. Research by leading authors, such as the work carried out by 

Amigo et al. [7] and Urbikain et al. [8], focused on cu�ing force signals in relation to tool 

wear, has confirmed that in terms of pure accuracy, this is one of, if not the best, indirect 

measure signal sources. Despite their excellent qualities, the use of force-based systems 

has some drawbacks, as obtaining these values requires sensitive dynamometers and of-

ten other sensors. The use of these types of sensors in an industrial se�ing has problems 

of practicality due to environmental contamination as well as cost effectiveness. 

Another interesting approach is the utilisation of thermography for tool wear analy-

sis. Brili et al. [9] utilised the images captured by a thermal imagery camera, extracting 

features that correlate with the tool state. The accuracy of the developed system ranged 

from 96.25% to 100%. Despite the excellent accuracy of the developed system, it has simi-

lar problems as the cu�ing force approach, mainly in terms of cost effectiveness when 

implementing it in an industrial se�ing. 

Systems for industrial applications gravitate towards low-cost, robust sensors that do 

not interfere with the monitored process. Rmili et al. [10] developed a system that corre-

lates the vibrations that are produced during machining to tool wear. The proposed 

method is interesting; however, it has certain limitations. Specifically, the vibratory sig-

nals are very sensitive and influenced by many variables (environment, location of sen-

sors, type of cu�ing fluid, etc.), a lot of which cannot be kept consistent for an industrial 

implementation. 

For an industrial implementation of a system, it is always the most practical to use 

the machine’s internal data, such as power or electric current. This allows for even easier 

integration and is also the most cost-effective. As such, a lot of research has been con-

ducted in the area of utilising these signals. Drouillet et al. [2] used the spindle internal 

power sensor signal to predict the remaining useful life of the tool (RUL). Jamshidi et al.’s 

[4] research focused on utilising the current signal to develop an alerting system that sends 

a warning before the tool wear begins to reach a critical level. Our research focuses on 

these same signals, as the overview of the literature showed that it is a highly accessible 

signal that requires no additional modifications or additions to the machine, with only a 

slight decrease in the tool wear to signal correlation. 

There exist different methods of signal analysis for the purposes of TCMs. Among 

those, we can include conventional statistical analysis [11], the combination of time and 

frequency analysis [12], fractal analysis [4], as well as utilising artificial intelligence, such 

as genetic algorithms [13], and image analysis with a convolutional neural network [9]. 

There are also frameworks that further improve convolutional neural networks. One such 

framework is spatiotemporal pa�ern networks (STPN), which enable adaptive feature 

learning when dealing with multivariate time series. Together, these networks are re-

ferred to as ST-CNN [14]. 

Along with the type of signal and the analysis method, a third vital part of a tool for 

condition monitoring systems is data processing. As raw data can rarely be used without 

problems, additional processing is required to extract relevant features from the data. In 

their research, Tapia et al. utilised an interquartile range [15], whereas Aldekoa et al. di-

vided their data into areas of interest based on their knowledge of the manufacturing pro-

cess [16]. 
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The nature of our observed signals and their end application supports the use of an 

artificial intelligence approach. Particularly promising for data series analysis are recur-

rent neural networks such as long short-term memory networks [17,18]. These networks 

provide the ability to shift the focus of the analysis from general statistical parameters and 

absolute values, allowing for the recognition of inherent pa�erns in the acquired signals 

[17]. 

The tool condition monitoring concept proposed also looks to add redundancy to the 

LSTM network predictions. This addition, in the form of a unanimous voting algorithm 

(UVA), works to remove spontaneous errors and even further increases the classification 

accuracy of the TCM system. 

In this study, an external measurement system was used to obtain the current data 

from the main spindle of a purpose designed CNC lathe. The reason for this style of meas-

urement was to test the concept without altering the production line. The conducted re-

search serves as a proof-of-concept for the use of an LSTM neural network model in com-

bination with an UVA redundancy algorithm as a tool for condition monitoring in an in-

dustrial se�ing. The innovative approach allows for real-time tool monitoring with the 

potential for complete integration into the machine’s system, as shown in Figure 1. 

This study intends to demonstrate that combining LSTM network models with exist-

ing voting-based concepts to add redundancy makes a classification system more reliable 

than existing models. Functionality is compared against multiple alternative models using 

more advanced sensing methods that do not use such support systems as the UVA used 

in the presented case. 

