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Abstract: This research presents a comprehensive comparative analysis of SLAM algorithms and
Deep Neural Network (DNN)-based Behavior Cloning (BC) navigation in outdoor agricultural
environments. The study categorizes SLAM algorithms into laser-based and vision-based approaches,
addressing the specific challenges posed by uneven terrain and the similarity between aisles in an
orchard farm. The DNN-based BC navigation technique proves efficient, exhibiting reduced human
intervention and providing a viable alternative for agricultural navigation. Despite the DNN-based
BC navigation approach taking more time to reach its target due to a constant throttle limit for steady
speed, the overall performance in terms of driving deviation and human intervention is notable
compared to conventional SLAM algorithms. We provide comprehensive evaluation criteria for
selecting optimal techniques for outdoor agricultural navigations. The algorithms were tested in
three different scenarios: Precision, Speed, and Autonomy. Our proposed performance metric, P, is
weighted and normalized. The DNN-based BC algorithm showed the best performance among the
others, with a performance of 0.92 in the Precision and Autonomy scenarios. When Speed is more
important, the RTAB-Map showed the best score with 0.96. In a case where Autonomy has a higher
priority, Gmapping also showed a comparable performance of 0.92 with the DNN-based BC.

Keywords: SLAM; behavior cloning; agricultural robotics; deep neural networks

1. Introduction

Robots play a pivotal role in enhancing human lives by undertaking tasks that are
rigorous or hazardous. Recent advances in robotics and AI have revolutionized various
sectors, including business, society, and personal spheres. Beyond their precision and
consistency, robots exhibit adaptability to diverse environments, eliminating dangerous
jobs in hazardous conditions. Capable of lifting heavy loads, handling toxic substances, and
performing repetitive tasks, robots contribute to accident prevention, saving both time and
money for companies. Robots also bring a lot of benefits to the agricultural sector, which
makes good-quality food products feasible for the growing population. From precision
planting and crop monitoring to weed detection and autonomous harvesting, robots offer
a spectrum of applications [1]. No matter which application of robots in the agricultural
field is considered, in most cases, navigation in the agricultural environment is needed.
Despite the importance of robot navigation in agriculture, the number of articles in this
field is considerably low. Autonomous navigation in the outdoor agriculture environment
is relatively trickier than in the conventional urban environment, such as industries and
indoor settings. Due to the dense nature of the agricultural field and uneven surface,
it is difficult to map the environment for navigation using the traditional Simultaneous
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Localization and Mapping (SLAM) algorithms [2]. Also, the outdoor environment brings
new challenges due to different lighting and weather conditions, which affect mostly
vision-based mapping and navigation. In this research, we conducted a comprehensive
comparative analysis of different navigation methods, including SLAM algorithms and
Deep Neural Network (DNN)-based Behavior Cloning (BC) in an outdoor agriculture
environment. SLAM algorithms are widely categorized into laser-based, vision-based, and
multi-sensor fusion algorithms. Laser-based algorithms use the LiDAR sensor for mapping
and localization. Vision-based algorithms use the camera, and fusion-based algorithms use
both the camera and LiDAR for mapping and localization. For fair comparison, we use
algorithms from laser-based (Gmapping [3], Cartographer [4]) and vision-based (RTAB-
Map [5]) algorithms for this comparative study. We compare these SLAM algorithms with
DNN-based BC [6] navigation, which is a map-free approach. This exploration aims to
provide insights into the effectiveness and applicability of these methods in enhancing the
control and navigation capabilities of robots in the agricultural landscape. The comparative
assessment of vision-based, laser-based, and DNN-based BC algorithms is grounded in
their navigation performance in a simulated orchard farm environment. Performance
metrics derived from [7], encompassing driving deviation, completion time, success rate,
and human intervention, constitute the basis for this comprehensive evaluation. The results
show that DNN-based BC algorithms have promising capabilities for navigation in the
agricultural environment. Table 1 shows the summarization of the navigation techniques
along with the sensors that are analyzed in this paper.

Table 1. Overview of the SLAM algorithms and the DNN-based BC along with their respective
sensors and navigation mechanisms.

Algorithms Sensors Map Navigation

GMapping [3] LiDAR Yes AMCL
Cartographer [4] LiDAR Yes AMCL
RTAB-Map [5] Camera Yes RTAB-Map
DNN-based BC [6] Camera No DNN

So far, to the best of our knowledge, there is no concrete comparative analysis study
of laser-based and vision-based SLAM algorithms and DNN-based BC approach specifi-
cally for the agricultural environment. In this paper, we compare three different mapping
algorithms: two laser-based and one vision-based SLAM algorithms, which are GMapping,
Cartographer, and RTAB-Map, respectively. We test the navigation using Adaptive Monte
Carlo Localization (AMCL) for laser-based techniques, and RTAB-Map uses its own local-
ization mechanism for vision-based navigation. DNN-based BC uses a DNN model trained
by an expert’s demonstration to control the navigation of the robot.

The major contributions of this work are as follows:

• A new comparative study for autonomous navigation including the behavior cloning
method is proposed.

• We tested popular SLAM algorithms developed for indoor environments in the agri-
cultural outdoor environment and validated their performance.

• So far, to the best of the author’s knowledge, there is no comparative analyses of
SLAM algorithms with DNN-based BC techniques together.

2. Related Work

We conduct our literature review into two broad categories, namely SLAM compara-
tive study and DNN-based BC. A detailed review of these techniques is explained below.

2.1. SLAM Comparative Study

SLAM algorithms are broadly categorized into three main categories based on the
type of sensor modalities they incorporate, namely: (1) laser-based SLAM algorithm,
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(2) vision-based SLAM algorithm, and (3) multi-sensor fusion SLAM algorithm. Laser-
based SLAM generally uses single or multiple-line LiDAR sensors, which are referred
to as raw-range scan sensors. Vision-based SLAM algorithms use cameras like monoc-
ular, binocular, or RGB-D to extract the features, commonly referred to as feature-based
SLAM techniques. The multi-sensor fusion SLAM algorithm uses both laser and camera
sensor modalities.

