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Abstract: In this paper, we consider an integrated sensing, communication, and computation (ISCC)
system to alleviate the spectrum congestion and computation burden problem. Specifically, while
serving communication users, a base station (BS) actively engages in sensing targets and collaborates
seamlessly with the edge server to concurrently process the acquired sensing data for efficient target
recognition. A significant challenge in edge computing systems arises from the inherent uncertainty in
computations, mainly stemming from the unpredictable complexity of tasks. With this consideration,
we address the computation uncertainty by formulating a robust communication and computing
resource allocation problem in ISCC systems. The primary goal of the system is to minimize total
energy consumption while adhering to perception and delay constraints. This is achieved through
the optimization of transmit beamforming, offloading ratio, and computing resource allocation,
effectively managing the trade-offs between local execution and edge computing. To overcome this
challenge, we employ a Markov decision process (MDP) in conjunction with the proximal policy
optimization (PPO) algorithm, establishing an adaptive learning strategy. The proposed algorithm
stands out for its rapid training speed, ensuring compliance with latency requirements for perception
and computation in applications. Simulation results highlight its robustness and effectiveness within
ISCC systems compared to baseline approaches.

Keywords: integrated communication and sensing; mobile edge computing; deep reinforcement
learning; robust design; computation uncertainty

1. Introduction

Recent years have witnessed a rise in intelligence applications and services. Inte-
grated sensing and communication (ISAC) has been suggested as a pivotal concept in next-
generation wireless communication systems [1]. Conventional methodologies separate
sensing and communication, giving rise to challenges such as intricate design, bandwidth
interference, and resource inefficiencies. Nevertheless, wireless sensing shares significant
similarities with wireless communication technology in aspects such as hardware infras-
tructure and signal processing, making the mentioned integration possible. In view of the
shared spectrum resources and hardware in ISAC systems, efficient resource utilization as
well as mutual reciprocity and benefit between sensing and communication functions can
be enabled [2].

However, with the implementation of these advanced functionalities, especially dur-
ing the rapid growth of the internet of things (IoT), network edge nodes have begun to
generate substantial amounts of data, thereby escalating the demand for effective data
processing capabilities. Confronted with such voluminous data, devising a strategy for
its rapid and efficient processing has emerged as an urgent and critical challenge [3]. In
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addressing this challenge, mobile edge computing (MEC) emerges as an innovative com-
puting paradigm [4]. In this framework, proximally located servers are designated as edge
servers, endowing user devices (UEs) with edge computing capabilities. This strategy
markedly enhances data processing capabilities [5].

The network nodes in next-generation wireless communication systems will execute a
variety of functions in an integrated manner, including high-precision, multi-objective envi-
ronmental sensing and low-latency computing. This motivates the seamless integration of
the ISAC network architecture with the MEC architecture, referred to as integrated sensing,
communication, and computation (ISCC) [6], which is expected to support communication,
sensing, and computation functionalities using the same signals and wireless infrastructure.
Within this integrated framework, not only are the network nodes capable of simultane-
ously performing sensing and communication functions but also the system infrastructure
is equipped to carry out efficient edge data processing [2]. To this end, ISCC can remarkably
simplify equipment complexity and lower both production and usage costs significantly,
which is essential for the advancement of wireless communication technology [7].

However, due to the unpredictability of computation types and the complexity of
tasks, there is an inherent uncertainty in the computation processes of edge networks [8,9].
To address these challenges, a robust design scheme has been developed for the MEC
network, which specifically accounts for the uncertainties associated with task complexity.
To date, there has been limited research attention dedicated to the co-design of sensing,
communication, and computation, especially when addressing the practical challenge of
computation uncertainty. The main focus of this paper is to bolster a system’s robustness
while simultaneously minimizing system energy consumption. The primary technical
contributions of this paper can be outlined as follows:

• The computation uncertainty of a UE’s task within the framework of ISCC is investi-
gated in this paper. To tackle the uncertainty of computation, a robust optimization
problem aimed at minimizing system energy consumption is formulated. This is
achieved by simultaneously optimizing communication and computation resources,
beamforming, and offloading ratio.

• To address the outlined optimization challenges, this paper introduces a method
that incorporates the proximal policy optimization (PPO) algorithm into deep rein-
forcement learning (DRL). This approach is designed to meet multiple constraints,
including radar estimation information rate, computational offloading delay, and
resource allocation. Utilizing a DRL training framework, this method allows for the
efficient exploration and resolution of this intricate optimization problem. The system
not only addresses practical constraints but also elevates decision making through the
integration of intelligent learning algorithms.

• Through a series of simulation experiments, we assess the performance of this method,
confirming the effectiveness of the computational robustness design and the PPO
method in enhancing system efficiency and reducing energy expenditure. The ro-
bustness design demonstrates the improved performance in scenarios with uncertain
task complexities. The simulations further reveal that the system’s weighted energy
consumption could be significantly lowered when using the PPO algorithm with
robustness.