The study has a strong focus on developing a system that is feasible for industrial 

implementation; thus, the model is based solely on the spindle current and no other sig-

nals, which allows for its introduction to be simple and without the need for large invest-

ments. 

 

Figure 1. A schematic overview of a proposed tool condition monitoring system using AI to assess 

tool wear based on the spindle electric current signal. 

2. Materials and Methods 

The main objective of this research is to prove that the current signal recorded on the 

main spindle is suitable and sufficient for determining the level of tool wear when ana-

lysed with a neural network classification model. 

There is a considerable presence of noise in the current signal on the main spindle. 

That is the advantage of the recurrent neural network approach, as it allows for the anal-

ysis of not only the absolute current values but also the entire current graphed over the 

entire machining cycle. 
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The work is divided into the following: (I) experiment—acquisition of current time 

sequences during the milling cycle; (II) training a LSTM classification model—sequences 

filtered and divided into test and training groups, training the neural network on the la�er 

group; (III) testing the model—the trained model was tested on previously unseen current 

signals; and (IV) improving functionality with an unanimous voting system algorithm 

(UVS)—improving the functionality by adding redundancy further improves the model’s 

accuracy. 

2.1. Experiment 

The turning process is affected by several factors as a consequence of machine prop-

erties, tool and mount type, cu�ing parameters, and external disturbances [6]. Despite 

obtaining the data from a production line in normal operation, most of these factors were 

held constant while the measurements were conducted. That is due to the CNC lathe be-

ing set up to conduct a single type of machining on consistent input material. 

The current signal was recorded throughout the entire useful lifetime of the tool, 

which was roughly 1000 manufacturing cycles. 

This style of data acquisition was conducted due to several factors, the chief of which 

was obtaining the data during normal operation of the production line. Due to limitations 

in obtaining data on the physical side, we decided to focus on data processing to eliminate 

unrepresentative current sequences (expected down times, outliers, etc.). 

2.2. Categorising Tool Wear Levels 

Tool wear can be analysed in several ways. Direct means, such as inspection of the 

tools under an optical microscope by an experienced examiner, can determine the wear 

level in great detail. There are also empirical methods, such as the Niakis method [19], 

that allow us to remove the human factor from the inspection process. 

The main aim of the research is the development of an intelligent system that deter-

mines tool wear for the purposes of classifying tool wear and alerting the operator. For 

that reason, despite the fact that exact wear level prediction was feasible, a more practical 

approach was taken by assigning the tool wear to predetermined classes based on the 

actions required to maintain the production line. The wear classes were determined based 

on previous experience and the required quality standards of the final product. Currently, 

the tools are replaced every 1000 cycles to ensure sufficient surface quality. This led to 

separating the tool’s useful life into 3 categories (low, moderate, and high wear level). 

As there was no secondary method to determine tool wear, buffer zones (50 machin-

ing cycles) were left between classes to protect against border cases in the training of the 

neural network. The breakdown of classes can be seen in Table 1. 

Table 1. Tool wear class assignment based on the number of completed machining cycles. 

Number of Machining Cycles Class 

0–300 Low wear 

350–650 Moderate wear 

700–1000 High wear 

2.3. Current Signal Acquisition 

The current signal was recorded with external measurement equipment, and the ef-

fective current value was monitored at the output of the spindle drive (Sinamics CU320-2 

PN), as well as other electrical parameters. The measuring equipment used was an MI2792 

Power Q4 power quality analyser manufactured by Metrel. The main parameters of the 

device are provided in Table 2. 
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Table 2. Specifications of the power quality analyser MI2792 Power Q4. 

Measurement Method Measuring Range Measurement Accuracy Response Time 

Flexible current clamps 1 mA–30 A ±0.25% <1 µs 

The measurements of the signal were conducted in 100 ms intervals and outpu�ed 

as the average values of the effective current in those intervals. This signal-capturing 

method was used to reduce the amount of noise in the recorded dataset. 

2.4. Experimental Setup 

As mentioned, most of the machining parameters for the process we are obtaining 

our data from are already known (Table 3). These parameters are held constant and ensure 

that all the data obtained are acquired under identical circumstances, with the only sig-

nificantly varying factor being tool wear. Ensuring the model is trained on a consistent 

database is paramount to generating a robust model. 

