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Abstract: Partially impaired sensor arrays pose a significant challenge in accurately estimating
signal parameters. The occurrence of bad data is highly probable, resulting in random loss of source
information and substantial performance degradation in parameter estimation. In this paper, a
tensor variational sparse Bayesian learning (TVSBL) method is proposed for the estimate of direction
of arrival (DOA) and polarization parameters jointly based on a conformal polarization sensitive
array (CPSA), taking into account scenarios with the partially impaired sensor array. First, a sparse
tensor-based received data model is developed for CPSAs that incorporates bad data. Then, a column
vector detection method is proposed to diagnose the positions of the impaired sensors. In scenarios
involving partially impaired sensor arrays, a low-rank matrix completion method is employed to
recover the random loss of signal information. Finally, variational sparse Bayesian learning (VSBL)
and minimum eigenvector methods are utilized sequentially to obtain the DOA and polarization
parameters estimation, successively. Furthermore, the Cramér-Rao bound is given for the proposed
method. Simulation results validated the effectiveness of the proposed method.

Keywords: conformal polarization sensitive array; direction of arrival and polarization parameters
estimation; column vector detection; variational sparse Bayesian learning; tensor

1. Introduction

Conformal polarization sensitive arrays (CPSAs) have been found to be attractive in
direction of arrival (DOA) and polarization parameters estimation due to their reduced air-
friction resistance, reduced array space structure, and strong anti-interference ability [1–5].
However, in real scenarios, huge amounts of sensors are very likely to be affected by harsh
natural environments, electromagnetic interference, and component aging, etc., thereby
aggravating the impaired probability of the arrays. Thus, the damaged sensors can produce
bad data, which means that the effective signal information cannot be received by the
impaired sensors. As we all know, traditional subspace methods, such as MUSIC [6–9]
and ESPRIT [10,11], were proposed under the assumption of an intact array structure, and
the performance of the above methods highly depends on an accurate correlation matrix
structure. If the array output structure information is corrupted, and especially if bad data
exist, the DOA estimation performance will dramatically degrade or even fail. Therefore, it
is crucial to develop the algorithm for the joint DOA and polarization estimation to reduce
the influence of bad data based on a CPSA.

At present, some methods have been proposed in [12,13] to deal with an array with
impaired sensors. The basic idea of these methods is that the missing observation data
from the impaired sensors can be obtained by reconstructing the array output. A high-
dimensional Toeplitz matrix [14] is used to describe the covariance matrix of the uniformly
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linear array (ULA) with impaired sensors; subsequently, the matrix completion technique is
used to recover all the data of the Toeplitz matrix. In this way, the influence of the impaired
sensors is eliminated, making it possible to implement DOA estimation using the MUSIC
algorithm. Nonetheless, the high complexity of this method wastes a significant amount of
time, which originates from searching of the spectral peaks. After detecting the positions
of impaired sensors, [15] proposed the method of using a low-rank matrix completion
algorithm to recover missing observation data, and then the recursive least square was
used to obtain the DOA estimation. Notably, the matrix completion method is only limited
to the full-rank matrix and a small parameter estimation error is obtained by sacrificing
computational complexity. Unfortunately, it is impractical to replace or repair impaired
sensors when large-scale array radar and wireless communication antenna array systems
are working. It is known that the performance of DOA estimation is affected by the number
of impaired sensors in several ways. As analyzed in [16], an approximate lower bound was
proposed as a new metric for the error variance of DOA estimation. Unlike the methods
mentioned above, a minimum resource allocation network for the DOA estimation system
was proposed in [17], and it can achieve a better estimation performance without knowing
the location and time of the impaired sensors when an imperfect array occurs. However,
the drawback of this method is that the noise-free and impaired-free training set is difficult
to obtain in practice. When faced with complex electromagnetic environments, there is no
consideration of the fact that the impaired sensors may also receive a significant number
of anomalous signals different than the true signal information, which are distributed in
space and are known as bad data. This requires the use of robust algorithms to eliminate
the influence of impaired sensors and bad data.

Recently, sparse reconstruction methods [18–21] have been applied to the theory of
DOA estimation and have attracted considerable attention due to their robustness against
large background noise. Related methods exploit the sparsity of the incident signals and
transform the DOA estimation into a sparse reconstruction problem. Compared with the
eigenstructure-based methods, these methods are more adaptable to low signal-to-noise
ratios, finite snapshots, spatially adjacent signals, and the correlation of sources. For
multiple-input multiple-output (MIMO) radar [22], a robust reweighted l2,1-norm penalty
method is applied to alleviate the effect of missing observation data due to the impaired
sensors, but the disadvantage of this method is that the convergence speed is slow, and it is
difficult to find the global optimal solution. In [23], the observations of impaired sensors are
considered outliers, and the method of maximum entropy criterion is proposed to mitigate
the effect of outliers. Similar to the outliers introduced by impaired sensors, [24] simulated
the impulsive noise with outliers and proposed a Bayesian optimization algorithm to
achieve robust DOA estimation in terms of accuracy and resolution. It is noted that most of
the above research is based on ULA, and it is of considerable interest to extend the idea to
CPSAs. Furthermore, the methods mentioned above are all based on matrix form, and the
multidimensional structure of the array’s received data is ignored.

