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Abstract: This paper investigates the manufacturing uncertainties at a 60 GHz millimeter-wave
band for the monolithic hybrid microwave integrated circuits (MHMIC) fabrication process. It
specifically deals with the implementation tolerances of thin-film gold microstrip transmission lines,
titanium oxide thin-layer resistors, microstrip quarter-wavelength radial stubs, and active device
implementation using the gold-bonding ribbons. The impacts of these manufacturing tolerances are
assessed and experimentally quantified through prototyped MHMIC circuits. This allows us, on one
hand, to identify the acceptable amount of dimensional variation enabling reasonable performances.
On the other hand, it aims to establish a relationship between the manufacturing tolerances and
the circuit parameters to provide more flexibility for the tolerance compensation and accuracy
enhancement of the MHMIC fabrication processes.

Keywords: analysis; accuracy; bonding; calibration; error; manufacturing; millimeter-wave; MH-
MICs; resistors; radial stub; thin-layer; tolerances; TRL; transmission lines; uncertainties

1. Introduction

Since its introduction in 1960, the technology of Miniature Hybrid Microwave Inte-
grated Circuits (MHMICs) has constantly advanced, and it has widely been used in many
RF/microwave applications [1–5]. It has been particularly useful for small-scale production
and prototyping purposes, thus resulting in a significant reduction in production costs and
development times. MHMICs are regarded as a matured technology, integrating various
transmission lines (coplanar waveguide, microstrip, slot-lines) [6,7], as well as a large
number of passive components typically found in gallium arsenide monolithic microwave
integrated circuits (GaAs MMICs). Those passive components include, but are not limited
to, thin-film resistors, air-bridges, metal insulator metal (MIM) capacitors, and planar
inductors [8,9]. They are mostly implemented on less expensive and low-loss thin-film
alumina ceramic substrates [9]. However, active devices or elements are connected to
the circuits separately with wire or ribbon bonds since they are not formed in or on the
substrate [10–13].

Although MHMIC technology today offers well-proven performance at frequencies
above 60 GHz due to its high-density integration potentials [2], it remains relatively sensi-
tive to manufacturing tolerances. Several MHMICs have been reported in the literature
in recent years, covering a wide range of frequencies and applications [1,14,15]. The vast
majority of proposed works were design-oriented. and there is no specific study that has
dealt with the manufacturing process tolerance and its limits. That kind of study is, in
fact, required to enable the quantification of process inaccuracies, which allows MHMICs’
performance improvement. For instance, the implementation of MHMIC termination loads
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and isolation resistors is sensitive to fabrication tolerances, resulting in phase and ampli-
tude imbalance, especially when it comes to multiport circuit design. Those termination
loads are typically integrated using a 100 Ω per square titanium oxide thin layer, along
with quarter-wavelength radial stubs to enable proper impedance matching while avoiding
metallization via holes.

In this paper, the sensitivity to the tolerances of the MHMIC manufacturing process
is investigated at the millimeter-wave frequency band. The tolerance analysis specifically
addresses the implementation tolerances of thin-film gold microstrip transmission lines,
titanium oxide thin-layer resistors, microstrip quarter-wavelength radial stubs, and active
device implementation using the gold-bonding ribbons. It turns out that manufacturing
tolerance optimization provides enhanced performances in terms of amplitude and phase
balances. Therefore, tolerance quantification enables fabrication process improvement,
as well as the establishment of a relationship between the manufacturing tolerances and
the design parameters. This study aims to provide more flexibility for the tolerance
compensation and accuracy enhancement of the MHMIC fabrication process.

2. On-Wafer Calibration Techniques and Standards

To achieve an accurate assessment of manufacturing uncertainties in the designed
MHMIC circuits as part of this study, it is necessary to select an appropriate calibration
technique. This task leads to effectively correcting on-wafer measurement errors due to
the non-ideal characteristics of the cables and probes at the operating millimeter-wave
frequency band. The most commonly used calibration techniques for millimeter-wave
on-wafer measurements are LRM (Line–Reflect–Match), LLRM (Line–Line–Reflect–Match)
and TRL (Thru–Reflect–Line). LRM and LLRM calibrations require match standards,
which are difficult to achieve accurately at millimeter-wave frequencies. We then chose
the TRL calibration technique by implementing our calibration kit with the circuits to be
characterized instead of using an expensive commercial impedance standard substrate
(ISS).

To connect the Ground Signal Ground (GSG) 150 µm probes to the TRL standard
ports, a microstrip line transition to a coplanar line was designed and implemented at each
standard access. In the adopted approach, an RF short circuit was made by a quarter-wave
sector, avoiding via holes metallization that is difficult to repeatably achieve at millimeter-
wave frequencies [16].