The agricultural environment is more challenging for mapping and localization than
the traditional indoor and industrial environments because agricultural environments
experience different weather, lightning conditions, and seasonal changes, which can pose
difficulties for SLAM algorithms designed for urban or industrial environments. Dynamic
growing crops can make it challenging to reconstruct the 3D structure of agricultural envi-
ronments. Also, achieving a globally consistent map is challenging in environments where
any mobile robot’s self-localization can suffer from imprecision. Therefore, consistent
alignment of multiple 3D sub-maps when generating a global 3D map is a significant
challenge [8]. These challenges highlight the unique complexities of agricultural envi-
ronments and the need for specialized approaches to address them within the context of
SLAM algorithms.

The specific parameters utilized by Kasar, A. et al. compare the performance of
two popular visual SLAM algorithms, RGBD-SLAM and RTAB-Map, Ref. [9] on the TUM
RGBD Dataset [10]. They evaluated the performances using Absolute Trajectory Error (ATE)
and Relative Pose Error (RPE). The ATE measures the difference between the estimated
trajectory and the ground truth trajectory, while the RPE measures the difference between
relative poses estimated by the algorithm and the ground truth relative poses. These
parameters were used to evaluate the accuracy and robustness of the algorithms in different
situations and camera motions.

Garigipati et al. conducted an evaluation of eight prominent open-source 3D LiDAR
and visual SLAM algorithms [11]. These algorithms were chosen based on their status
as state of the art and on their widespread usage, with implementations in Robot Oper-
ating System (ROS) [12]. The selected algorithms encompass both laser-based and visual
methods, with four algorithms utilizing LiDAR data and four employing visual data. Addi-
tionally, the algorithms include both full SLAM (Simultaneous Localization and Mapping)
systems and odometry algorithms. The primary distinction between odometry and full
SLAM algorithms lies in their approach to estimation and optimization. Odometry algo-
rithms typically perform incremental estimation on a frame-by-frame basis, occasionally
incorporating windowed local optimization techniques. In contrast, full SLAM methodolo-
gies aim to maintain global consistency by integrating loop-closure detection mechanisms.
These mechanisms are utilized to identify previously visited locations, enabling correc-
tions to pose estimation errors and ensuring overall global consistency within the map.
The evaluation criteria used in the paper include the following: (a) Relative Pose Error
(RPE) and Absolute Pose Error (APE). These metrics were used to assess the accuracy of
the algorithms in estimating the robot’s pose in both indoor and outdoor environments.
(b) Loop-closure capability: The ability of the algorithms to detect loop closures and main-
tain global consistency in the estimates. (c) Drift from the starting point: This metric was
used to compare the quality of the SLAM estimates in a stationary robot scenario with
moving objects in the view. (d) Computational resources: The paper provides a comparison
of the required CPU resources for running the different algorithms, including average
and peak CPU usage. These criteria were used to systematically analyze and compare
the performance of the selected SLAM implementations in various scenarios, such as the
mounting position of the sensors, terrain type, vibration effect, and variation in linear and
angular speed of the sensors.

Liu, X. et al. compared three kinds of laser SLAM algorithms: Hector SLAM, Gmap-
ping, and Cartographer. These algorithms were chosen because they are widely used
in the field of autonomous robots and are effective in indoor mapping experiments [13].
The authors aimed to compare the accuracy and efficiency of these algorithms in a real
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environment experiment. The authors used several evaluation metrics to compare the
performance of the three algorithms. These metrics include the length of the indoor features
measured by traditional methods, the drawing length of the features obtained by each
algorithm, the maximum difference, the minimum difference, and the medium error of the
graphing results of the three algorithms. The authors also analyzed the cumulative error
caused by each algorithm.

Li, Z. et al. used Gmapping SLAM, Hector SLAM, Cartographer SLAM, and ORB SLAM
and compared their advantages and disadvantages in a complex indoor environment [14].
GMapping and Hector SLAM are laser-based SLAM techniques whose performances are
evaluated against the ORB SLAM, a vision-based method. The evaluation criteria are an
algorithm efficiency comparison in terms of time, a comparison of construction effect on
different algorithms with dynamically changing environments, and mapping accuracy.

Ibragimov, I.Z. et al. performed a comparative study on four vision-based algorithms,
namely ORB-SLAM, Monocular DPPTAM, Stereo ZedFu, RTAB-Map, and evaluated the
performance with state-of-the-art Laser-based algorithm Hector SLAM [15]. The algorithm
uses different sensor modalities like conventional cameras, stereo or depth cameras (ZED
stereo camera and Kinetic depth sensor), and LiDAR. The evaluation metrics are maps
analysis and odometry comparative analysis.

Yu, J. et al. compared the cartographer algorithm with Gmapping and Hector
SLAM [16]. The comparison was conducted based on three factors: synchronous po-
sitioning and mapping accuracy, computational complexity, and mapping efficiency. They
computed absolute value data and absolute error data. Finally, they concluded that Cartog-
rapher is better for indoor environments. They considered two scenarios: simulation and
systems in actual experiments, which were carried out to evaluate the suggested approach.

Tiozzo et al. (citation missing) conducted a comparison of four Laser-SLAM algo-
rithms, focusing on their ability to reconstruct point clouds of surveyed environments
and their computational requirements [17]. The algorithms evaluated were Real-Time
Appearance-Based Mapping (RTAB-Map), Lightweight and Ground Optimized LiDAR
Odometry and Mapping (LeGO-LOAM), Direct LiDAR Odometry (DLO), and hdl-graph-
slam. These algorithms were selected for comparison as they exclusively utilize LiDAR
data without relying on additional sources such as Inertial Measurement Systems (IMUs),
encoders, or Global Navigation Satellite Systems (GNSS). They offer different approaches
to downsampling and scan matching, leading to variations in the quality of the final point
cloud reconstruction. Additionally, each algorithm employs distinct data structures for
storing and accessing information during the mapping process, impacting computational
efficiency. Furthermore, these algorithms are particularly suitable for embedded systems
and mobile robotics applications due to their lightweight nature and efficient performance.