In this paper, to enhance the robustness of DOA and polarization parameters esti-
mation performance of CPSAs with bad data, a novel tensor variational sparse Bayesian
learning method (TVSBL) is proposed by considering the array received signal model
with a three-dimensional (3D) structure. The main contributions of this paper are listed
as follows:

(1) The full electromagnetic vector sensor (EMVS) is used as an array antenna to receive
the incident signals. Unlike the conventional scalar sensor, EMVS has the advantage of
receiving not only the spatial information of the signal but also the polarization information
of the signal, whereas scalar sensors only receive the spatial information of the signal. To
fully exploit the multidimensional structural information of the received data and achieve
better estimation performance, a tensor-based received signal model is formulated by
exploiting the intrinsic 3D features of received data, including spatial, polarization, and
temporal fields. In addition, a tensor-based two-dimensional sparse representation of the
signal model is given in this paper;
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(2) In the case of a partially impaired sensor, the received information is lost randomly
with some probability, and bad data will be generated. First, a column vector detection
method is employed to diagnose the positions of bad data; furthermore, the low-rank
matrix completion method is used to recover the loss of source information. It is worth
noting that these strategies can be applied to arbitrary array geometries;

(3) The DOA estimation is performed by the tensor variational sparse Bayesian learn-
ing (TVSBL) method with a three-layer hierarchical prior model. After obtaining the
estimation value of the DOA, the minimum eigenvector (MME) method is exploited to
obtain the polarized angle of incident sources. Meanwhile, the Cramér–RAO bounds are
derived for parameter estimation of CPSAs with partially impaired sensors.

The rest of the paper is organized as follows. A tensor-based sparse signal model
with bad data is presented in Section 2. Section 3 presents the proposed method for the
joint DOA and polarization parameter estimation. Section 4 explores the Cramér–RAO
bound for parameter estimation with partially impaired sensors. Section 5 provides the
computational load of the proposed method. Section 6 shows the simulation results. Finally,
the conclusions are presented in Section 7.

Notations: Capital (lowercase) bold-italic notations are used to denote a matrix (vector).
⊗, ⊙, •, and ◦ are the Kronecker product, Khatri–Rao product, Hadamard product and
outer product, respectively. (·)T, (·)H and (·)−1 denote the statistical expectation, transpose,
conjugate transpose, and inverse operation, respectively. ⟨·⟩ is the statistical operation.
∥·∥2 is the 2-norm and ∥·∥F is the F-norm. tr(·) denotes the matrix trace operation. diag (·)
denotes a diagonalization matrix with vector elements.

2. Problem Statement
2.1. Signal Model of CPSA

Assume that there is an arbitrary CPSA with M electromagnetic vector sensors (EMVSs)
mounted on its surface, as shown in Figure 1. Suppose K uncorrelated narrowband far-
field sources from azimuth θ and elevation φ are impinging on this CPSA. The spatial-
polarization parameter (θk, φk, γk, ηk), k = 1, 2, · · ·K of the incident sources concerning the
polarization auxiliary angle γk ∈ [0, π/2] and the polarization phase difference ηk ∈ [−π,π)
is defined. In general, the data received by the sensors are analyzed in the global coordinate
system. However, because of the curvature of the CPSA, the directional pattern of each
sensor has a different orientation. Therefore, it is necessary to transform the orientation
pattern matrix from the local coordinate system O′(X′, Y′, Z′) to the global coordinate
system O(X, Y, Z) by the Euler rotation transformation matrix R (see [25] for more details).
Hence, the array steering vector â(θk, φk, γk, ηk) ∈ C6M×1 [5] of the k-th signal is defined as:

â(θk, φk, γk, ηk) = (g(θk, φk)·a(θk, φk))⊙ b(θk, φk, γk, ηk) = a(θk, φk)⊙ b(θk, φk, γk, ηk) (1)

where a(θk, φk) = g(θk, φk)·a(θk, φk), g(θk, φk) = [g1(θk, φk), g2(θk, φk), · · · , gM(θk, φk)]
T is

the M×1 sensor pattern in the global coordinate system, and gi(θk, φk) is the response of the
i-th sensor to the k-th signal. a(θk, φk) = [a1(θk, φk), a2(θk, φk), · · · , aM(θk, φk)]

T is the M × 1
spatial steering vector for the k-th signal, and a(θk, φk) = [e−j2π(r1·uk)/λ, · · · , e−j2π(rM·uk)/λ],
where λ is the wavelength of the sources, rm = [xm , ym , zm ]

T , m = 1, 2, · · · , M and
uk = [sin θk cos φk , sin θk sin φk , cos θk ]

T are the sensor position vector and the propagation
direction vector of incident sources, respectively. b(θk, φk, γk, ηk) is the spatial-polarization
steering vector [5] of each single EMVS and is given as follows:

b(θk, φk, γk, ηk) =

[
Ek
Hk

]
=



exk
eyk
ezk
hxk
hyk
hzk

 =



cos φk cos θk − sin φk
sin φk cos φk cos φk
− sin θk 0
− sin φk − cos φk cos θk
cos φk − sin φk cos θk

0 sin θk


[

sin γkejηk

cos γk

]
(2)
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where E = [ex, ey, ez]
T and H = [hx, hy, hz]

T are the three electric-field components and
three magnetic-field components of each complete EMVS [26,27], respectively. Hence, the
array received data X(t) ∈ C6M×1 of the k-th signal at time t is formulated as follows:

X(t) =
K

∑
k=1

â(θk, φk, γk, ηk)sk(t) + n(t) = ÂS(t) + N(t) (3)

where sk(t) is the complex envelope of the k-th incoming signal, n(t) is a white Gaussian
noise of zero mean and covariance of σ2

n . By collecting T snapshots, the received data matrix
X ∈ C6M×T is expressed as:

X = ÂS + N =
(
A ⊙ B

)
S + N (4)

where Â = A ⊙ B. A = [a(θ1, φ1), a(θ2, φ2), · · · , a(θK, φK)] ∈M×K is the spatial steering
matrix, B = [b(θ1, φ1, γ1, η1), · · · , b(θK, φK, γK, ηK)] ∈6×K is the spatial-polarization steer-
ing matrix of each single EMVS, S = [s1(t), s2(t), · · · , sK(t)]