The photograph of the on-wafer two-port circuit characterization, the micropho-
tographs of the TRL calibration standards, and the GSG 150 µm probe on the access of the
microstrip line/coplanar line transition are, respectively, illustrated in Figure 1a–c, shown
above. The TRL calibration kit consists of a line thru (T), two open circuits (reflect R), and a
line (L). Due to the fragility of the thin layer of gold (1 µm), multiple identical standards
were manufactured on the same 2.54 cm by 2.54 cm alumina ceramic substrate (εr = 9.5,
h = 127 µm) to ensure the repeatability and success of calibrations and measurements.

The calibration was carried out by connecting the Cascade Microtech Infinity GSG 150
µm probe to the three standards, starting with a direct connection (Thru) between the two
ports that had the property of fixing the reference plane in the middle of its length. Then,
we connected an open-circuit line (Reflect), and we ended with a transmission line (Line).
The length of the latter limits the measurement frequency band, and it is estimated by the
relationship in (1). This is relative to the “Thru” line, which is considered to have zero
length. It is noteworthy that our measurement setup is designed to operate in the frequency
band of 60 to 90 GHz. Under those considerations, the corresponding wavelengths are,
respectively, λg1 = 1.9 mm and λg2 = 1.23 mm [2].

λg1

4
< ∆L <

λg2

2
(1)

where ∆L is the length difference between the “Line” and “Thru” standards. In that respect,
we have selected lengths of 1.305 mm for the “Thru” line, and a length of 1.798 mm for
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the “Line” line. Then, ∆L is equal to 0.493 mm, ranging between λg1/4 = 0.475 mm and
λg2/2 = 0.615 mm. Therefore, the “Thru” and “Line” line lengths enable it to cover the
entire frequency band, from 60 to 90 GHz, without a phase ambiguity problem.
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Figure 1. On-wafer two-port circuit characterization in (a), the microphotographs of the manufactured
TRL calibration standards in (b), and the GSG 150 µm Infinity probe on the access of the microstrip
line/coplanar line transition in (c).

3. Manufacturing Tolerance Analysis of the Gold Thin-Film Microstrip Line

The loss assessment of the gold thin-film microstrip line is an important operation
to optimize the manufacturing process of MHMIC circuits at millimeter-wave bands. It
should be noted that most substrate manufacturers do not provide information covering
the millimeter-wave range. Quantifying losses over the operating frequency band between
60 and 70 GHz is then performed by measuring the insertion losses of two gold thin-film
microstrip lines with, respectively, lengths of 2.486 mm and 2.914 mm.

Figure 2a,b show, respectively, the microphotographs of both manufactured gold
thin-film microstrip lines and the additional attenuation in the 60 GHz to 70 GHz frequency
range. The considered frequency range starts from 60 GHz instead of 57 GHz (the starting
frequency of the unlicensed 60 GHz frequency spectrum) due to the capability of measure-
ment equipment (Keysight Technologies E8362B (VNA) connected with E-band extension
modules, operating in the 60–90 GHz band).
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Figure 2. Microphotographs of both manufactured gold thin-film microstrip lines in (a) and the
additional attenuation in the 60 GHz to 70 GHz frequency range in (b).

The obtained results illustrated in Figure 2b show that the two curves are almost
identical. The conductor losses of the 1 µm gold layer undergoing metallization do not
exceed 0.05 dB/mm in the considered frequency range, from 60 GHz to 70 GHz. Given
that the physical length of a quarter-wave line at the central frequency of 61 GHz is about
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0.46 mm, we may conclude that the loss level is very low. These results demonstrate the
success of the design and calibration, as well as the appropriate choice of substrate material.

4. Manufacturing Tolerance Analysis of the Thin-Film Resistive Layer

To experimentally assess the manufacturing tolerances of a thin-layer titanium oxide
resistor (100 Ω per square), an MHMIC 50 Ω termination is implemented on an alumina
ceramic substrate (εr = 9.5, h = 127 µm). This 50 Ω termination is a part of the circuit’s layout
presented in Figure 1a, which includes some typical MHMICs such as 90-degree hybrid
couplers, Wilkinson power dividers, and several identical TRL standard calibration kits.

Figure 3a,b show an implemented MHMIC 50 Ω termination on an alumina ceramic
substrate, and the results of on-wafer input impedance measurement (real and imagi-
nary parts) versus frequency. As can be observed, the value of the real part of the input
impedance ranges from 48.5 Ω to 49.8 Ω over the considered frequency range of 60 GHz to
70 GHz. However, the value of the imaginary part is very low around 61 GHz (the resonant
frequency), and it increases with frequency to reach a value of 10 at 70 GHz. This increase
in the value of the imaginary part is due to the presence of significant parasitic inductive
effects at high millimeter-wave frequencies.
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Figure 3. Microphotographs of the implemented MHMIC 50 Ω termination on an alumina substrate
in (a) and the additional attenuation in the 60 GHz to 70 GHz frequency range in (b).