Khan, M.S.A. et al. used Agribot to do SLAM in a greenhouse environment that is
considered an indoor place [18]. They mainly focused on four main things: (a) RTAB-Map
using RGBD-SLAM algorithms, (b) Hector SLAM, (c) 2D map generation, and (d) handling
the computation cost. They compared the total number of frames, loop closure detection,
localization (based on accuracy), and mapping (based on accuracy)

Ratul, M.T.A. et al. implemented Gmapping in ROS. What they did was design four
different agricultural environments, and then they compared the map made for these four
environments and the time needed for map building [19]. And finally, Habibie, N. et al.
used the same robot as we used in their environment [20]. They tried to adjust the SLAM
Gmapping for outdoor use and then compared Gmapping and Hector-SLAM In ROS, and
they compared the maps that were built with them.

2.2. Behavior Cloning

Pomerleau, D et al. pioneered End-to-End (E2E) learning, categorized as DNN-based
BC for steering a car on a road, using a fully connected neural network with inputs from a
camera and a laser range finder [21]. They implemented a shallow neural network.
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DAVE (DARPA Autonomous Vehicle) adopted a similar E2E approach for an off-road
radio control car [22]. It eventually learned to extract and process information from raw
video input, including 3D image extraction, edge detection, object detection, and obstacle
avoidance. They used an RC truck for training instead of a simulator.

Chen, Z. et al. introduced DAVE-2, which contributed to the rise in popularity of
behavioral cloning with E2E learning [23]. It is primarily influenced by ALVINN and
utilizes a Convolutional Neural Network (CNN) to extract visual information from front
camera photos. They introduced PilotNet to scale up deployment.

Bojarski et al. demonstrated the application of deep neural networks and E2E learn-
ing for vehicle control [24]. They offered a clear explanation of E2E learning without
introducing novel concepts.

Wang et al. proposed an angle-branched network technique for E2E learning. It improved
steering angle and throttle predictions by incorporating sub-goal angle predictions [25]. They
found that including the sub-goal angle enhanced the driving model’s performance.

Wu et al. presented an E2E driving model based on a Convolutional Long Short-Term
Memory (Conv-LSTM) neural network [26]. They included a Multi-scale Spatiotemporal
Integration (MSI) module for encoding diverse spatiotemporal input for steering angle
prediction. It utilized future sequential information in model training to enhance spatiotem-
poral characteristics. They evaluated performance using public Udacity data and a real-time
autonomous vehicle, noting the need for improved steering control and visualization.

3. Methods

3.1. SLAM Algorithms

Based on our comprehensive literature analyses, we select three different mapping
algorithms, including two laser-based algorithms and one vision-based algorithm. For the
laser-based algorithm, we select Gmapping and Cartographer, and for the vision-based
algorithm, we select the RTAB-Map. The environment that we use for our work is an
orchard farm with uneven terrain, which makes both mapping and navigation challenging.
The challenges that we came across are discussed in the Section 6.

To navigate an environment with a SLAM algorithm, a robot needs to explore it to
make an occupancy map [27].

3.1.1. Laser-Based Mapping

Gmapping

This method uses two strategies to improve Rao-Blackwellized Particle Filters (RBPFs)
in addressing Simultaneous Localization and Mapping (SLAM) challenges with grid maps.
Firstly, a sensor-considerate proposal distribution is introduced, enhancing particle accuracy
and reducing the need for numerous particles. Secondly, an adaptive resampling technique
ensures particle diversity, minimizing the risk of depletion. Together, these methods
enhance RBPFs’ precision and efficiency in SLAM applications with grid maps. Gmapping
is one of the most popular mapping algorithms used in ROS, and it is mostly used as a base
to compare the results.

Cartographer

Google’s Cartographer presents a dynamic indoor mapping solution utilizing a sensor-
equipped backpack to create 2D grid maps at a 5 cm resolution. Laser scans seamlessly
integrate into sub-maps, and consistent pose optimization, opting for it over a particle filter,
tackles error accumulation. Completed sub-maps play a crucial role in loop closure during
scan matching, guaranteeing swift closure of loops when revisiting locations. Optimizing
every few seconds adheres to a soft real-time constraint, employing a branch-and-bound
approach and precomputed grids for each finished submap, ensuring efficient performance
with modest hardware requirements.
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3.1.2. Vision-Based Mapping

RTAB-Map

RTAB-Map, integrated into ROS since 2013, is a graph-based SLAM approach with
an external odometry input. It employs a graph structure with nodes and links, where the
Short-Term Memory (STM) module creates nodes containing odometry pose, raw sensor
data, and additional information. Links include Neighbor, Loop Closure, and Proxim-
ity links, serving as constraints for graph optimization. Graph optimization decreases
odometry drift, and outputs like OctoMap and Point Cloud are assembled and published.
RTAB-Map’s memory management is divided into Working Memory (WM) and Long-Term
Memory (LTM), limiting graph size for real-time constraints. A weighting mechanism
prioritizes important locations, transferring nodes from WM to LTM based on thresholds
and heuristics. Loop closures with WM locations can bring back neighbor nodes from LTM
for further processing. This approach allows incremental map extension and localization in
previously visited areas as the robot moves.

Loop Closure is a sub-algorithm of SLAM that decides if the robot has previously
visited the same place or not [28]. It helps the SLAM algorithm optimize the accumulated
errors and the robot’s pose estimation. It is essential yet hard to implement, especially in
the orchard farm, where the different locations appear to be similar to each other, forcing
the loop closure even when it is not needed.

RTAB-Map uses different graph optimization strategies; the one we used for this
research to avoid the unnecessary loop closure issue is TORO-based graph optimization [29].
The TORO (Tree-based netwOrk RObust optimization) algorithm is a graph optimization
technique commonly used in the field of robotics, particularly for simultaneous localization
and mapping (SLAM) tasks. TORO is designed to optimize the pose graph, representing
the relationships between robot poses and observed features in a 2D or 3D space. The
goal is to refine the estimated poses and landmarks to improve the overall accuracy of the
robot’s trajectory and map.