T ∈K×T is the signal matrix,
and N(t) = [n1(t), n2(t), · · · , n6M(t)]T ∈6M×T is the Gaussian white noise matrix.
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2.2. Signal Model with Bad Data

In practice, the sensors usually do not perform as expected, especially when certain
occasions, like complex electromagnetic interference, sensor hardware damage, etc. are
considered. The potential bad data [28] will be produced by the impaired sensors, which
usually have a few large values. Here, those bad data are modeled as additive perturbations
on the received array matrix. Thus, the received signal model with bad data can be
presented as:

X = ÂS + N + W (5)

where W denotes the bad data produced by the partially impaired sensors, and W(m, :),
m = 1, 2, · · · , M denotes the position of the m-th sensor in W. In this paper, the structure of
W is mainly considered from the following scenario:

(1) When the m-th sensor works normally, the values in W(m, :) are all zeros;
(2) When the m-th sensor is partially impaired, that means the sensor works randomly

and causes random loss of signal information, some of the values in W(m, :) will be non-
zeros. The partially impaired sensor receives bad data with a certain probability, and these
bad data will be randomly distributed in the W(m, :).

It is seen from (5) that the bad data W will inevitably cause a great performance
degradation or even failure of the parameter estimation algorithm.
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3. Proposed Method
3.1. Tensor-Based Sparse Signal Model with Bad Data

By observing (4), it can be seen that the received array data are stacked in the matrix
form, which ignores the inherent 3D structure of the received data. When received data
collected from 2D or 3D arrays are inherently organized in a three-dimensional structure, it
would be more natural to formulate the data with tensors. Therefore, as the A, B and S in
(4) have the dimension of M × K, 6 × K and K × T, respectively, the tensor-based received
signal model with bad data can be rewritten as

X =
K

∑
k=1

a(θk, φk) ◦ b(θk, φk, γk, ηk) ◦ sk +N +W (6)

where X ∈ CM×6×T . N ∈ CM×6×T represents the noise in the tensor model, which is
generated by the tensorization of the traditional Gaussian noise matrix N. W ∈ CM×6×T

denotes the bad data produced by the impaired sensors, which is expressed in the tensor
model, and W(m, :, :) m = 1, 2, · · · , M denotes the slice position of the m-th sensor in W .

To better apply the sparse reconstruction class algorithm, a DOA set {( θ̃,φ̃)} = {( θ̃1, φ̃1),
· · · , (θ̃J

θ̃
, φ̃Jφ̃

)} with J = J
θ̃
Jφ̃ ≫ K can be obtained by uniformly sampling the ranges of

azimuth and elevation [29]. For simplicity, the sparsity of polarization is not considered.
Assuming that the true sources are in the DOA set, the tensor-based sparse received signal
model with bad data can be rewritten as

X̃ =
K

∑
k=1

J

∑
j=1

ã(θj, φj) ◦ b̃(θj, φj, γk, ηk) ◦ s̃j + Ñ + W̃ (7)

where ã(θj, φj) = [a1(θj, φj), · · · aM(θj, φj)]
T, b̃(θ, φ, γk, ηk) = [̃b(θ1, φ1, γk, ηk), b̃(θ2, φ2, γk, ηk),

· · · , b̃
(
θJ , φJ , γk, ηk

)
], S̃ =

[
s̃1, s̃2, · · · , s̃J

]T is a J × T complex sparse matrix and only con-
tains K non-zero rows. The elements in N ∈ CM×6×T follow additive noise with

p(N ) =
M

∏
m=1

6

∏
p=1

T

∏
t=1

CN(N mpt|0 , σ2) (8)

where σ2 is the noise variance, and N mpt is the (m, p, t) element of N . Bad data W̃mpt are
defined as a circularly symmetric complex Gaussian distribution:

p(W̃mpt) =
M

∏
m=1

6

∏
p=1

T

∏
t=1

CN(W̃mpt|0, ς ) (9)

where ς is the variance of bad data. Then, the Gaussian likelihood function of X̃ has distribution

p(X̃
∣∣∣S̃ , σ2) =

M

∏
m=1

6

∏
p=1

T

∏
t=1

CN(X̃mpt

∣∣∣∣∣ K

∑
k=1

J

∑
j=1

ã(θj, φj) ◦ b̃(θj, φj, γk, ηk) ◦ s̃j, σ2 + ς2) (10)

where X̃mpt is the (m, p, t) element of X̃ .

3.2. Detection of Bad Data Positions

To mitigate the impact of bad data, it is necessary to detect the position of the bad data.
In this section, a column vector detection (CVD) method [15,22] is proposed to realize the
bad data position detection. Figure 2 shows the slice for each sensor receiving bad data
with a random certain probability.
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As presented in Figure 2, the received data of the t-th snapshot in X̃ is the M × 6
matrix V = X̃ (:, :, t). Assume that the m-th sensor fails in the t-th snapshot, no useful
observation data can be obtained except for internal system noise. Meanwhile, bad data
will likely be received due to hardware imperfections. Therefore, random noise and bad
data are included in the m-th row entries of the matrix V. In general, the absolute value of
the bad data in the column is much larger than the average of the summed absolute values
of the entries in the same column. As a result, the proposed CVD method allows for each
column of the matrix V to be traversed and the positions of bad data to be marked as:

vp(m) > ξVp (11)

where vp(m) denotes the absolute value of the m-th entry in the p-th column of V; ξ is the
weight value, the choice of which is dependent on bad data; Vp is the mean of the absolute
values of all M entries in the p-th column and can be calculated by

Vp =
1
M

M

∑
m=1

vp(m) (12)

As can be seen from (11), some entries in V are determined to be bad data if their
value is above the selected average threshold; then, the positions that present bad data are
replaced by zero [20]

ΓΩ[V(m, p)] =

{
V(m, p)

0

(m, p) /∈ Ξ

otherwise
(13)

where ΓΩ[V(m, p)] represents the observation operator for V(m, p) and Ξ is the position
subset containing bad data. The proposed CVD method is outlined as Algorithm 1 below.