The remainder of this paper is structured in the following manner. In Section 2,
related work is detailed. In Section 3, the system model is proposed. Then, the training
framework is advanced, and its complexity is analyzed in Section 4. Section 5 delivers
detailed simulations to confirm the effectiveness and robustness of the algorithm. Finally,
Section 6 draws conclusions.

2. Related Works

There have been many works focused on enhancing the performance of MEC systems.
For instance, the authors of [10] suggested a resource allocation strategy using DRL, which
adaptively allocates computation and network resources. This method aimed to decrease
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the mean service duration and balance resource usage under dynamic MEC conditions.
Reference [11] investigated the minimization of system overhead in an MEC environment
by jointly optimizing sampling, sensing, and computation offloading processes, effectively
updating the status information of IoT systems. The work in [12] focused on optimizing
resource allocation in ambient intelligence to maximize the convergence speed of federated
edge learning. Further, ref. [13] presented the robust offloading policy and the joint
allocation of communication and computation resources in an MEC system.

In the research on ISCC networks, efforts mainly place emphasis on the resource
scheduling and optimization of beamforming techniques, ensuring the stability of com-
munication links and enhancing the efficiency of computing task processing. In [14], the
optimization of wireless spectrum resource strategies was performed in ISCC for deal-
ing with high data transmission demands and complex computing tasks. The authors
of [15] introduced adaptive digital twin technology in ISCC networks to improve network
performance, especially in dynamic environments, in terms of application efficiency and
reliability. While interesting, the works in [16,17] emphasized the significant role of beam-
forming in enhancing spectrum efficiency and reducing communication delay. The authors
of [18] addressed the interference between radar sensing and MEC by jointly optimizing the
sensing of beam pattern and task offloading with the aid of intelligent reflective surfaces.
Considering previous work, there has been little research on robustness issues within ISCC
networks. In this context, we study the computation uncertainty present in ISCC networks.

3. System Model and Problem Formulation

This section describes the system model for a robust ISCC system first and then
formulates the energy consumption minimization problem.

3.1. System Model

This paper focuses on a beamforming and resource optimization issue in networks
integrating communication, sensing, and computation, which are augmented by MEC. As
shown in Figure 1, the network comprises one base station (BS) outfitted with M antennas,
which serves K UEs with a single antenna each. The BS is not only equipped with an
MEC server to enable computational offloading but also integrated with a radar sensing
system, designed for the real-time detection and precise localization of potential targets.
Concurrently, it ensures the provision of stable and reliable communication services to
users. In practical applications, user devices can be regarded as smart wearable devices or
AR devices, etc.

x

y

z

Potential target

Target users

Sensing signal

Communication signal

Service areaBS equipped with MEC

Figure 1. System model.
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Taking into account the operational cycle and real-time requirements of the system,
this paper posits that the task cycle is T, which is further subdivided into N time slots to
facilitate meticulous resource scheduling, management, and computation. Consequently,
the duration of each individual time slot is δn = T/N, and it is assumed that the intervals
between time slots are sufficiently short to satisfy the requirements for real-time processing.
To simplify the problem, it is further assumed that within each time slot, the UE’s computing
tasks, data transmission, and other operations can be completed within that same time slot.

Within this framework, the primary entities and time units of the network are defined.

In this context, the sets of UEs are denoted as ∀k ∈ K ∆
= {1, . . . , K}, and time slots

are denoted as ∀n ∈ N ∆
= {1, . . . ,N}. Without the loss of generality, this paper adopts

the Cartesian coordinate system. Each UE is associated with a specific two-dimensional
coordinate (xk, yk), and the BS is assigned a fixed two-dimensional coordinate (xBS, yBS)
and has a height of 100 meters. It should be noted that all UEs are located on the ground;
therefore, only their two-dimensional coordinates are taken into consideration.

3.2. Signal Model

In time slot n, for BS and UE k, the communication channel is characterized as a
Gaussian channel.

(1) Received Signal.
During time slot n, the signal x[n], captured by the BS, is the superposition of the UE

transmission signal xcom[n], the radar sensing signal xsen[n], and the noise n[n], denoted as

x[n] = xcom[n] + xsen[n] + n[n] (1)

where n[n] ∈ CU×1 is an independent and identically distributed Gaussian random noise
vector with a mean value of zero and a variance of σ2.

The transmission signal from the UE and the radar sensing signal are the essential
components of the signal received at the BS. The ensuing sections will delve into the
detailed composition and properties of these transmission signals.

The transmission signal xcom[n] is characterized within the same time slot n, and the
BS receives superimposed transmission signals from K distinct UEs, which can be expressed
as

xcom[n] = ∑
k∈K

xk
com[n] (2)

where xk
com[n] is used as the transmission signal of the UE k, expressed as

xk
com[n] = pk[n]sk[n]hk[n] (3)

here, pk[n] is the transmission power allocated to UE k during time slot n, and sk[n] is the
data symbol.