After building a map, localization algorithms are used to identify a robust pose
in navigation. Laser-based localization uses Adaptive Monte Carlo Localization, and
the RTAB-Map uses the RTAB-Map navigation stack for localization. These localization
techniques are described in the next section.

3.1.3. Laser-Based Localization

Adaptive Monte Carlo Localization

Adaptive Monte Carlo Localization is based on a probabilistic model using particles
for the robot’s 2D pose estimation using sensor data [30]. It uses the prior map generated
by SLAM mapping and compares it to the real-time sensor data to determine the true
2D pose of the robot. AMCL is widely used in different robot applications due to its low
computational power, and it is easy to deploy in a real-time environment.

3.1.4. Vision-Based Localization

RTAB-Map Localization

RTAB-Map uses its own navigation stack in ROS for localization. It uses the previously
generated map and the real-time camera data to help the robot navigate through the
environment and estimate its true pose dynamically.

For navigation, we used AMCL (Adaptive Monte Carlo Localization) for both laser-
based algorithms (GMapping and Cartographer), while RTAB-Map employed its own
navigation stack. Our evaluation involved comparing the navigation outcomes of AMCL
and RTAB-Map algorithms, utilizing the maps generated by Gmapping, Cartographer, and
RTAB-Map. In addition, we compared these results with the DNN-based BC, a map-free
navigation approach. This method relies on expert navigation data, specifically images and
steering information, to emulate navigation behavior within the environment.
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3.2. Behavior Cloning

In DNN-based BC, a DNN model is trained to replicate an expert’s behavior, with the
expert being a human driver in the context of autonomous driving. The model is optimized
to emulate driving commands, including steering, acceleration, and braking, based on
sensory input recorded while the human drove. The simplicity of gathering extensive
human driving data makes it effective for straightforward tasks like lane following.

3.2.1. Data Collection

The data for the DNN-based BC can be defined as:

Dn =
{

on(i), an(i)
}T

t=1, (1)

where on(i) is the observation collected at the time i, and an(i) is the corresponding actions
(i.e., steering, throttle, brake) at that particular time, T represents the total time step of the
data collection.

The robot generated several topics in ROS, out of which three were publishing the data
that were of interest for data collection. The vehicle control topic published information
about steering angle, throttle, and brake. The base pose topic published information
regarding the position, angular, and linear velocity of the robot, and the camera image
topic published the images it captured at the particular time instance.

Figure 1 shows the original image collected during the data collection and the cropped
image generated for the training of DNN-based BC, respectively.

640
400

13
0

48
0

16
0

160

BA

Figure 1. The camera captures images in the size of 640 × 480 during the data collection phase of
DNN-based BC. The robot roams around the orchard farm and captures these images using a camera
along with the respective steering angle, throttle, brake, timestamp, and robot pose. The region (120,
240)–(520, 370) is cropped (A) and resized to 160 × 160 (B) to feed in the DNN-based BC for training.
The original 640 × 480 contains irrelevant or extra information that might not be useful for training
the network.

3.2.2. Neural Network

The neural network architecture is inspired by the NVIDIA PioletNet [6] architecture.
It comprises four convolutional layers, each followed by a corresponding max-pooling
layer, along with an additional four dense layers. The initial layer, serving as a lambda
layer, is dedicated to normalizing the input data. Conv2D layers are strategically employed
to extract crucial features pertinent to navigation tasks, configured with filter sizes of 32,
64, 128, and 256, all featuring a kernel size of three. The Rectified Linear Unit (ReLU)
activation function is uniformly applied across all layers in the network. MaxPooling2D
layers facilitate downsampling. Ultimately, a flattened layer precedes three Dense layers
that converge into a single output, representing the steering angle. The model’s architecture
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is visually presented in Figure 2. We used the Mean Squared Error (MSE) for the difference
between the predicted steering angle and the ground truth as a loss function for our training.
The reason for choosing MSE is that it puts more weight on larger errors, which could help
faster training.

lambda_1_input

InputLayer

input:

output:

[(None, 160, 160, 3)]

[(None, 160, 160, 3)]

lambda_1

Lambda

input:

output:

(None, 160, 160, 3)

(None, 160, 160, 3)

conv2d_3

Conv2D

input:

output:

(None, 160, 160, 3)

(None, 158, 158, 32)

max_pooling2d_3

MaxPooling2D

input:

output:

(None, 158, 158, 32)

(None, 79, 79, 32)

conv2d_4

Conv2D

input:

output:

(None, 79, 79, 32)

(None, 77, 77, 64)

max_pooling2d_4

MaxPooling2D

input:

output:

(None, 77, 77, 64)

(None, 38, 38, 64)

conv2d_5

Conv2D

input:

output:

(None, 38, 38, 64)

(None, 36, 36, 128)

max_pooling2d_5

MaxPooling2D

input:

output:

(None, 36, 36, 128)

(None, 18, 18, 128)

conv2d_6

Conv2D

input:

output:

(None, 18, 18, 128)

(None, 16, 16, 256)

max_pooling2d_6

MaxPooling2D

input:

output:

(None, 16, 16, 256)

(None, 8, 8, 256)

flatten

Flatten

input:

output:

(None, 8, 8, 256)

(None, 16384)

dense

Dense

input:

output:

(None, 16384)

(None, 1024)

dense_1

Dense

input:

output:

(None, 1024)

(None, 128)

dense_2

Dense

input:

output:

(None, 128)

(None, 12)

dense_3

Dense

input:

output:

(None, 12)

(None, 1)

Figure 2. Neural Network Architecture for DNN-based BC. It comprises a lambda layer that is
responsible for the normalization of the data, followed by four convolutional layers with the max-
pooling layers. The convolution layers are responsible for extracting the important features from the
image. The convolution layers are equipped with filters of sizes 32, 64, 128, and 256, respectively. The
max pooling layer is responsible for downsampling. Subsequently, three dense layers and a flatten
layer are employed to converge the downsampling into a single output, i.e., the steering angle.
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3.2.3. Data Normalization

Data normalization is a preprocessing step for training. Here, for data normalization,
we tried to make a balance between data available with different steering angle commands.
As driving in a lane consists of many images with zero steering, we tried to remove some
of the images that are near zero steering angle in order to balance the data. This is mainly
because if we do not give the neural network balanced data, it would become biased to
the specific steering and would not give the steering that is needed in different scenarios.
Figure 3 demonstrates the distribution of steering angle in raw data as compared to the
normalized data.