Algorithm 1: Column Vector Detection Method (CVD)

Step 1. Calculated Vp by (12)
Step 2. Initialization: the weight value ξ = 2 and the position subset Ξ0 = ϕ, where ϕ is a null

index set
Step 3. For each diploes p (p = 1, 2, . . ., 6)
Step 4. For each sensor m (m = 1, 2, . . ., M)
Step 5. Find the error data positions by (11)
Step 6. Replace the error data positions of V(m, p) with zero
Step 7. End
Step 8. Update the index set by finding the zero position: Ξp = m
Step 9. End
Step 10. Output: the position subset Ξ
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3.3. Recovery of Lost Signal Information

After finding the position of the bad data in X̃ by the CVD method, the new tensor-

based received array data
⌣
X are obtained by filling the position of the bad data with zero.

To simplify the calculation, expanding
⌣
X in matrix form yields X̃ = ℑ(1)[

⌣
X ], respectively,

where
{
ℑ(i)[•]

}
i=1,2,3

is the third-order tensor unfolding along the i-th mode [30]. For

a partially impaired sensor array, it is obvious that X̃ is a full-rank matrix because the
inconsecutive zero elements are randomly distributed. Poor accuracy in the estimation
of parameters will occur if there are a lot of zero elements in X̃. Therefore, the lost signal
recovery is necessary to improve robustness against bad data.

The incomplete received matrix X̃ can be regarded as a problem of low-rank matrix com-
pletion (LRMC) [31]. A complete and denoised matrix X̂ with rank r < min{6M, T} (r = K) is
expected to be obtained from the incomplete noise full-rank ℓ matrix X̃ (ℓ = min{6M, T}).
In this subsection, a signal recovery method is proposed to construct a complete low-rank
received signal matrix X̂ by minimizing the Frobenius norm [32]. Consider that the low-
rank r matrix X̃ can be decomposed into X̃ = FG, where F ∈ C6M×r and G ∈ Cr×T are
random matrices. Thereafter, the matrix completion achieved by non-convex relaxation can
be presented as:

min
F,G,H

1
2
∥H − FG∥2

F , subject to ΓΞ[H] = ΓΞ[X̃] (14)

where H ∈ C6M×T . Under the premise of minimizing (14), each variable F, G, and H is
updated by fixing the other two. Thus, the iterative procedure of the LRMC method is
summarized as follows:

Fi+1 = HiG+
i = argmin

F

1
2
∥Hi − FGi∥2

F (15)

Gi+1 = F+
i+1Hi = argmin

G

1
2
∥Hi − Fi+1Gi∥2

F (16)

Hi+1 = Fi+1Gi+1 + ΓΞ(X̃ − Fi+1Gi+1) (17)

where Fi, Gi, and Hi denote the output results of matrices F, G, and H at the i-th iteration.
This method will stop the iteration until the following criteria have been satisfied:

∥Hi+1 − Fi+1Gi+1∥2
F

∥Hi+1∥2
F

≤ δ (18)

where the δ is set to 10−6. In the end, a complete and denoise matrix low-rank matrix X̂ is
obtained by:

X̂ = Fi+1Gi+1 (19)

The main steps of the low-rank matrix completion method are described in Algorithm 2 below.

Algorithm 2: Low Rank Matrix Completion Method (LRMC)

Step 1. Initialize: Generate the random matrix F0 ∈ C6M×r and G0 ∈ Cr×T , and
H0 = ΓΞ(X̃) ∈ C6M×T

Step 2. While not converged do
Update Fi+1, Gi+1 and Hi+1 by (15)~(17)

i = i + 1
Step 3. End reaches the stopping criteria in (18)
Step 4. Output: A complete and denoise matrix low-rank matrix X̂ = Fi+1Gi+1
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3.4. The DOA Estimation Method via TVBSL

After the position detection of the bad data and the recovery of the lost information,
the complete and denoise array output matrix is X̂, and the next step is to estimate the DOA
accurately. More recently, variational sparse Bayesian learning (VSBL) has been explored to
give deterministic approximations of posteriors with high accuracy and low complexity,
especially in the case of data perturbation. Therefore, to further confront the effect of the
bad data and fully utilize the multidimensional information of the array received data,
the VSBL technique based on the tensor model is proposed to improve the performance
of DOA estimation. First, let us reshape the estimation X̂ into a tensor of X̂ ∈ CM×6×T ,
the posterior distribution of S̃ can be calculated by the Bayesian criterion [33], which is
expressed as:

p
(

S̃, α, β
∣∣∣X̂ )

=
p
(
X̂ , S̃, α, β

)
p(X̂ )

(20)

To improve the performance of the Bayesian algorithm, a novel three-layer hierarchical
prior model is formulated to promote sparse solutions [33,34]. First, assume that the
elements of the first layer prior p(S̃ |α ) follow a zero-mean complex Gaussian distribution:

p(S̃ |α ) =
T

∏
t=1

CN(S̃(t)|0, Λ−1) =
T

∏
t=1

J

∏
j=1

CN(S̃j(t)
∣∣0, αj ) (21)

where Λ−1 = diag(α) = diag(α1, α2, · · · , αJ) is the noise precision for different rows in S̃.
Second, each hyperparameter αj in α follows an exponential (Exp) distribution with the
parameter as the second layer prior:

p(α|τ, β ) =
J

∏
j=1

Exp(αj|τβ ) (22)

Similarly, the parameter β is modeled as the chi-square (Chi2) distribution of the third
layer prior:

p(β|v ) = χ2(β|v ) (23)