For the sensing signal xsen[n], it is noted that the BS receives echoes from the target
during time slot n. To effectively capture such echoes, the BS must first predict the radar’s
emission signal based on prior knowledge of the target. Nonetheless, the signal that
the radar emits may encounter various interferences on its return. To mitigate these
interferences and more accurately extract information about the target, this paper adopts
the approach of subtracting the radar’s transmission signal from the received signal to
isolate the radar signal post-interference elimination, which can be described as s̃sen[n]. The
beamforming vector wsen[n] is then applied to s̃sen[n] to process and obtain the resultant
sensing received signal as follows:

xsen[n] = wsen[n]Hsen[n]s̃sen[n] (4)

where wsen[n] ∈ CU×1 and Hsen[n] ∈ CU×U describe the target response matrix of the
radar.
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Furthermore, upon receiving the signal x[n], the BS employs the beamforming vector
wk[n] to retrieve the signal. The retrieved signal is presented as

x̂k[n] = wH
k [n]x[n]

= wH
k [n](xcom[n] + xsen[n] + n[n])

= wH
k [n](

K

∑
k=1

√
pk[n]hk[n]sk[n]

+ Hsen[n]wsen[n]s̃sen[n] + n[n])

(5)

(2) Offloading Rate
Through beamforming, the directivity of the signal is optimized, enhancing the re-

ception of the intended signal and concurrently attenuating the influence of unrelated
signals and noise. This optimization is vital for the performance of communication systems,
particularly for signal recovery and the data rates of UEs. Accordingly, in time slot n, the
Shannon formula is employed to compute the offloading rate for the UEs, which can be
articulated as follows:

Rk[n] = B · log2(1 + Ps/n[n]) (6)

where B denotes the channel bandwidth, Ps/n[n] represents the signal–noise power ratio
in time slot n, which is the ratio of the signal power sk[n] to the noise power nk[n] during
this interval. The signal power sk[n] and the noise power nk[n] are described as follows,
respectively:

sk[n] = pk[n]
∣∣∣wH

k [n]hk[n]
∣∣∣2 (7)

nk[n] = B2ψ2σ2
sen

∣∣∣wH
k [n]Hsen[n]wsen[n]

∣∣∣2
+ σ2wH

k [n]wk[n] +
K

∑
i=1,i ̸=k

pi[n]
∣∣∣wH

k [n]hi[n]
∣∣∣2 (8)

where, specifically, ψ represents the constant of the power amplifier, and σ2
sen is the variance

of the radar’s received signal noise.

3.3. Sensing Model

In the Signal Model section, a detailed description of the signal transmission process
between the UEs and the BS is provided, as well as the specific expressions for each signal
component. Nevertheless, it is also necessary to conduct the thorough modeling and
analysis of the radar sensing aspect. The efficacy of radar sensing is intrinsically connected
to the system’s capacity for the precise and efficient execution of tasks related to target
detection and localization. Consequently, the key metric of radar estimation information
rate is introduced as a solution for quantifying the signal’s sensing abilities [19].

The radar estimation information rate serves as the metric for target information
acquired by radar. It is essentially the information shared between radar and the target
through mutual interaction, quantifying the efficacy with which ISAC devices discern
target information from the received echoes. This rate is employed to measure the volume
of target information extractable from the sensing echoes.

In the context of radar estimation information rate, the signal–noise ratio of the radar
echo signal is a key concept. It is denoted using a specific symbol Pr[n] to denote the signal–
noise ratio of the radar echo signal suppressed by ISAC devices in time slot n. The ratio of
the radar duty cycle factor δ to the radar pulse duration µ, denoted by Br, characterizes the
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proportion of time where the radar is actively transmitting versus the duration of a single
pulse. These are described as follows:

Pr[n] =
B2ψ2σ2

sen

∣∣∣c[n]HHsen[n]wsen[n]
∣∣∣2

σ2c[n]Hc[n]
(9)

Br =
δ

µ
(10)

where c[n] ∈ CU×1 denotes the finite impulse response filter (FIR). Thus, during time slot
n, the radar estimation information rate can be formulated as

Rr[n] =
1
2

Brlog2(1 + 2BµPr[n]) (11)

3.4. Computation Model

In real-world application scenarios, task complexities often vary across different types.
This paper has developed a multi-task model comprising a set of diverse task types, denoted
as ∀z ∈ Z ≜ {1, . . . , Z}. The term dk[n] is used to quantify the data volume generated
by UE k in time slot n, while cz indicates the intricacy linked to task z, reflecting the
computational power required for processing. Given that the exact complexity cz may
be unknown, computational uncertainty is introduced, reflecting the unpredictability of
the real world. This can render the task scale measurable yet leave the completion time
indeterminate. Through the analysis of historical data on multiple tasks, this research
estimates the complexity of cz, relating it to the error bound ∆δz. This error bound ∆δz is
constrained within a predefined threshold εz to bolster robustness, which is represented as

cz = ĉz + ∆δz, |∆δz| ≤ εz (12)