To estimate the maximum error during the implementation of a 100 Ω per square
titanium oxide-based thin-layer resistor, we consider the fractional uncertainty of the area
(A) in the 50 Ω rectangular resistor layer in Figure 3a. By considering that x and y are,
respectively, the width and length of the titanium oxide rectangular covered area (A), the
fractional uncertainty can then be expressed as follows [17,18]:

∆A
A0

=
∆x
x

+
∆y
y

(2)

where the area of the rectangle is described by the relation A = x·y, and the initial area is
represented by A0. Under those considerations, the final area is obtained by A = A0 ± ∆A.

In the case of a 100 Ω per square resistor, Equation (2) will be further simplified since
y = x = W, where W is the microstrip line width. Then, Equation (2) becomes

∆A = 2A0·
∆W
W

(3)
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It should be noted that the values of A0 and W are, respectively, set at 0.0161 mm2 and
0.127 mm, taking account into the employed alumina substrate parameters.

As can be seen from the Formula (3), the tolerance of the metallization process creates
a variation ∆W in the microstrip line width, which, in turn, affects the tolerance level of a
thin-layer resistor area ∆A. Therefore, by optimizing the accuracy of the gold metallization
process, we may achieve a reduced error in the microstrip line width and, accordingly,
enhance the implementation accuracy of a 100 Ω per square thin-layer resistor.

The relationship in (3) allows for plotting curves of the thin-layer resistor area variation
versus the relative deviation of the microstrip line width, as shown in Figure 4. The thin-
layer resistor area variation increases linearly with the relative variation in microstrip line
width. In general, the total thin-layer resistor area change does not exceed 0.0005 mm2 for
a maximum relative variation in a microstrip line width of 15%.
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5. Manufacturing Tolerance Analysis of a Quarter-Wavelength Radial Stub

Radial stubs are widely used in various microwave circuits such as filters, matching
networks, biasing lines, and even grounding RF circuits. They provide a low impedance
level at well-specified insertion points in a wide frequency band, contrary to the conventional
straight stubs, which exhibit a reduced bandwidth and an increase in circuit size [19–24]. Now,
we examine the accuracy improvement in the gold-metalized microstrip line that allows for
manufacturing error reduction in the millimeter-wave microstrip quarter-wavelength radial
stub. This radial stub technique enables performance optimization of the millimeter-wave
grounding while avoiding via holes metallization [25–27].

Figure 5a,b show the quarter-wavelength radial stub configuration including geomet-
rical parameters and the microphotograph of the prototyped radial stub. The equivalent
circuit of the quarter-wavelength radial stub with and without a 50 Ω termination is shown
in Figure 5c. As can be observed, the radial stub with a 50 Ω load can be modelled by a
series combination of a 50 Ω resistor, an inductor Lrs, and a capacitor Crs, whereas the radial
stub without a 50 Ω load is equivalent to an inductor Lrs and capacitor Crs in series.

According to Figure 5a, the geometrical parameters of the quarter-wavelength radial
stub are as follows: P is the penetration depth, W is the microstrip width, and θ is the angle
subtended by the stub, which is limited to a range of 10◦ ≤ θ ≤ 170◦. For the proposed
radial stub design, the values of those parameters have been set to P = 63.5 µm, W = 127 µm,
and θ = 90◦.
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The relative variation in the angle subtended by the stub and relative variation in the
microstrip line width is governed by Equation (4) [28,29].

∆θ

θ
=

1
45

·arctan

[
W0·

(
1 + ∆W

W
2·P

)]
− 1 (4)

where W0 is the manufactured microstrip line width (W0 = 1.27 × 10−4 m).
It can be noted that the relative variation in the angle subtended by the stub could be

optimized by minimizing the relative deviation in the microstrip line width. Using this
equation, we can, therefore, plot the curves characterizing the relative variation in the angle
as a function of the relative deviation of the microstrip line width, as shown in Figure 6
below. As a linear curve with a positive coefficient, it shows that for a maximum variation
of 4% in the microstrip line width, the relative variation in the angle does not exceed 2.5%.
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In order to verify the performances of short-circuit and 50 Ohm impedance matching
for the designed quarter-wavelength sector, along with the 50 Ohm termination, a Smith
Chart is employed to plot both the simulated and the measured results over the frequency
range extending from 60 GHz to 65 GHz, as shown in Figure 7.
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Figure 7. Measured and simulated impedance values on the Smith chart for the designed
quarter−wavelength sector with and without the 50 Ω termination resistor for the 60 GHz to 65 GHz
frequency range.