In the Bayesian framework, the true posterior distribution is unsolvable due to the
need for the integral operation. To handle this issue, the VSBL method is exploited in this
paper to provide a deterministic approximation of posteriors with high accuracy. Let Θ be
a set containing the latent variable S̃ and hyperparameters (α and β) in the probabilistic
model. The distribution q(Θ) can be closely approximated as the true posterior distribution
p(Θ

∣∣∣X̂ ) by minimizing the Kullback–Leibler distance [35]:

p(S̃, α, β
∣∣∣X̂ ) ≈ q(S̃, α, β) = q(S̃)q(α)q(β) (24)

By removing the term α from Θ, q(S̃) can be calculated by lnq(S̃) ∝ ln
〈

p
(
X̂ , S̃, α, β

)〉
q(α)

,

and the approximate posterior of q(S̃) can be obtained as:

ln q
(

S̃
)
∼
〈

T
∑

t=1
− 1

2σ2

∥∥∥x̃(t)− Ãs(t)
∥∥∥2

2
+

K
∑

t=1

J
∑

j=1

s2
j (t)
2αj

〉
q(α)

⇒ q
(

S̃
)
∼

T
∏

t=1
exp

(
− 1

2 S̃
H
(t)Γ−1S̃(t) + S̃

H
(t)Γ−1µ(t)

)
∼

T
∏

t=1
CN(S̃

H
(t)|µ(t), Γ )

(25)
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where the parameters µ(t) and Γ can be calculated according to:

µ(t) = σ−2Γ−1AH
(ℑ(1)

[
X̂
]
(t)) (26)

Γ = (σ−2Ã
H

Ã + ⟨Λ⟩)
−1

(27)

The proof process of (26) and (27) is shown in Appendix A. q(α) can be written
as the product of a generalized inverse Gaussian distribution and can be updated by
q(α) ∝

〈
p(S̃ |α )p(α|τ, β )

〉
q(S̃)q(β)

;

ln q(α) ∼
〈

ln

[
K
∏

t=1

J
∏
j=1

1√
2παj

exp
(
−

h2
j (t)
2αj

) J
∏
j=1

exp(−τβαj)

]〉
q(S̃)q(β)

⇒ q(α) ∼
J

∏
j=1

α
− 1

2
j exp

(
−

h2
j (t)
2αj

− τ < β > αj

) (28)

Thus, we have

〈
αn

j

〉
=


〈

h2
j

〉
2τ⟨β⟩


n
2 κn− 1

2

(√
2τ⟨β⟩

〈
h2

j

〉)
κ− 1

2

(√
2τ⟨β⟩

〈
h2

j

〉) (29)

where
〈

h2
j

〉
= µ2

j + Γj; and κp(·) is a Bessel function of the third kind with order p. Setting
n = −1 gives the estimated Γ and ⟨Λ⟩. The posterior distribution q(β) can be calculated by
q(β) ∝ ⟨p(α|τ, β )p(β|v )⟩q(α)

ln q(β) ∼
〈

ln

[
J

∏
j=1

τβ exp(−τβαj)
2−

v
2

∆( v
2 )

β− v
2 −1 exp(− β

2 )

]〉
q(α)

⇒ q(β) ∼ βJ+ v
2 −1 exp

(
−τ

J
∑

j=1
< αj > β − β

2

) (30)

Thus, β follows the gamma distribution.

β ∼ Gamma

(
J +

ν

2
, τ

J

∑
j=1

〈
αj
〉
+

1
2

)
(31)

Therefore, the mean value of β can be obtained as:

⟨β⟩ =
J + v

2

τ
J

∑
j=1

〈
αj
〉
+ 1

2

(32)

The proposed TVSBL method outputs the mean and variance of the recovery signal
until the iteration converges. The power spectrum can be represented as:

P̂ =
1
L

〈∥∥∥S̃
∥∥∥2

2

〉
=

1
L

(∥∥∥〈S̃
〉∥∥∥2

2
+

〈∥∥∥S̃ −
〈

S̃
〉∥∥∥2

2

〉)
=

∥µ∥2
2

L
+ Γ (33)

where the K largest peak positions of the power spectrum represent the estimated DOAs{
(θ̂1, φ̂1), (θ̂2, φ̂2), · · · , (θ̂K, φ̂K)

}
. The procedure for the proposed TVSBL method is sum-

marized in Algorithm 3.
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Algorithm 3: Tensor Variational Sparse Bayesian Learning (TVSBL) Method

Step 1. Input: the steering matrix Ã, observation data matrix X̂
Step 2. Initialize: the hyperparameters

〈
αj

〉
,
〈

α−1
j

〉
and ⟨β⟩, the rate parameter τ,

the shape parameter v, the variance σ2, the threshold ε, the number of iterations imax
Step 3. while not converged do
Step 4. Update variance Γ(i) by (27)
Step 5. Update mean µ(t)(i) by (26)

Step 6. Update hyperparameter
〈

αj
−1
〉(i)

by (29)

Step 7. Update hyperparameter ⟨β⟩(i) by (32)
Step 8. End while
Step 9. Output: The mean µ and variance Γ of the reconstruction signal

Remark 1. In [36,37], Gaussian-Gamma and Laplace are chosen as two layers of the
posterior distribution. The Gaussian-Exp-Chi2 (GEC) distribution proposed in this paper
exhibits a sharp peak at the origin and heavy tails. Thus, the GEC distribution enforces the
sparsity of the solution to a greater extent than other conventional distributions.