The 1000 on the y-axis suggests the maximum number of samples per steering angle.
The raw data data before this normalization shows that the steering angle zero has 16,000
samples. In order to make this training data balanced to avoid bias, we perform normaliza-
tion on the steering angle. As predicting the steering angle is the regression task, the aim is
to predict a closer prediction value to the ground truth.

3.2.4. Training

DNN-based BC learns from expert demonstrations. It can be defined using the follow-
ing equation:

on → policy : πn
θ → an, (2)

where on is the n number of observations to train a CNN and derive an optimal policy π,
which later on predicts the future action of the robot. The overview of DNN-based BC can
be illustrated in Figure 4.

1.0 0.5 0.0 0.5 1.0
0

2000

4000

6000

8000

10,000

12,000

14,000

16,000

Original

1.0 0.5 0.0 0.5 1.0
0

200

400

600

800

1000

Normalized

Figure 3. Representation of the distribution of steering angle between 0.0 to 1.0 in the data. The left
figure illustrates the distribution of raw data collected during data collection, and the right figure
demonstrates the distribution of the normalized data acquired during preprocessing. The raw data
possesses more images with steering labeled as zero; therefore, it is necessary to normalize the data
before training to avoid bias.
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(a)

....

(b) (c) (d)

Figure 4. DNN-based BC: (a) A human driver drives a vehicle as we collect driving data. (b) The
driving data, including the front camera images with synchronized control signals, are saved in
storage. The collected data must have all the necessary features that can be expected in a testing phase
of the neural network. (c) The training station is where a neural network is trained with the collected
data to associate input with output. (d) the trained neural network is deployed to the DNN-based
controller who drives the vehicle by using inferred steering angles, throttle, and brakes. Adapted
from [7].

3.2.5. Performance Metrics

The metrics to define the performance of selected techniques are driving deviation,
completion time, and human intervention. We derive these performance metrics from the
Online Performance Evaluation Metrics Index (OPEMI) [7].

Driving Deviation

The driving deviation is defined as the standard deviation of the measured distance
(Equation (3)) from the desired path to the robot’s current location while it is navigating.

Distance =
| Ax0 + By0 + C |√

A2 + B2
, (3)

where (x0, y0) is the robot location, and A, B, and C are the coefficients of a straight line
represented by Ax + By + C = 0.

Completion Time

Completion time is the average navigation time for a robot to reach the target from
the starting point in lanes. The time when humans intervene to help the robot is included
in the completion time. Therefore, the completion time is not additionally penalized for
human interventions.

Autonomy

Autonomy refers to the ability of the robot to reach its target without any human
help. Sometimes, human intervention was required if the robot got stuck in the trees or
puddled in the ground. It can be calculated by Equation (4), which is inspired by autonomy
metric [6], where the number of interventions is the number of times humans intervene to
help the robot, and elapsed time is the total time the robot navigates from the starting point
to the target. The original autonomy metric uses 6 s to penalize the human intervention. It
took around 15 s for a human to restore the pose of the robot on the orchard farm. Thus,
we modified the penalization to 15 s instead of 6 s.
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Autonomy =

(
1 − N × 15 (s)

T(s)

)
× 100, (4)

where N is the number of human interventions, and T is the elapsed time.

4. Experimental Setup

We performed our experiments using three different mapping algorithms and DNN-
based BC. For vision-based, we use RTAB-Map and its own navigation to validate the
results. We used Gmapping and Cartographer for laser-based techniques and used the
AMCL algorithm for navigation. For DNN-based BC, we derived inspiration from the
PilotNet [6]. We tried to navigate the robot in five different lanes and measured the
performance using the metrics defined in Section 3.2.5.

4.1. Environment

The simulation environment comprises two important components: the robot and the
agricultural environment. We used AgileX Robotics’ Scout 2.0 [31] robot. For the simulation
of the agricultural environment, we used an orchard farm [32]. A detailed description of
these components is described below.

4.1.1. Scout 2.0

Scout 2.0 is a mobile robot that features low energy consumption, an extended battery
life, a robust yet compact frame, and adaptable software interfaces. Its drive type is four-
wheel differential drive. Each wheel has a 400 W brushless servo motor. The dimension
of Scout 2.0 is 930 mm × 699 mm × 349 mm (length, width, and height) with weight of
68 kg. More importantly, it is well-equipped to tackle a variety of challenges and can work
well in the agricultural environment. It can facilitate the effortless installation of modular
hardware packages and sensors. Also, it provides an open-source communication standard
and software packages based on ROS, hence serving our purpose better for this research.
Figure 5 shows the dimensions and the Scout 2.0 side view.

(a)

(b)

Figure 5. (a) The dimensions of Scout 2.0 and (b) The side view of Scout 2.0.
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We added a frame to the Scout 2.0 to mount a 2D LiDAR, and a camera. We used a
simulated YDLiDAR G4 [33] and Intel D435i RealSense depth camera [34]. Figure 6 shows
the placement of the camera and lidar and camera on the Scout 2.0 in the simulator.

B

A

(a) (b)

Figure 6. (a) Placement of the Intel RealSense camera and LiDAR on Scout. The “A” shows the
position on the frame the camera is mounted on. The camera is deliberately placed higher to avoid
capturing part of Scout’s body in the frame of the camera. The “B” is the position where the 2D
LiDAR is mounted to create a 2D point cloud. It is strategically pointed slightly ahead of the body of
the Scout to avoid generating a point cloud for the body of the Scout. (b) Intel D435i RealSense depth
camera (top) and YDLiDAR G4, 2D LiDAR (bottom).