Mathematically, an ideal short circuit has typically zero impedance (zero resistance
and reactance). Nonetheless, in reality, it is impossible to achieve that; the resistive part
is usually so small and is approximated by zero Ohms. The measured and simulated
short-circuit impedances at frequencies ranging from 60 GHz to 65 GHz are plotted on
the left of the chart, at the intersection of the resistance and the reactance axes. However,
by using the quarter-wave transformer, we can perform matching to a resistive load
impedance of 50 Ohms, corresponding to the normalized load impedance of 1 at the center
of Smith Chart. It should be noted that our design is optimized to operate around 61 GHz
to enable experimental characterization with the available measurement equipment in
our RF laboratory at INRS-EMT. As can be observed, a slight shift toward the inductive
region occurred at the center. This parasitic inductive effect results from the microstrip
transmission line acting as a series inductor. Overall, a reasonable agreement between
measurements and simulations is achieved.

6. Manufacturing Tolerance Analysis of the Gold-Bonding Ribbon

At millimeter-wave frequencies, the interconnection between the chip devices and
the RF circuits using the ribbon bonding technique has been identified as one of the key
challenges due to the discontinuity introduced by the bond ribbon that can significantly
affect the performance of the entire transceiver at the millimeter-wave frequency band.
However, the ribbon bonding technique remains a very attractive solution in the electronic
packaging domain since it is robust and cost-effective. Several studies on the transmission
performance of ribbon bonding interconnection have been reported for microstrip and
coplanar configurations. The reported studies specify that a bond ribbon could form a
series inductor, contributing to drastically increasing losses, especially when the frequency
or the bond ribbon length increases. For that reason, many efforts have focused on reducing
the length of the bond ribbon, as well as reducing the chip-to-package gap to improve the
interconnectivity performance at millimeter-wave frequencies [10–12].

Figure 8a illustrates the ribbon bonding configuration of a highly integrated TGA4600
low-noise amplifier (LNA) chip with a 16-element antenna array in a 60 GHz MHMIC
six-port RF front-end receiver. In this configuration, a 0.127 mm × 1 mm ribbon bond is
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employed to ensure an RF signal connection between the antenna array and the LNA RFin,
as well as between the LNA RFout and the six-port down converter input.
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Figure 8. Microphotograph of the implemented TGA4600 low-noise amplifier (LNA) chip using
ribbon bonding in (a). Typical ribbon bonding implementation in (b,c). Implementation imperfections
in (d,e). The equivalent circuit model of ribbon bond in (f).

Typical ribbon bonding implementation is shown in Figure 8b,c. However, the possible
scenarios of imperfections in the ribbon bond implementation are shown in Figures 8d and 8e,
respectively.

The equivalent circuit model of the ribbon bond is shown in Figure 8f. It consists of
resistance R, inductance L, and two distinct capacitors C1 and C2. The resistance R and
the inductance L are related to the parameters of the bonding ribbon itself. However, the
equivalent capacitances C1 and C2 at the ends of the bonding ribbon are not identical since the
two ends of the bonding ribbon are connected to different materials. To accurately estimate the
equivalent circuit model parameters, a circuit co-simulation is performed using the simulation
tools of Keysight ADS software. The optimized parameters of this circuit model are selected
as follows: R = 0.0061 Ω, L = 38.31 nH, C1 = 140.82 pF, and C2 = 124.61 pF.

Figure 9 shows transmission loss as a function of frequency for a 1 mm ribbon bond
length in different lateral deviation scenarios during ribbon bond implementation. It can
be seen from the figure that in the case of a perfect implementation (∆WR = 0%), the losses
start from 0.6 dB/mm at 60 GHz to achieve a maximum of about 1 dB/mm around 70 GHz.
However, a horizontal deviation of 5% in ribbon bond implementation generates extra
losses of about 0.1 dB at 60 GHz and 0.35 dB at 70 GHz compared to the perfect scenario
in Figure 8c. Overall, the transmission losses are more severe at high frequencies and
significantly increase with the deviation tolerance to exhibit 1.15 dB/mm at 60 GHz and
2.4 dB/mm for a tolerance level of ∆WR = 15%.
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7. Conclusions

The implementation tolerances are critical parameters affecting the change in isolation,
amplitude and phase balance for millimeter-wave MHMIC circuits. In this paper, a toler-
ance analysis is performed to investigate the sensitivity of the MHMIC fabrication process to
manufacturing tolerances over the unlicensed 60 GHz Industrial–Scientific–Medical (ISM)
band. The results have demonstrated that the MHMIC fabrication technique enables reason-
able tolerances at millimeter-waves for passive MHIMICs. However, further optimization
of these tolerances is feasible by optimizing the implementation accuracy of thin-film gold
microstrip transmission lines. This study provides key inputs for the improvement of the
MHMIC manufacturing process and enables designers to consider the critical parameters
affecting the performances of the designed circuits at millimeter-wave frequencies.
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