3.5. MME-Based Polarization Parameter Estimation Method

To facilitate the MME to obtain the polarization parameters, the matrix-received data
model is constructed by utilizing (1) (2) and (3)

X =
K

∑
k=1

[a(θk, φk)⊙ b(θk, φk, γk, ηk)]sk (34)

By defining the array output covariance matrix Q = 1
T XXH, the signal subspace can

be obtained by the eigenvalue decomposition of Q [38,39]. Hence, the noise subspace can
be expressed as UN = I6M − USUH

S . Next, substituting the K estimated DOAs into the
constructed spatial spectrum function, K functions can be obtained, as follows:

W = AH
(θ, φ, γ, η)UNA(θ, φ, γ, η) (35)

The polarization parameters can be calculated by the eigenvector corresponding to
the minimum eigenvalue of W

γk = arctan
(

abs
(

ρk(2)
ρk(1)

))
(36)

ηk = angle
(

ρk(2)
ρk(1)

)
(37)

where ρk(i) is the i-th element in the k-th eigenvector.
In this paper, a column vector detection algorithm, low-rank matrix completion algo-

rithm, tensor variational sparse Bayesian learning algorithm and minimum eigenvector
algorithm are successively used. To facilitate an understanding of the execution steps of
the proposed method, a flowchart is shown in Figure 3.
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4. Cramér–Rao Bound

For the observation model and the proposed method, CRB can be regarded as a
lower bound of the incident signal DOA estimation [1]. It can be calculated by taking
the inverse of the Fisher information matrix (FIM). For the 2D DOA estimation for the
CPSA with sensor failure, the incident signal can be described by the set h, including all
the unknown parameters

h = [θ1, θ2, · · · , θK, φ1, φ2, · · · , φK] (38)

Thus, the FIM can be specifically formulated as:

F =

[
Fθθ Fθφ

Fφθ Fφφ

]
(39)

In general, the distribution of the incident signal matrix received data model can be
written as:

Y ∼ CN(0, RY) (40)

where Y = ℑ(i)[X̂ ], RY = YARSAHYH + σ2I6M, and RS = SSH. Y is the M × N matrix, and
its (m, n)-th position on the main diagonal takes zero if the n-th channel of the m-th sensor
fails. Thus, the log-likelihood function of every concerning column is:

L(h) = L ∗
{

ln(RY) + tr(RY
−1RY)

}
(41)

The element of FIM can be obtained by calculating the second derivative of L(h) with
respect to θ and φ

Fθφ = L ∗ tr
{

RY
−1 ∂RY

∂hθ
RY

−1 ∂RY
∂hφ

}
(42)

where the first-order derivative of RY with respect to hθ can be computed as:

∂RY
∂hθ

= BθRS(YA)H + YARSBH
θ (43)

where Bθ = ∂(YA)
∂hθ

=
∂(Y(Axoy⊙Az))

∂hθ
. A = Axoy ⊙ Az, Axoy and Az is the steering vector of the

xoy-planar and the steering vector along the z-axis, respectively. After substituting (43)
into (42), the Fθφ can be obtained by

Fθφ = 2L ∗ Re
{

tr[R−1
Y BθRS(YA)HR−1

Y YARSBH
φ ] + tr[R−1

Y BθRS(YA)HR−1
S BφRS(YA)H]

}
(44)

The result Bθ of the derivative of YA about θ can be computed as

Bθ =
∂(Y(Axoy ⊙ Az))

∂θm
= Y(Az ⊙

·
Axoy)uθm uθm

T, m= 1, 2, · · · , K (45)
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where
·

Axoy =
∂Axoy

∂θm
[axoy(θ1)•dxoy(θ1), · · · , axoy(θK)•dxoy(θK)] (46)

dxoy(θk) = j
2π

λ
[(rx1 sin φk sin φk + ry1 sin φk cos θk), · · · , (rxMc

sin φk sin φk + ryMc
sin φk cos θk)] (47)

and uθm represents the θm-th column of the identity matrix IK. Let Uxoy = Y(Az ⊙
·

Axoy),
and then the submatrix Fθθ in F can be rewritten as the matrix form, thus

Fθθ = 2L ∗ Re
{
[RS(YA)HR−1

Y YARS]•[UH
xoy R−1

Y Uxoy] + [RS(YA)HR−1
Y Uxoy]•[RS(YA)HR−1

Y Uxoy]
}

(48)

where Fθθ is the DOA estimation corresponding to the xoy-planar. In the same way, the
submatrix in F corresponding to the z-axis and the cross-submatrix can be obtained by
calculating the following equations:

Fφφ = 2L ∗ Re{[RS(YA)HR−1
Y YARS]•[UH

z R−1
Y Uz]

T
+ [RS(YA)HR−1

Y Uz]•[RS(YA)HR−1
Y Uz]

T
} (49)

Fθφ = 2L ∗ Re{[RS(YA)HR−1
Y YARS]•[UH

z R−1
Y Uxoy]

T
+ [RS(YA)HR−1

Y Uz]•[RS(YA)HR−1
Y Uxoy]

T
} (50)

Fφθ = 2L ∗ Re{[RS(YA)HR−1
Y YARS]•[UH

xoy R−1
Y Uz]

T
+ [RS(YA)HR−1

Y Uxoy]•[RS(YA)HR−1
Y Uz]

T
} (51)

where
Uz = Y(

·
Az ⊙ Axoy) (52)

·
Az =

∂Az

∂φm
= [az(φ1)•dz(φ1), · · · , az(φK)•dz(φK)] m= 1, 2, · · ·K (53)

dz(φk) = j
2π

λ
[rz1 sin φk, · · · , rzMz

sin φk] (54)

As a result, based on the above (48)–(51), the CRB of the DOA estimation for partially
impaired sensors existing in the array can be presented as:

CRB = F−1 = (Fθθ − FθφF−1
φφFT

φθ)
−1

(55)

5. Complexity Analysis

For each iteration of the latent variables and hyperparameters stated above, it is easy
to see that the computational complexity of the proposed method mainly derives from the
following steps: (1) constructing the tensor-received data model; (2) updating the mean
µ for S̃; and (3) updating the variance Γ for S̃. The specific complexity can be expressed
as follows: (1) 6MLJ2, (2) 2J3 − 2J2 + 36MK2 J2, (3) J3 + 12MK2 J2. Therefore, the total
complexity of the proposed method is 3J3 − 2J2 + 48MK2 J2 + 6MLJ2.