Furthermore, to facilitate the representation of task scheduling in time slot n, it is
imperative to match the tasks and their respective types to each user independently, thereby
ensuring that the task types assigned to each user within the same time slot are non-
interfering. This is described as follows:

ζz,k[n] = ζz[n]ζk[n]

∀z ∈ Z , ζz[n] ∈ {0, 1}
∀k ∈ K, ζk[n] ∈ {0, 1}

(13)

If ζz[n] = 1, then the assigned task type is z; conversely, if ζz[n] = 0, the task type is
not z. In the same way, ζk[n] = 1 denotes that the task comes from UE k; otherwise, it does
not. It is established that a task is attributed to UE k and classified as type z if and only if
ζz[n] = 1 and ζk[n] = 1, a condition that can be succinctly described as ζz,k[n] = 1.

Due to the computational resource and energy constraints of UEs, it is infeasible to
complete tasks locally within an expected timeframe. Consequently, this paper employs a
partial offloading model. This means that each computational task is segmented into two
components based on the offloading ratio ρk[n]. One proposed local computation is dloc

k [n],
and the other one is transferred to BS doff

k [n], represented as follows:

dloc
k [n] = (1 − ρk[n])dk[n] (14)

doff
k [n] = ρk[n]dk[n] (15)

(1) Delay
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In the time slot n, the delay due to local computation for UE k is expressed as

tloc
k [n] =

Z
∑

z=1
dloc

k [n]ζz,k[n]cz

f loc
k [n]

(16)

where f loc
k [n] denotes the processing rate of UE k in time slot n.

The offloading delay of a task offloaded from the user device to BS is described as

toff
k [n] =

doff
k [n]

Rk[n]
(17)

When the task from UE k is uploaded to the BS, since the BS is furnished with one MEC
server, the MEC server processes the tasks submitted by the UE k, and the computational
delay incurred by the MEC is denoted as

tmec
k [n] =

Z
∑

z=1
doff

k [n]ζz,k[n]cz

f mec
k [n]

(18)

where f mec
k [n] denotes the processing rate by MEC for the task from UE k.

Given that the data volume processed by the MEC server is typically minimal, the
delay associated with the return transmission is considered negligible in comparison to
offloading and computational delays. Therefore, it is postulated that the return transmission
occurs instantaneously. Consequently, the overall service delay for UE k is described as

t f in
k [n] = max

{
toff
k [n] + tmec

k [n], tloc
k [n]

}
(19)

(2) Energy Consumption
For the energy consumption attributable to computation, given that the energy re-

sources of the BS can be considered unlimited, it is only necessary to account for energy
consumption associated with the computation of UE k, which can be articulated as follows:

Eloc
k [n] =

Z

∑
z=1

ε( f loc
k [n])

2
dloc

k [n]ζz,k[n]cz (20)

where ε is defined as the effective capacitance coefficients that depend on the chip architec-
ture of the local computing device.

Beyond the energy consumed for computation, the energy expenditure for offloading
transmissions also should be taken into consideration. As the return transmission is
assumed to be instantaneous and the data volume is approximated to zero, the energy cost
associated with the return transmission is deemed negligible. Therefore, only the energy
consumed during offloading is considered. The offloading energy from UE k is articulated
as follows:

Eoff
k [n] =

doff
k [n]

Rk[n]
pk[n] (21)

Therefore, in time slot n, UE k’s energy consumption can be obtained:

Ek[n] = Eoff
k [n] + Eloc

k [n] (22)

3.5. Problem Formulation

This study endeavors to minimize the aggregate system energy consumption through-
out the entire cycle by jointly optimizing the offloading ratio ρ ≜ {ρk[n], ∀k ∈ K, n ∈ N},
the computational resource allocation of the MEC to each UE fe ≜ { f mec

k [n], ∀k ∈ K, n ∈
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N}, the local computing resource allocation for UEs fl ≜ { fk[n], ∀k ∈ K, n ∈ N}, and
the beamforming W ≜ {wk[n], ∀k ∈ K, n ∈ N}. The optimization problem is denoted as
follows:

C0: min
{ρ,fe ,fl ,W}

∑
n∈N

∑
k∈K

Ek[n]

s.t. C1: 0 ≤ ρk[n] ≤ 1, ∀k ∈ K, n ∈ N
C2: ζz,k[n] ∈ {0, 1}, ∀z ∈ Z , k ∈ K, n ∈ N
C3: ∑

z∈Z
ζz,k[n] = 1, ∀k ∈ K

C4: 0 ≤ f mec
k [n] ≤ f max

mec , ∀k ∈ K, n ∈ N
K

∑
k=1

f mec
k [n] ≤ f max

mec , ∀k ∈ K, n ∈ N

C5: 0 ≤ f loc
k [n] ≤ f max

k , ∀k ∈ K, n ∈ N
C6: 0 ≤ pk[n] ≤ Pmax

k , ∀k ∈ K, n ∈ N

C7: t f in
k [n] ≤ tmax, ∀k ∈ K, n ∈ N

C8: |△ δz| ≤ εz, ∀z ∈ Z
C9: Rr[n] ≥ Rmin

r , ∀n ∈ N

(23)