Table 3. Boundary conditions and constant parameters in our experimental setup. 

Part of Experimental Setup Parameter Basic Experiment 

Cu�ing parameters 

Cu�ing depth 0.5 mm 

Cu�ing speed 530 m/min 

Feed rate 3.3 m/min 

Cooling External emulsion cooling 

Workpiece material 

Material type Aluminium alloy 

Producer Impol LLT 

EN AW-6082 

Yield strength 260 MPa 

Cu�ing tool 

Type Custom designed 

Producer Walter tools 

Material Polycrystalline diamond 

Geometry Positive 

Corner radius 1.2 mm 

Cu�ing edge length 12 mm 

Lathe 
Producer Unior 

Type 572-0000-0 

The exact equipment used in the experiment and the cu�ing tool assembly are pre-

sented in Figure 2. 

  
(a) (b) 
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(c) (d) 

Figure 2. Key components of the experiment include: (a) workpieces utilised in the machining pro-

cess; (b) configuration of the power quality analyser to assess the output from the spindle drive; (c) 

assembly of the cu�ing tool; and (d) geometry of the cu�ing plate. 

2.5. Long Short-Term Memory Network 

The current-time sequences were classified using an artificial intelligence method. 

Specifically, a recurrent long short-term memory network. This style of artificial neural 

network was used because of its advantages when compared to regular feed-forward neu-

ral networks. In a classical neural network, the inputs are individual data points. This style 

of inpu�ing data is applicable when different variables are used simultaneously to predict 

tool wear. 

Typically, 3 to 8 input variables are used [20]. Examples include the following: num-

ber of revolutions, machining time, and cu�ing force [21]; material of the tool, the sharp-

ening mode, the nominal diameter, the number of revolutions, the feed rate, and the drill-

ing length [21]; depth of cut, cu�ing speed, and feed to the tooth [22]. The maximum num-

ber of inputs that were utilized successfully when using fully connected neural networks 

was 20 [23]. In the case of using time sequences as neural network inputs, such as in this 

study, a fully connected neural network would have more than 100 individual inputs, 

each being a separate datapoint. 

Such an input net size would be too expansive for a fully connected layer to process, 

as it would create an expansive network with a high training and execution time. Not only 

that, but in this method, the seemingly significant parts of the current signal would have 

to be determined to reduce complexity, adding to the risk of potentially faulty personal 

perception. 

By using an LSTM memory network, these issues can be avoided, as recursive neural 

networks can take data sequences as single inputs. This type of network also does not 

require the significant parts of the signal to be determined in advance, as the network is 

trained to analyse not only the individual data points but also the relationships between 

them. This results in the network analysing the shape of the signal rather than the absolute 

current values. 

What differentiates this type of neural network from a classic feed-forward network 

is the recurrent LSTM layer consisting of repeating modules, as shown in Figure 3. These 

contain 4 independent neural networks that allow the network to add or remove infor-

mation in the training phase. 
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Figure 3. Schematic representation of the LSTM recurring layer. 

Mathematically, this layer is described with the following formulae [24]: 

�� = �(�� ∗ [ℎ��� , ��] + �� (1)

�� = �(�� ∗ [ℎ��� , ��] + �� (2)

�� = �(�� ∗ [ℎ��� , ��] + �� (3)

�̃� = ���ℎ(�� ∗ [ℎ��� , ��] + �� (4)

��  = �� ⊙ ���� + �� ⊙ �̃�  (5)

ℎ� = �� ⊙ tanh (��) (6)

where the initial values are co = 0 and ho = 0, and the operator ⊙ denotes an element-wise 

product. Where d and h refer to the number of input sequences and the number of hidden 

units, respectively, the variables are defined as: 

 �� ∈ ℝ�: input vector to the LSTM module; 

 �� ∈ (0,1)�: activation vector of the forget gate; 

 �� ∈ (0,1)�: update gate activation vector; 

 �� ∈ (0,1)�: output gate activation vector; 

 ℎ� ∈ (−1,1)�: hidden state or LSTM output vector; 

 �̃� ∈ ℝ�: cell input activation vector; 

 �� ∈ ℝ�: cell value vector; 

 � ∈ ℝ���   and � ∈ ℝ� : matrices of NN weights and bias vector parameters that 

adapt during training. 