As a comparison, the variational sparse Bayesian learning algorithm proposed in [5] is
abbreviated as VSBL, which requires 3J3 − 2J2 + 48MK2 J2, and the sparse Bayesian learning
algorithm proposed in [40] is abbreviated as SBL, which requires J3 + J2T + 18MK2 J2.
Ref. [37] is an extension algorithm for off-grid angle estimation, abbreviated as OGSBL,
which requires J3 + 18MK2 J2.

6. Simulations
6.1. Simulation Settings

In this section, we evaluate the performance of the proposed method by numerical
simulations through estimation accuracy and resolution under the cases of partially im-
paired sensors and compare the TVSBL with that of VSBL [5], OGSBL [37], and SBL [40].
In the following simulations, the estimation accuracy is evaluated by root mean square
error (RMSE), and the resolution is evaluated by the probability of successful detection.



Sensors 2024, 24, 2485 13 of 22

The “successful trial” is defined in this paper as
∣∣θ̂ − θ

∣∣ < ∆θ/2, where θ̂ is the estimated
value, θ is the true value, and ∆θ is the angle interval between θ̂ and θ.

As shown in Figure 4, Mc × Mz sensors are uniformly distributed on the surface of
the cylindrical CPSA. The spacing of the sensors along the Z-axis is λ/2. For simplicity,
assume that Mc = 5 and Mz = 5. The ranges of the azimuth and elevation are sampled
with a 1◦ interval to form the DOA set {( θ̃,φ̃)}. Two uncorrelated incident signals with
spatial parameters (θ, φ) from (−17.2◦, 20.2◦) and (10 .9◦, 60.1◦) are considered, and the
polarization parameters (γ, η) are located at (55 .3◦, 65.7◦) and (35 .4◦, 25.1◦), respectively.
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In the resolution experiment, the azimuth of the closed target is selected as (−3.9◦, 4.1◦).
The bad data are drawn from under the following scenario: a partially impaired sensor
array received bad data with a probability of Ω = 0.05. The variance of bad data ς is set

as 100. The proposed TVSBL method is initialized by setting α = 1
L

L
∑

l=1
Ãℑ(1)[X̂ ], β = 0.1,

τ = 1.5, and v = 1. The RMSE is defined as:

RMSE =

√√√√ 1
LK

T

∑
t=1

K

∑
k=1

(ûkt − uk)
2 (56)

where L denotes the number of Monte Carlo simulations, uk is one of the parameters
of (θk, φk, γk, ηk), and ûkt is an estimate of uk in the t-th simulation. L is set to 200 in
the simulation.

The simulation results were obtained on a PC with MATLAB R2021b, Intel Core i5
@3.0 GHz processor, and 16 GB LPDDR3 @ 6000 MHz.

6.2. Simulation Results and Analysis

Figures 5 and 6 illustrate the DOA and polarization estimation RMSEs of various
algorithms versus SNR with snapshots = 20, respectively. Here, assume that every sensor
is partially impaired and receives bad data with a probability Ω is 0.05. As shown in
Figures 5 and 6, both the SBL and OGSBL algorithms have a similar RMSE performance,
whereas they provide the worst performance in the whole SNR regions in the condition
where the sensor is partially impaired. This is due to the effect of the existence of bad data;
the SBL and OGSBL algorithms are impressionable with respect to the mismatch in the
sparse presentation model. Compared with the SBL and OGSBL methods, the VSBL based
methods, i.e., VSBL and the proposed TVSBL method, exhibit better RMSE performance,
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as expected, because the VSBL-like methods are not as susceptible to data perturbations.
Moreover, it can be observed that the performance of the proposed method, which benefits
from the recovery of bad data, is superior to the conventional VSBL method. Nevertheless,
there is still a gap between their RMSEs and the CRB. It is important to point out that,
unlike the conventional DOA estimation methods, the proposed method is framed by the
integration of bad data detection and recovery and the sparse signal presentation based
on the tensor model. This is the key mechanism making the proposed method perform a
better DOA and polarization estimation in the presence of a sensor partially impaired for
the CPSA.
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Figure 6. Polarization RMSE versus SNR (snapshots = 20).