where f max
mec and f max

k signify the maximum processing rates of the MEC server and UE k
for tasks, respectively, while Pmax

k denotes the maximum transmitting power of UE k, and
tmax constrains the slot time for a single task. The term ∆δz is bounded within a radius
of εz, and Rmin

r represents the minimum radar estimation information rate. Constraint C1
pertains to the proportion of the task offloaded to the MEC server. C2 and C3 describe the
type of task generated by UE k. C4 limits the maximum computational resources assigned
to UE k by the MEC server. C5 restricts UE k’s computational resources. C6 governs the
offloading transmission power of UE k. C7 delineates the task duration. C8 manages the
computational error. C9 prescribes the lower bound for the minimum performance of
radar perception.

4. Proposed Algorithm
4.1. Modeling of Single-Agent MDP

A Markov decision process (MDP) is employed to model the challenge in this paper,
which involves a nonlinear objective function and environmental uncertainties. To address
the challenges posed by time-varying channels and multitasking, DRL is utilized to discover
optimal strategies. Despite the increased complexity due to high-dimensional state spaces
and the synchronization delay, the PPO variant of DRL algorithms is adopted. PPO ensures
stable and effective policy learning for a single agent in complex environments and is
instrumental in optimizing resource allocation and task execution within MEC networks to
achieve minimal energy consumption. The training framework is shown in Figure 2.

MDP provides a potent mathematical framework to tackle optimization problems [20].
In the MDP paradigm, a decision maker strategically selects actions from a defined set of
states. Each action precipitates a state transition coupled with an associated immediate
reward. The decision maker’s goal is to orchestrate a sequence of actions that amplifies the
expected cumulative reward from the present state to a designated future juncture. MDP is
especially applicable to contexts where environmental predictability is limited. Through the
strategic application and resolution of MDP, the most advantageous policy sequence can be
ascertained, offering a theoretically optimal solution to intricate decision-making problems.
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Figure 2. Training framework.

State space: To holistically account for the attributes of tasks and the resources of the
BS, the state space is defined as

sn = {L1[n], L2[n], . . . , Lk[n] ;

C1[n], C2[n], . . . , Ck[n]}
(24)

where the set of tasks is described by L[n] = [L1[n], L2[n], . . . , Lk[n]], and UEs’ CPU re-
sources are C[n] = [C1[n], C2[n], . . . , Ck[n]].

Action space: The agent, upon receiving the state space sn, determines actions repre-
sented by an, which dictate the task offloading choices and the allocation of resources at the
BS, thereby quantifying the resultant utility. Therefore, the action can be expressed as

an = {ρ[n], fe[n], w[n]} (25)

Simultaneously, with the goal of minimizing the energy expended in user computa-
tions, this paper employs dynamic voltage frequency scaling technology to configure and
estimate the CPU frequency, as detailed in the subsequent formula:

fk[n] = min{
dk[n]ζz,k[n]cz

t f in
k [n]

, f max
k } (26)

Reward space: To encapsulate the long-term optimization objectives of the problem
and to address the fulfillment of constraints, this paper devises a reward function analogous
to system energy consumption. The reward encompasses the energy expenditure of the user
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as well as penalties incurred for breaches of delay and perception constraints. Consequently,
the reward function formulated in this paper is illustrated as follows:

rn = −
[

K

∑
k=1

Ek[n]

]
Psen

n PT
n (27)

Among them, the perception constraint penalty Psen
n is a linear penalty function, and

the delay constraint penalty PT
n is an exponential penalty function, described in Equations

(28) and (29), respectively:

Psen
n = 1 +

(
R̄sen − Rmin

sen
Rmax

sen − Rmin
sen

)
(28)

PT
n =

1
K ∑

k∈K
P
(

t f in
k [n], Tk[n]

)
=

1
K ∑

k∈K

(
2 − exp(−

⌈
(t f in

k [n]− Tk[n])/Tk[n]
⌉+

)

) (29)

in which ⌈·⌉+ means that the value is rounded up.

4.2. PPO-Based DRL Training Framework

To address the problem presented in this paper, PPO, a sophisticated policy gradient
technique in DRL, is utilized within the MDP framework to optimize problem-solving
methods. PPO is distinguished for its efficiency and capacity for robust optimization
in policy spaces, garnering widespread popularity. This algorithm is characterized by a
balanced approach to exploration and exploitation, achieved through limiting policy update
steps. Such a mechanism is crucial in reducing variance during training and enhancing
learning stability. This method is especially beneficial for optimization problems that
demand continuous decision making and encompass a broad parameter space, such as
dynamic system control and complex resource management tasks. Unlike algorithms that
adopt an off-policy approach, the PPO algorithm is an on-policy method, meaning that
the behavior policy and target policy are the same. This allows the algorithm to converge
more quickly. Based on the on-policy method, agents trained with the PPO algorithm can
continuously improve their policies while interacting with the environment, making it
easier to adapt to changes in the environment while maintaining exploratory behavior. The
effective learning of complex strategies, without compromising performance, is facilitated
by PPO, thus providing more precise and robust solutions to the optimization problems.