The development of LSTM is a lengthy process; however, starting point structures 

are freely available. In the study, some of the network’s parameters were additionally op-

timised to achieve the best compromise between functionality and response time. The 
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parameters chosen for optimisation were the number of training iterations and the net-

work learning rate (see Figures 4 and 5). 

 

Figure 4. Optimisation of the number of training iterations against classification accuracy and the 

training cycle duration. 

 

Figure 5. Optimisation of the learning rate against classification accuracy and the training cycle du-

ration. 

2.6. Unanimous Voting System Algorithm 

To additionally reduce the occurrence of false alarms in the final monitoring applica-

tion, a way to add redundancy in the analysis was required. The proposed solution is a 

simple voting system where the neural network model triggers the appropriate alarm 

based on multiple consecutive analyses, requiring them to be identical. 

The unanimous voting system is a basic algorithm that compares 3 consecutive clas-

sifications that the neural network prediction model performs in real time. When the sys-

tem recognises an identical wear level after three machining cycles in a row, the process 

can be interrupted, with the minimum risk of a false alarm downtime. The flowchart for 

the final monitoring application can be seen in Figure 6. 
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Figure 6. The flowchart for the final tool condition monitoring application that has an integrated 

algorithm for additional redundancy. 

3. Results and Discussion 

In Section 2.3, the process of acquiring the spindle current data in relation to time as 

well as the distribution of that data into three categories of tool wear is presented. The 

entire data set was split into two groups for training and testing the neural network. Ini-

tially, the LSTMNN was trained on a set of designated training data, and later, the perfor-

mance of the model was further tested with a set of testing signals—ones the network did 

not encounter during training. The size and distribution of the described sets are given in 

Table 4. 

The classification quality was evaluated using the parameters of accuracy, recall, and 

precision [25] to ensure reliability. To visualise the results of the model’s classification 

a�empts, contingency tables were used. 

The trained model was then implemented with the unanimous voting algorithm and 

had its accuracy tested again. 

Table 4. Number of current data sequences in the training and testing data sets. 

Element Low Moderate High Combined 

Training set 326 379 401 1106 

Testing set 81 136 141 358 

3.1. Training Set Results 

Firstly, the training process was conducted, and then all the training data were clas-

sified. The resulting contingency table is depicted in Figure 7. 



Sensors 2024, 24, 2490 10 of 13 
 

 

 

Figure 7. Contingency table of classification results when analysing the training data set. 

A brisk inspection of Figure 7 shows that a trained network correctly determined 

1102 out of 1106 current signals after being tasked with classifying them. 

The signals that resulted in false predictions were additionally analysed to determine 

the error source. Inspection showed that the false prediction resulted from current data 

sequences that were located on the edges of the wear intervals (see Table 1). Thus, the false 

predictions are mostly concentrated in the “moderate wear” class with two border zones. 

3.2. Testing Set Results 

Firstly, the training process was conducted, and then all the training data were clas-

sified. The resulting contingency table is depicted in Figure 8. 

 

Figure 8. Contingency table of classification results when analysing the testing data set. 

The change in model performance can be most easily evaluated via accuracy. A slight 

decrease in the said parameter can be observed between the training and testing data clas-

sifications (99.64% falling down to 96.93%), but not outside of what is expected. 

The network correctly categorised 347 out of 358 current signals. When observing the 

error distribution, the bulk of the models’ errors are in the “moderate wear” class, as was 

observed with the categorisation of training data. Additionally, all but one of the errors 

are one class over, with a tendency towards the higher wear class. This fact is important 

from a practical point of view for the intended implementation of such a system in an 

industrial se�ing. A random error distribution, despite its high accuracy, would be unfa-

vourable. 

3.3. Unanimous Voting System (UVS) 

While a classification accuracy of ~97% is certainly high, additional methods were 

consulted to improve the reliability of the model even further. A method that was imple-

mented is an inherent redundancy that requires the model to make three consecutive 
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identical tool wear estimations (Figure 8), before resulting in an alarm or notification to 

the process overview interface. A more detailed description can be found in Section 2.6. 

This, along with the inherent model accuracy of 96.93%, increases the predictive sys-

tem’s accuracy to effectively 100% (99.99%). 