4.1.2. Orchard Farm

The original orchard farm is a simulated world provided by Clearpath Robotics [32]. It
is mainly used for the simulation of agricultural settings for different robotics applications.
We modified it by adding barriers around the field, three oak trees, and a parked vehicle.
The height of the orchard farm is 38 m, and the width is 47 m. Figure 7 shows the orchard
farm we used for this research.

(a) (b)

Figure 7. (a) The bird-eye view of the orchard farm in the Gazebo simulator. It contains 12 lanes
where the robot should be able to navigate. The barriers are added to the surroundings of the farm
as an added obstacle. Three oak trees and a vehicle prop in the top right corner are also added as
obstacles. (b) Orchard farm profile.
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4.2. Simulation Environment

We used the ROS to simulate our robot and the orchard farm environment. We made
some changes in the orchard to make it accustomed to our needs for this research. We used
the Gazebo Simulator [35] integrated with ROS for this purpose. Figure 8 shows the Scout
2.0 in action in the Gazebo simulator in the orchard farm.

(a) (b)

Figure 8. Scout 2.0 in action. The blue rays are a visualization of a simulated LiDAR beam. (a) top
view of how the simulation environment looks like when Scout 2.0 is navigation or driving in the
orchard farm. (b) Closer look of the Scout 2.0 in the orchard farm while driving/navigating. The
camera and LiDAR can be seen mounted on the Scout 2.0.

Figure 9 illustrates the orchard farm in the Gazebo simulator we have used for our
experiments. It consists of twelve aisles surrounded by rows of trees. We referred to these
aisles as lanes where the robot should be able to navigate by itself. The distance between
the trees varied throughout the farm. We tested our approaches by navigating the robot in
five different lanes (from lane 1 to lane 5), illustrated with numbers in Figure 9. For better
evaluation, we tested each lane for navigation twice. First, we tried to move the robot to
the end of the lane from its initial position (we assumed that point to be the starting point
of that lane). Once the robot reached its target (that is, the end of the lane), we instructed
the robot to navigate to its initial position in the lane. We refer to this as the left-to-right
and right-to-left navigation for the respective lane. We then evaluated their performances
based on driving deviation, completion time, and human intervention.

1

2

3
4

5

Figure 9. Orchard farm with lanes chosen for the navigation testing of the SLAM algorithms and
DNN-based BC. The Scout 2.0 should be able to self-navigate from start to end in these lanes labeled
as 1, 2, 3, 4, and 5.
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4.3. Implementation

4.3.1. Agricultural Robot

We designed and implemented a DNN-based BC framework for an agricultural
robot: agribot [36]. The agribot supports data collection for BC, training and testing
DNNs, visualization of the heatmap, and more. We also implemented an ROS package,
agribot_ros to support LiDAR-based and vision-based mapping and navigation of various
SLAM algorithms, including Gmapping, Cartographer, and RTAB-Map [37]. The overview
of the agribot and agribot_ros is depicted in Figure 10.

agribot catkin_ws src data_collection

run_neural

agribot_ros

conda

data_collection

DNN implementation and supporting tools.

config

neural_net

Data collection ROS node for 
DNN-based BC

DNN-based driving controller 
ROS node

robot, sensors, environments, 
SLAM packages

Conda environment for python packages

Configurations for the data_collection ROS node

neural_net Configurations for neural_net package

run_neural Configurations for the run_neural ROS node

config-<user>.yaml System configurations

Figure 10. Software system overview. The agribot provides a framework for DNN-based BC, includ-
ing data collection for BC, training and testing DNNs, heatmap visualization, etc. The agribot_ros is
a ROS package for supporting LiDAR and vision-based mapping and navigation of SLAM algorithms.

To qualitatively evaluate a trained DNN, agribot provides a comparison between
ground truth and predictions of control signals (Figure 11).

Figure 11. Visual comparison between ground truth and predictions. https://www.youtube.com/
watch?v=FeGPh5DjoWg (accessed on 2 April 2024).

4.3.2. SLAM Algorithms

For Gmapping, we used the 2D LiDAR scanner to map the environment. Mapping
the environment using Gmapping was pretty straightforward and easier as compared to
the other SLAM algorithms. We used the Inertial Measurement Unit (IMU) data for the
Cartographer along with the 2D LiDAR because of the drifting issues it caused during
mapping. We tried to map it without an IMU sensor; however, due to the uneven terrain,
the odometry of the robot drifts from the plane at a certain time during the mapping. We

https://www.youtube.com/watch?v=FeGPh5DjoWg
https://www.youtube.com/watch?v=FeGPh5DjoWg
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often came across the issue of loop closure during the mapping. As RTAB-Map is the
only vision-based algorithm we used for this research, it made us realize that vision-based
SLAM algorithms are more prone to loop closure problems. We overcome this issue by
using a TORO-based graph optimization algorithm. The RTAB-Map uses the RealSense
camera to map the environment.

Apart from these minor changes, the general configuration of the environment and
robots were the same for the purpose of generality.

4.3.3. DNN-Based BC

For DNN-based BC training, the images, along with their respective labels (steering
angle, throttle, brake, robot’s pose, and timestamp), were collected using the RealSense
camera in the orchard farm environment. Our purpose was to collect efficiently and to
collect enough data to train the model so that the robot could pass through the lane without
hitting any obstacles (trees in our case) without any human intervention. Also, in the data
collection phase, the challenge was the surface of the farm, which was not flat terrain.
Since it was an agricultural environment, the path was not smooth, and there were a lot of
uneven potholes. For that reason, our purpose was to make the robot familiar enough with
the environment to drive through these uneven surfaces in the testing phase. In order to
fulfill that requirement, we deliberately steered slightly every now and then during our
data collection.

We collected around 45,000 images along with their respective steering angle, throttle,
brake, position, velocity, and angular velocity. The total size of the dataset was around 4 GB,
and the images were 640 × 480 pixels in size. The next process was data cleaning. As we
were only interested in autonomously driving the robot in the lane, we eliminated the front
and back corridor images of the farm in the data cleaning. Furthermore, we also eliminated
the parts where the vehicle was making a sharp turn, mainly during the transition from
one lane to another.