Within the proposed framework, the actor–critic architecture plays a crucial role. The
actor network is responsible for making decisions, essentially determining the action to
be taken given the current state. Conversely, the critic network evaluates these actions by
estimating the value function, providing feedback on the quality of the decisions made by
the actor. In this architecture, the actor network is divided into new and old components,
corresponding to parameters θ and θold, respectively. Furthermore, the critic network
corresponds to network parameter ς. This collaborative adjustment ensures that the policy
update is directed towards the enhancement of expected returns.

In the actor–critic framework, the state value function V(sn) becomes a pivotal com-
ponent for strategy refinement. It encapsulates the expected returns from the current state
sn under the policy π, providing a crucial metric for the strategic adjustment process. The
specific mathematical expression is as follows:

V(sn) = E{R(an|sn), π}

= E
{

∞

∑
l=0

γlR(an+l |sn+l)

}
(30)
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where E denotes the expected value operator, and γ represents the discount factor for future
rewards, indicating the relative importance of future rewards compared to immediate ones.
R symbolizes the reward obtained from a given state and action pair.

The action value function, represented as Q(sn, an), is a critical tool for evaluating
the expected return of selecting an action an in a given state sn and adhering to a policy
π for subsequent actions. It comprehensively accounts for the immediate rewards and
the aggregated impact of potential future rewards. The action value function may be
indicated as

Q(sn, an) = E
{

∞

∑
l=0

γlR(an+l |sn+l)

}
(31)

Building on this foundation, the advantage function is introduced to assess the efficacy
of the selected actions within the given policy framework.

A(sn) = Q(sn, an)− V(sn) (32)

To guarantee the stability of policy updates, the framework employs the general
advantage estimation (GAE) approach. The estimated advantage function Â(sn) is denoted
as

Â(sn) =
∞

∑
l=0

(γλ)l(rn+l + γV(sn+l+1)− V(sn)) (33)

where λ is the GAE coefficient. Subsequently, the evaluation network and the action
network are updated by optimizing the ensuing objective function. The critic network ς
and actor network θ can be renewed by employing the following function:

G(ς) = [V(sn+1)− V(sn)]
2 (34)

G(θ) = E
{

min
[

πθ(an|sn)

πθold
(an|sn)

Â(sn),

clip
(

πθ(an|sn)

πθold
(an|sn)

, 1 − ε, 1 + ε

)
Â(sn)

]} (35)

where πθ and πθold
represent the new and old policy functions, respectively, and the update

ratio is denoted by πθ(an |sn)
πθold

(an |sn)
. The introduction of the clipping factor ε serves to constrain

the policy’s update ratio, ensuring controlled and stable optimization steps.
Algorithm 1 presents the pseudocode for the DRL training procedure utilizing the

PPO algorithm.

4.3. Complexity Analysis

The complexity of the PPO algorithm, as proposed by the Computing Institute, is
calculated in this section. Algorithm 1’s computational complexity is gauged by the count
of multiplication operations executed in a single iteration. Within the DRL framework, the
observed state values are initially transmitted to a multi-layer perceptron (MLP) by the
agent. A typical MLP consists of an input layer, an output layer, and multiple hidden layers.
The state values enter the MLP through the input layer, are processed through the hidden
layers, and they are ultimately outputted by the output layer. Given that the input layers
as well as output layers have little impact on performance, they are typically disregarded.
Consequently, the complexity of each layer can be characterized as follows:

O(Ni−1Ni + Ni Ni+1) (36)

where Ni represents the quantity of neurons in a specific hidden layer. Thus, the computa-
tion complexity of the layer I MLP is as follows:

O
(
∑I−1

i=2 (Ni−1Ni + Ni Ni+1)
)

(37)
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Algorithm 1 Proposed PPO training framework

1: Initialize the maximum training episodes lm, the maximum episode length le, the PPO
epochs lp, the BS’s location (xBS, yBS).