4. Discussion 

The study presented addresses the following two main questions: whether the con-

dition of the cu�ing tool used in CNC turning can be monitored with an artificial neural 

network, and whether the current signal captured on the main spindle is a sufficient fea-

ture for that application. 

The current sequences are analysed using a long short-term memory recurrent neural 

network. An individual current signal data sequence consisted of a continuous 5 s spindle 

current measurement coinciding with the machining cycle. The obtained sequences of 

data were then divided into groups based on the age of the cu�ing tool in terms of ma-

chining cycles. The conclusions of the research are the following: 

 Cu�ing tools were successfully divided into groups according to tool wear. 

 The proposed method is confirmed to be applicable to a tool condition monitoring 

system. 

 The current signal is a sufficient feature for determining tool wear. 

 The accuracy of the proposed system ranges from 96.93% to effectively 100%, with 

additional wear prediction redundancy in the form of a UVA. 

The results are more than encouraging when compared to other studies utilising the 

neural network modelling approach. The results are as follows: 5%, 10.7%, and 22% errors 

for estimated tool wear for milling tools [26]; 99% accuracy for useful life prediction using 

a neuro-fuzzy network with wireless sensor [27]; comparison of predicting exact tool wear 

with different algorithms, where the LSTM reached an accuracy of 92.54% [28]; a similar 

study classifying the tool wear rather than predicting the exact value [29] achieved an 

accuracy of 95.25%, the highest when compared to RNN (85.26%) and Feedforward NN 

(79.35%). Convolutional neural networks are also commonly used, reaching accuracy as 

high as 96.25% [9]. 

In Table 5, the methods are further described and compared to the results of our re-

search. The main comparisons that are being focused on are the overall accuracy of the 

models as well as the measuring equipment required to obtain the signal on which the 

predictions are based. The la�er is used to illustrate the applicability of such a system for 

an industrial application, where low cost and resistance to contamination are prioritized. 

Table 5. Comparison of the model proposed (first line) in the study against existing research. 

Method Observed Signal Measuring Requirements Accuracy Reference 

LSTM neural network Current Internal current sensors 96.93–99.99% / 

Modal analysis Vibrations Dynamometers 78–95% [26] 

Neuro-fuzzy network Vibrations Wireless accelerometer 99% [27] 

LSTM neural network Force Multiple external sensors 92.54% [28] 

LSTM-hidden Markov model Force Dynamometer 95.25% [29] 

CNN Thermal image Thermal camera 96.25% [9] 

CNN Acoustic signal Spherical beamformer 65–99.5% [30] 

The proposed classification system based on LSTM Neural Network spindle current 

analysis with added redundancy is more accurate and allows for easier integration than 

other similar TCM systems. 
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5. Conclusions and Future Work 

The system presented is an intelligent tool condition monitoring solution, showing 

high potential with its high accuracy and reliability, low investment cost (most necessary 

adaptations are digital), and high level of possible integration into the process machinery. 

It serves the goal of removing unpredictable decision-making based on human operator 

experience and knowledge, in line with the ideals of Industry 4.0. 

The future development of this system will include improving data acquisition, ex-

panding the dataset, and using more reliable measures of establishing tool wear in the 

training data. The la�er can be achieved by visually inspecting the tool plates or utilizing 

the Niakis method [19]. Further, it is intended to expand upon the way class distribution 

is determined and increase the number of said classes. These would include classes to 

address the areas of uncertainty that can be observed when classifying the cases on the 

borders of wear intervals. 

The generalizability of the model has not been directly examined in this study. How-

ever, based on other studies in the field of machine learning-based TCM systems [31], it 

can be concluded that LSTM networks have the ability to reach a certain level of general-

isation, especially when utilised with existing redundancy concepts. This is also one of the 

future development goals for the system. By training and testing on a larger dataset with 

variations in the machining parameters such as cu�ing speed, feed rate, and cut depth, as 

well as changes in material, we could develop a robust system that can adjust to changes 

in manufacturing conditions. Additionally, more advanced methods of integrating redun-

dancy would be considered, such as majority voting utilising multiple LSTM models 

trained on similar but separate data. 

Finally, as industrial applicability is a large goal, utilising the machine’s internal sen-

sors to record the current signal is a must. The ability to use the signals already existing 

on the equipment would be a great benefit, both in terms of reducing cost and complexity. 
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