In Figure 3, a visual representation depicts the data both before and after normalization.
A total of 30% of the training data was allocated for validation purposes. The model
underwent training for 15 epochs out of the maximum 100 epochs. The early stopping
patience was set to 3. We used a batch size of 32 for training. The input data were
augmented by flipping and brightness adjustments (randomly selected between 5% darker
and 15% brighter) to enhance the robustness of the model. Additionally, for effective
training, images were cropped (160 × 160 × 3, Figure 1) before it was fed to the neural
network, focusing on the most relevant portions for the driving task, thereby facilitating
accelerated and improved learning for the model. We used TensorFlow 2.15 with Keras
framework 2.14.0. Python 3.9 was used, along with ROS Noetic distribution in Ubuntu
20.04. Python 3.10 was not compatible with ROS Noetic at the time we were performing
the experiments. The hardware configurations comprised an NVIDIA GeForce RTX 2080
GPU of 8 GB RAM, with 32 GB memory, and Intel Core i9-9900 CPU.

Figure 12a illustrates the performance graph of our training and validation loss over
the number of epochs. The loss decreased in the past 15 epochs, and it got early stop-
ping. Figure 12a also illustrates how accurate the prediction is used in the scattered plot.
Also, how the quality of predictions improved over the time period during the training.
Figure 12b shows how close the predicted values of the steering angles are to the ground
truth. The closer the data point to the straight line in the center, the more accurate the pre-
dicted values are. The model is able to predict the values quite closely to the ground truth.
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Figure 12. Training a DNN for BC. (a) Training and Validation Loss over the Number of Epochs.
Originally, the number of epochs was set to 100, but it got early, stopping at the 15th epoch because
the validation was not improving beyond around 0.048 for consecutive epochs. The early stopping
patience is set to 3. (b) Scatter plot of the predictions and the true values. The nearer the values are to
the straight line, the more accurate the predictions are from the DNN-based BC. (c,d) Examples of the
activation heat map. The activation is overlapped on a cropped image that was fed to the DNN.

The reddish areas in Figure 12c indicate the steering angle value, −0.0087, which is
a near zero value, meaning going straight, has been determined based on the road area
ahead. Note that steering angle ranges are from −1 to 1 (right to left). In Figure 12d, the
dark red area at the bottom left was the major reason for the steering angle, −0.104, which
means turning the steering angle to the right because the image under the heatmap shows
the robot is facing slightly left side with respect to the road area.

5. Results

We evaluated the performance of each model based on the driving deviation, com-
pletion time, and number of human interventions. We also navigate the robot twice in
the same lane from left to right (LR) and right to left (RL) to evaluate the performances of
selected approaches.

The maps generated by the Cartographer are slightly drifted. We suspect that the issue
is because of the odometry of the robot, which uses the IMU sensor, and it does not align
well with uneven terrains, and the map gets drifter. There are noises in some lanes in the
map generated by RTAB-Map because of uneven terrain where the camera was not able to
make the map correctly. The map quality can be evaluated in Figure 13. The map generated
by RTAB-Map is a bit downgraded. We ran into odometry problems while generating the
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map for RTAB-Map using a camera. The map quality of GMapping was better among
them all.

(a) (b)

(c) (d)

Figure 13. Orchard farm and maps built by different algorithms: (a) The bird-eye view of the orchard
farm, (b) Map built by Gmapping, (c) Map built by Cartographer, and (d) Map built by RTAB-Map.

The driving deviation is not significantly improved or downgraded for any of the
particular techniques. However, navigation based on the Cartographer-based mapping
shows slightly more deviated driving than the other techniques. As the map generated by
the RTAB-Map is noisy in some lanes, the robot was not able to navigate through some
lanes, resulting in failure to achieve the navigation goal. Figures 14 and 15 illustrate the
driving deviation from a straight line in each selected lane for GMapping, Cartographer,
RTAB-Map, and DNN-based BC from LR and RL navigation respectively. The robot was
not able to move pass a certain point in the RTAB-Map driving deviation graph (Lane 5)
because it considered the noise to be an obstacle to navigating through it.

Table 2 illustrates the average driving deviation, average completion time, and the
autonomy metric of both driving from left to right and right to left. The table also shows
the standard deviation of the driving deviation and the completion time to validate the
results consistencies.
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Table 2. Performance results in Driving Deviation (DD), Completion Time (CT), and Autonomy (AT)
for GMapping, Cartographer, RTAB-Map, and DNN-based BC. The navigation from left-to-right (LR)
and from right-to-left (RL) are calculated using min-max normalization. The Table also shows the
actual standard deviation of driving deviation (D) in meters (m), the average completion time (C) in
seconds (s), and the average human intervention in each SLAM algorithm and DNN-based BC for LR
and RL . Note that bold number means minimum or maximum value for the regarding algorithm,
and the up and down arrows mean better performance with bigger and smaller number, respectively.

Algorithms
Driving Deviation: DD (m) ↓ Completion Time: CT (s) ↓ Autonomy: AT ↑

LR RL LR RL LR RL

GMapping 35.17 (±0.36) 35.03 (±0.51) 99.97 (±18.24) 99.88 (±34.20) 98.79% (±1) 100.00% (±0)

Cartographer 35.25 (±0.50) 35.35 (±0.72) 133.17 (±63.60) 96.16 (±29.70) 96.26% (±3) 95.00% (±4)

RTAB-Map 34.62 (±0.41) 34.29 (±0.40) 99.47 (±37.32) 94.16 (±32.79) 96.38% (±3) 92.35% (±6)

DNN-based BC 34.45 (±0.25) 34.22 (±0.41) 237.99 (±16.19) 239.54 (±19.36) 100.00% (±0) 100.00% (±0)

Table 3 shows a scaled evaluation of the performance index for each technique. We
performed a min–max normalization to scale the performance metrics for better comparison.
For driving deviation, we computed the standard deviation of the x-axis path the robot
navigates through during testing. The completion time is measured in seconds. The table
also shows the actual standard deviation of the driving deviation, average completion time,
and average number of human interventions for each approach in LR and RL navigation.