2: Initialize Critic network ς , Actor network θ.
3: for m ∈ {1, . . . , lm} do
4: Initialize users’ location (xk, yk) and users’ tasks
5: for n ∈ {1, . . . , le} do
6: Obtain state st from the environment
7: Make decisions πθ from the state st
8: Choose action an based on πθ

9: Execute action an and update to next state sn+1
10: Calculate rewards rn
11: Store experience (sn, an, rn, sn+1)
12: end for
13: for n ∈ {1, . . . , le} do
14: calculate Â(sn)
15: end for
16: for n ∈ {1, . . . , lp} do
17: update ς and θ
18: end for
19: end for

Both the actor and critic networks are constituted by an MLP. Based on the previous
analysis, the total computational complexity of Algorithm 1 is, thereby, deduced as follows:

O
(

lm
(

le
(
∑I−1

i=2 (Ni−1Ni + Ni Ni+1)
)))

(38)

Further, we reference the scheme proposed in [21], which addresses a scenario similar
to ours, employing a WMMSE algorithm for optimizing resource allocation along with
sensing and communication beamforming. The study in [22] introduces a beamform-
ing framework enhanced by an LSTM network to augment communication efficiency,
this method has also applied to our scenario for comparative analysis. The complexity
comparisons of these three algorithms are systematically presented in Table 1.

For this comparison, we assume a setup with 16 users and 4 antennas. Considering
that the learning algorithm incorporates convolutional layers, we set the maximum number
of iterations to 300 and have 2 intermediate convolutional layers. The analysis clearly
demonstrates that our algorithm is better. The complexity of the WMMMSE algorithm and
the complexity of the LSTM algorithm are 10 and 2 times higher, respectively, compared to
the proposed algorithm.

Table 1. Comparison of computational complexity of different algorithms.

Algorithm Computational Complexity

WMMMSE algorithm
[21]

O(lm(2K2W3 + 2K3

+K1/2(4K + W)(3K + W)2 + 6K2))

LSTM algorithm [22] O(4lm · Ne · le(G1G2 + G2
2 + G2)))

Proposed algorithm O
(

lm
(

le
(

∑I−1
i=2 (Ni−1Ni + Ni Ni+1)

)))
5. Simulation Results

This section defines the simulation data to verify the impact of the MEC-assisted ISCC
network based on the PPO algorithm on the system’s overall energy use. The simulation
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environment is constructed using the PyTorch framework. A thorough assessment of the
performance of the proposed solution is conducted as follows.

5.1. Parameter Settings

The number of BSs is set to one, with the BS fixed at the coordinates (0, 0) and
positioned at an elevation of 100 m. Consider the initiation of activities within a terrestrial
square region with a specified area of 1000 m × 1000 m. The users are randomly distributed
within this area. Task data sizes are uniformly distributed in [Lmin, Lmax], with Lmin
defaulting to 0.5 Mb and Lmax defaulting to 1.5 Mb. The mean number of cycles per bit
is Ck[n] ∈ [500, 1500] cycles/bit. The duration of the task cycle, denoted as T, is set as
200 s. Unless explicitly stated otherwise, the default configuration comprises 16 users,
with the communication channel bandwidth between the users and the BS being preset to
B = 10 MHz. The noise-related power levels, denoted by parameters η2 and η2

sen, are set
as −70 dBm uniformly. Some of the default parameters for the environmental settings are
delineated in Table 2, while parameters pertinent to algorithmic training are enumerated in
Table 3.

Table 2. Environment settings.

Parameters Values

Time slot δn 1.0 s
Constant ψ π/

√
3

Radar duty cycle factor δ 0.01
Radar pulse duration µ 2 × 10−5 s
Predefined threshold εz 15
MEC maximum frequency f max

mec 8 GHz
UE maximum frequency f max

k 1.5 GHz
UE maximum transmitting power pmax

k 0.4 W
Minimum radar estimation information rate Rmin

rad 103 dB
Effective capacitance coefficients ε 10−27

Table 3. Training settings.

Parameters Values

Learning rate lr 5 × 10−3

Maximum training set lm 300 episodes
Length of each training set le 200 steps
Discount factor γ 0.95
GAE parameters λ 0.96

5.2. Simulation Evaluation

To validate the algorithm’s performance, this study will conduct the following com-
parative assessments:

(1) Baseline PPO Design: This approach utilizes the PPO algorithm, devoid of enhance-
ments for computation robustness.

(2) Computational Robust Design: This variant integrates robust computational design,
leveraging the DRL-enhanced PPO algorithm introduced herein, which seeks to determine
nearly optimal actions for the ensuing time increment.

(3) Complete Offloading: This scenario entails the wholesale relegation of tasks to the
BS for execution, thereby absolving users from computational duties.

(4) Random Offloading: In this model, users offload tasks to the BS in a stochastic
manner, retaining the responsibility to compute any portion of the tasks not designated to
the BS.
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The convergence of the PPO algorithm is first substantiated through the analysis
presented in Figure 3a. It is clear that with a growing number of training steps, the reward
associated with the proposed solution correspondingly ascends. The enhancement of the
stated reward by the agent is significant, which substantiates the great performance of the
PPO algorithm in the context of computational offloading. Employing PyTorch for the com-
putational experiments, an ensemble of data was amassed through 60,000 training steps,
where each result is the sum of reward values within a round. Throughout the training
phase, the strategies employed by the agent, particularly in communication, perception,
and computation, undergo optimization. Concomitantly, the observed performance fluctu-
ations become smaller, eventually allowing the algorithm to stabilize at the stable reward
threshold.