Figures 7 and 8 illustrate the RMSEs of DOA and polarization versus the number of
snapshots for different methods, while the SNR is set to 3 dB and the other parameters
remain the same as those in Figures 5 and 6. As shown in Figures 7 and 8, the estimation
performance of all four methods improves when increasing the number of snapshots. It is
further evident that the proposed method provides a competitive advantage in performing
the DOA and polarization estimation in the condition of the sensor being partially impaired
by varying the snapshots.
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Figures 9 and 10 present the probability of the successful detection (PSD) performance
versus SNR, and the number of snapshots, respectively. In Figure 9, the number of snap-
shots is fixed to 20. In Figure 10, the SNR is set to 3 dB. The other parameters remain the
same as before. In this simulation, the definition of one “successful detection” is illustrated
in Section 6.1. It is shown that the PSDs of SBL and OGSBL are rather low when the SNR is
lower, or the snapshots are smaller. Especially in Figure 10, when the SNR is 3dB, although
the snapshots are increasing, the SBL and OGSBL algorithms still fail to distinguish the two
emitting signals. Compared with SBL and OGSBL, the VSBL and the proposed method
possess higher PSDs, which means that the resolution of the two algorithms is much higher.
As expected, the resolution performance of the proposed method is the best; the PSD curve
of the proposed method is much higher than that of the VSBL, even with a relatively lower
SNR and smaller snapshots. Figures 9 and 10 further verify that our proposed method is
robust to bad data in sensors.
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Figures 11 and 12 present a comparison of the DOA RMSE of the proposed method
versus SNR and snapshots under different Ω, respectively. In Figure 11, the number of
snapshots is fixed to 20. In Figure 12, the SNR is fixed to 3 dB. It is obvious that the DOA
RMSE performance improves as the SNR and snapshots increase. On the other hand, the
RMSE will rise when the Ω is larger. In other words, the higher the probability of bad data,
the lower the estimation accuracy.
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To fully explore the effect of bad data on the performance of the four algorithms, the
RMSE of DOA and polarization estimation with different ς are shown in Figures 13 and 14,
respectively. As illustrated in 3.1, the ς denotes the variance of the bad data. The greater
the value, the stronger the effect of the bad data on useful information. The snapshots
are set to 20 and the SNR is set to 3 dB in Figures 13 and 14. The probability Ω is 0.05.
Figures 13 and 14 show that the DOA and polarization RMSE of the four methods deterio-
rate when the snapshots increase. However, the proposed algorithm exhibits the smoothest
curve, and its estimation accuracy significantly surpasses that of the other three methods.
This simulation result validates the effectiveness of the proposed method in mitigating the
impact of partially impaired sensors on the DOA and polarization estimation performance
within the CPSA. Additionally, it demonstrates superior tolerance and robustness against
erroneous data.
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To further verify the robustness of the proposed method, two cases of array element
position error and array element mutual coupling will be considered in the following
simulation. Figure 15 illustrates the DOA RMSE versus SNR while the snapshots are
20 in the condition of the array element position error, and the element position error is
randomly chosen by Perror ∈ [−0.4, 0.4]λ/2. It can be seen in Figure 15 that the RMSE of
the proposed algorithm with the element position error is only slightly lower than that
without the element position error. Moreover, the RMSE of the proposed algorithm is
much lower than that of the other three algorithms without the element position error.
This fully shows that the proposed algorithm can still maintain relatively high estimation
accuracy under the influence of the element position error, thus proving that the proposed
algorithm is relatively robust. Figure 16 illustrates the DOA RMSE versus SNR, while the
snapshots are 20 in the condition of array element mutual coupling. In this simulation, it
is assumed that only the linear array placed along the z axis has a mutual coupling effect,
and the three linear arrays are far apart due to curvature; therefore, the mutual coupling
effect between the linear arrays is ignored. When the mutual coupling matrix is set to
C = Toeplitz{[1, 0.3527 + 0.1854j, 0, 0, 0]} ∈ CMz×Mz ; it is obvious to see that the RMSE of
the proposed method is close to that of the proposed method without considering the mu-
tual coupling. The above experiments demonstrate the robustness of the proposed method.
When the SNR is higher, the mutual coupling error has almost no effect on the proposed
algorithm, which further proves that the proposed algorithm has strong robustness.
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7. Conclusions

In this paper, the problem of CPSAs with partially impaired sensor arrays was ad-
dressed. For the first time, a tensor-based model of received data for CPSAs, which benefits
from spatial, polarization, and temporal diversity of incident sources, was established,
and the effectiveness of the model was verified in the presence of bad data received by
impaired sensors. To eliminate the effect of bad data, the CVD method was used to de-
tect the locations of bad data and set them to zero. Then, the missing signal information
of the array output matrix was processed by removal and low-rank matrix completion
methods. Finally, the TVSBL and the MME method were proposed to obtain the DOA and
polarization parameters estimation, respectively. In the simulation results, the proposed
model and method show many advantages over existing methods in terms of estimation
accuracy and resolution in partially impaired sensor array scenarios, while the comparison
methods are inferior to the proposed method. The limitation of the proposed method is
that, when the SNR is 0dB, there is no obvious difference between the proposed method
and the comparison methods in terms of parameter estimation performance. In the future,
we will focus on how to optimize the performance of the sparse method at a low SNR.
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Appendix A. Proof of the Γ and µ(t)

Proof: According to (27), the mean Γ of the signal under a single snapshot can be
expressed as

Γ =< Λ > + < Λ > Ã
H

σ−2
[

I − Ã(σ2 < Λ >−1 +ÃÃ
H
)
−1

Ã
H
]

Ã < Λ >, (A1)

where
[

I − Ã(σ2 < Λ >−1 +ÃÃ
H
)
−1

Ã
H
]

satisfies the formula of Duncan–Guttman [41].

Thus, we have

Γ =< Λ > + < Λ > Ã
H

σ−2
(

I + Ã < Λ > σ−2Ã
H
)−1

Ã < Λ >, (A2)

By utilizing the equation (x − yz)−1 = x−1 + x−1y(I − zx−1y)−1zx−1, (A2) can be
further rewritten as

Γ =
(
< Λ >−1 +σ−2Ã

H
Ã
)−1

, (A3)

The mean µ(t) of the signal under a single snapshot can be expressed as

µ(t) = (Ã
H

Ã + σ2 < Λ > −1)−1Ã
H⌣

X

= σ−2 < Λ > (Ã
H

σ−2 < Λ > Ã + I)−1Ã
H⌣

X,
(A4)

The formula of Woodbury [42] is used to obtain the result of (Ã
H

σ−2 < Λ > Ã + I)
−1

.
It is clear that (A4) can be further presented as

µ(t) = σ−2 < Λ >
[
I − Ã

H
(σ2 < Λ > −1 + ÃÃ

H
)−1Ã

]
Ã

H⌣
X

= σ−2Γ−1Ã
H⌣

X.
(A5)

which concludes the proof. □
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