Table 3. Normalized performance results for Driving Deviation (D̃D), Completion Time (C̃T), and
Autonomy for GMapping, Cartographer, RTAB-Map, and DNN-based BC. The navigation from left
to right (LR) and from right to left (RL) are calculated using min-max normalization. Note that bold
number means minimum or maximum value for the regarding algorithm, and the up and down
arrows mean better performance with bigger and smaller number, respectively.

Algorithms
Normalized DD: D̃D ↓ Normalized CT: C̃T ↓ Autonomy: AT ↑
LR RL LR RL LR RL

GMapping 0.90 0.71 0.004 0.04 98.79% 100.00%

Cartographer 1.00 1.00 0.24 0.01 96.26% 95.00%

RTAB-Map 0.21 0.06 0.00 0.00 96.38% 92.35%

DNN-based BC 0.00 0.00 1.00 1.00 100.00% 100.00%

For the sake of simplicity, we refer to the normalized driving deviation, normalized
completion time, and autonomy metric as (D̃D), (C̃T), and (ÃT), respectively. Also, we
considered the standard deviation of driving deviation, average completion time, and
average number of human interventions as DD, CT, and AT, respectively.

We were able to autonomously navigate the robot using DNN-based BC. In contrast,
we often needed to help the robot restore its pose and start navigating again. Also, DNN-
based BC helps the robot to drive more precisely in a straight line as compared to the SLAM
algorithms. However, we have deliberately scaled the throttle to drive slowly during the
testing of DNN-based BC; therefore, the speed or completion time is compromised.

For simplicity, we have separately formulated the scaled evaluation of the performance
index for each technique in Table 3.
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Figure 14. Driving deviations (left to right: LR) of (a) GMapping, (b) Cartographer, (c) RTAB-Map,
and (d) DNN-based BC.
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Figure 15. Driving deviations (right to left: RL) of (a) GMapping, (b) Cartographer, (c) RTAB-Map,
and (d) DNN-based BC.

6. Discussion

We realized that the agricultural environment is different from the conventional urban
or industrial settings where most of the prior research work is done. We have come across
issues such as uneven terrain, which often makes it difficult for the robot to move in the
right direction (even with the right navigation commands). Not only does the robot need
to make good navigational decisions, it should be able to compensate for the turbulence
caused by uneven terrain. The uneven terrain also sometimes makes it difficult to map
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correctly with the selected SLAM techniques, which shows quite good performances in
other environments.

Since we customized an orchard farm environment, it contains aisles surrounded by
rows of trees. This makes each aisle similar to each other, making it difficult for the robot to
distinguish between different aisles. This problem leads to loop closure issues during the
mapping process, where the algorithm often tries to close the loop because it considers the
unmapped positions as mapped before. We have particularly encountered loop closure
issues while mapping with RTAB-Map (which is a vision-based technique). The observation
made us realize that vision-based algorithms are more prone to loop closure issues when
different locations in the environment are similar. To overcome the loop closure issue, we
used the TORO-based Graph Optimization technique, which proved to be better than other
optimization methods.

We have compared the performances of the SLAM algorithms and DNN-based BC
using performance metrics discussed in Section 3.2.5. There can be different scenarios
where one metric can be more considerable than the other. We have formulated these as
the following equation:

P = ωDD(1 − D̃D) + ωCT(1 − C̃T) + ωAT(AT/100), (5)

where ωDD, ωCT , and ωAT are variables to prioritize the precision driving (by using normal-
ized driving deviation (D̃D)), faster completion time (by using normalized completion time
(D̃D)), and autonomy (by using the autonomy metric AT) over one another in different
scenarios. Note that ωDD + ωCT + ωAT = 1. Weights can be determined based on use
cases. Three sample scenarios are shown in the Table 4.

Compared to the SLAM algorithms, the DNN-based BC driving was pretty straightfor-
ward. Instead of mapping the whole environment, we collected the data as input images
along with the respective steering angle to train a DNN. It was a lot less time-consuming
than the mapping algorithms we used for this research.

Table 4. Overview of the scenarios where weighted performances based on different cases like
precision driving, autonomy, and faster completion time. Note: the value of ωDD, ωCT , and ωAT

can be changed on your purpose as long as their sum is 1. Note that bold number means minimum
or maximum value for the regarding algorithm, and the up arrow means better performance with
bigger number.

Scenario Weights
(ωDD, ωCT , ωAT ) Algorithms Weighted

Performance: P ↑

Precision 0.85, 0.075, 0.075

Gmapping 0.23
Cartographer 0.13
RTAB-Map 0.87
DNN-based BC 0.92

Speed 0.075, 0.85, 0.075

Gmapping 0.93
Cartographer 0.72
RTAB-Map 0.96
DNN-based BC 0.15

Autonomy 0.075, 0.075, 0.85

Gmapping 0.92
Cartographer 0.87
RTAB-Map 0.83
DNN-based BC 0.92

7. Conclusions

In this research, we have comprehensively analyzed several SLAM algorithms and
DNN-based BC navigation in the simulated outdoor agricultural environment. We further
divided the comparative analysis of SLAM algorithms into laser-based and vision-based
SLAM algorithms. We also propose an integrated performance indicator to compare one
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with another in different use cases. The DNN-based BC navigation technique seemed
more accurate in navigation and less human intervention. If there is faster completion of
navigation values, RTAB-Map can be a better choice. This integrated performance indicator
can help determine which navigation technique must be selected in certain use cases.
The algorithms were tested in three different scenarios: Precision, Speed, and Autonomy.
Our proposed performance metric, P, Equation (5), was weighted and normalized. In
P, 0 is the minimum, and 1 is the maximum. The DNN-based BC algorithm showed
the best performance among others, with a performance P value of 0.92 in the Precision
and Autonomy scenarios. The RTAB-Map algorithm showed the best P value with 0.96
when Speed is more important than others. In a case where Autonomy has a higher priority,
Gmapping also showed a comparable performance value of 0.92 with the DNN-based BC.
We believe that this comparative study on simulated outdoor navigations could be a useful
tool for agricultural automation.
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