In order to examine the impact of learning rate on algorithmic convergence, a compara-
tive analysis of reward value convergence curves at different learning rates was undertaken.
As depicted in Figure 3a, the learning rate of 5 × 10−3 achieves convergence at approxi-
mately 2000 training steps, while a learning rate of 5 × 10−4 requires about 8000 training
steps for convergence. Additionally, when the learning rates are set at 2 × 10−3 and
8 × 10−4, the convergence of the curves is observed to lie between the rates mentioned
above. Despite the variability in convergence steps necessitated by different learning rates,
once convergence was achieved, the resultant reward values were found to be insignifi-
cantly varied, residing within a stable range. These findings elucidate that the learning rate
exerts a discernible effect on the PPO algorithm’s convergence velocity, yet its influence on
performance efficacy remains marginal.
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Figure 3. Performance differences in different trainings steps. (a) Convergence with different learning
rate; (b) comparison with robust and non-robust.

Figure 3b provides a clear comparative analysis of the performance between the PPO
method with the robust design computations and the non-robust method. The computa-
tionally robust PPO algorithm, as proposed in this paper, is observed to achieve higher
and more stable overall rewards compared to the baseline PPO algorithm. This improved
performance is largely attributable to the computationally robust strategies.

Figure 4 provides an in-depth comparative analysis of the changes in system-weighted
energy consumption for four distinct methods across varying user scales. It is observed
that the PPO algorithm, designed with a focus on computational robustness as proposed
in this paper, outperforms others in terms of efficiency. The system’s average weighted
energy consumption under various user sizes is found to be lower when employing
this algorithm, in contrast to the baseline PPO approach. Moreover, it is noted that the
energy consumption resulting from strategies such as complete offloading or random
offloading is significantly higher, which substantiates the effectiveness of incorporating
partial offloading strategies based on offloading ratio ρ in the joint optimization process,
thereby effectively reducing system energy consumption and enhancing performance.
Additionally, an upward trend in average energy consumption between adjacent user
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numbers is observed in Figure 4. This increase is attributed to the growing number of
users accessing the network, which escalates signal interference among users, reduces
transmission rates, and consequently raises transmission costs. Such developments lead to
a decrease in the volume of tasks offloaded to BS and an increase in locally computed tasks,
necessitating greater computational resources from users and ultimately resulting in a rise
in system energy consumption.
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Figure 4. Performance comparison between different numbers of UEs.

Figure 5a and Figure 5b show the average weighted energy consumption of users
under varying computational task sizes and different bandwidth settings, respectively. In
Figure 6, with the minimum task size set at Lmin = 0.5 Mb, it is observed that user energy
consumption incrementally rises with an increase in the maximum task size Lmax, whereas
energy consumption diminishes with the expansion of bandwidth. Similarly, in Figure 5b,
with the maximum task size established at Lmax = 4.0 Mb, it is noted that user energy
consumption escalates as the minimum task size Lmin increases. Furthermore, energy
consumption intensifies as the available bandwidth narrows. This phenomenon can be
attributed to the fact that the augmentation of communication resources enhances the users’
transmission rates, whereas the escalation in computational tasks results in an upsurge
in users’ average computation energy consumption. This is because more sizable tasks
necessitate a greater allocation of computational resources, thereby leading to increased
energy expenditure. Moreover, the data depicted in the graphics indicate that with the
increment in bandwidth, a divergence in energy consumption emerges under various
bandwidth conditions. This primarily originates from the fact that, for the BS, an expanded
bandwidth implies a reduction in transmission latency, and the shortened transmission time
is afforded to BS for the processing of more computational tasks. The increase in bandwidth
incentivizes users to offload a greater number of tasks to the BS, thus alleviating the local
computational workload. Hence, the enhancement of bandwidth conserves computational
CPU resources for users, thereby effectively reducing the computation energy consumption.

Figure 6 shows the influence of estimation error bounds and task complexity on
performance. It is evident from the figure that when the estimation error bound increases,
the energy consumption rises. This is attributed to the fact that a bigger error bound results
in better uncertainty in the calculations.
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Figure 5. Energy consumption in different bandwidths and task estimation. (a) Performance compar-
ison of different maximum task volumes and bandwidth; (b) performance comparison of different
minimum task volumes and bandwidth.
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6. Conclusions

In this article, the computation uncertainties of tasks in ISCC systems was investigated,
leading to the robust offloading and resource allocation scheme. By jointly optimizing trans-
mit beamforming, offloading factors, communication and computation resource allocation,
the system energy consumption minimization problem was formulated. To effectively
address this optimization challenge, a PPO framework was developed to facilitate the
efficient implementation of optimal learning policies. Extensive numerical results have
highlighted the superiority of the proposed scheme in terms of energy consumption re-
duction as compared with baseline approaches. In future research, further investigations
into resource allocation and optimization decisions in ISCC networks will be pursued by
considering various task processing environments.
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