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Abstract: This paper designed and developed an online digital imaging excitation sensor for wind
power gearbox wear condition monitoring based on an adaptive deep learning method. A digital
imaging excitation sensing image information collection architecture for magnetic particles in lubri-
cating oil was established to characterize the wear condition of mechanical equipment, achieving the
real-time online collection of wear particles in lubricating oil. On this basis, a mechanical equipment
wear condition diagnosis method based on online wear particle images is proposed, obtaining data
from an engineering test platform based on a wind power gearbox. Firstly, a foreground segmentation
preprocessing method based on the U-Net network can effectively eliminate the interference of bub-
bles and dark fields in online wear particle images, providing high-quality segmentation results for
subsequent image processing, A total of 1960 wear particle images were collected in the experiment,
the average intersection union ratio of the validation set is 0.9299, and the accuracy of the validation
set is 0.9799. Secondly, based on the foreground segmentation preprocessing of wear particle images,
by using the watered algorithm to obtain the number of particles in each size segment, we obtained
the number of magnetic particle grades in three different ranges: 4–38 µm, 39–70 µm, and >70 µm.
Thirdly, we proposed a method named multidimensional transformer (MTF) network. Mean Square
Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) are used to obtain the
error, and the maintenance strategy is formulated according to the predicted trend. The experimental
results show that the predictive performance of our proposed model is better than that of LSTM and
TCN. Finally, the online real-time monitoring system triggered three alarms, and at the same time,
our offline sampling data analysis was conducted, the accuracy of online real-time monitoring alarms
was verified, and the gearbox of the wind turbine was shut down for maintenance and repair.

Keywords: digital imaging; excitation sensor; magnetic particles; lubricating oil; U-Net network;
watered algorithm; MTF network

1. Introduction

The wear particles in the oil, as products of relative motion on the surface of mechani-
cal components, contain a lot of information on the state of the machine [1,2]. Usually, two
methods of using oil monitoring technology are online monitoring and offline monitoring
to observe wear particles, and the main technologies for offline monitoring include spectral
and wear particle analysis [3,4]. Spectral analysis is based on the spectral lines of various
atoms to determine which chemical elements are contained in the oil and the concentra-
tion of these elements and to determine the wear condition of various components. The
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papers [5,6] have developed instruments for collecting spectral data and analyzing the data
using different methods, but the size of the collected wear particles is within 10 µm, so it is
impossible to collect large wear particles in some fault states. Wear particle analysis technol-
ogy [7] mainly enables wear particles to deposit on transparent substrates according to their
size under the action of a magnetic field and then to observe and analyze the wear particles
through optical or electron microscopy. In 1976, the paper [8] developed a commercial
analytical wear particle. Subsequently, in 1977, wear particle technology was introduced
in China, greatly enhancing the understanding of wear mechanisms. G. Chen et al. [9]
used demography analysis to obtain the percentage of various wear particles in engine
oil, but overall, offline oil monitoring [10] is conducted after collecting samples during the
experimental process, which involves a large number of human factors, resulting in poor
real-time performance.

After collecting the wear particle images, X. Zhu et al. [11] first performed wavelet
transform on the images and then used two-dimensional wavelet decomposition and recon-
struction to construct four sets of low-frequency and high-frequency images for processing.
Finally, the low-frequency images were subjected to wavelet transform reciprocating con-
struction until denoising was completed. This method considers the detailed information of
the image, but wavelet denoising is mainly suitable for processing Gaussian noise, and its
adaptability is not comprehensive enough. W. Cao et al. [12] used 2D-VMD to decompose
the noisy image into some sub-modes including the original information of the wear image,
while other sub-modes include background noise. After removing the sub-modes with
background noise, the wear image was reconstructed. The decomposed model can better
preserve the edge and other detailed information of the wear image and play a good role
in removing the edge noise on the left and right sides of the image. W. Cao et al. [13]
proposed a WVBOD image denoising model, which integrates three denoising methods
and fully utilizes the advantages of the three to remove Gaussian noise and some surround-
ing bubbles in the wear image, thus preserving the main information of the abrasive. W.
Zhou et al. [14] used Principal Component Analysis (PCA) to select wear particle feature
parameters and improved the LS-SVM classifier based on a genetic algorithm, resulting
in an increase in wear particle classification accuracy from 82.5% to 95%. L. Qiu et al. [15]
proposed a wear particle image recognition method based on a support vector machine,
which applied the superiority of SVM in small sample classification to wear particle image
recognition and achieved good results. W. Yuan, K. Chin, M. Hua et al. [16,17] proposed an
adaptive SVM recognition model based on an improved PSO algorithm and established
the optimal adaptive SVM model by optimizing penalty parameters and kernel functions.

To preserve the information on online wear images, T. Wu et al. [18] eliminated the
interference of light and dark fields in the wear images by using morphological black hat
operations and H-minima transformation. Then, the Otsu threshold method was used
to obtain the threshold, and finally, the watershed algorithm was used to separate and
effectively obtain the wear particles in the wear images that were too bright and too dark
due to reflected light irradiation. W. Wu et al. [19] used an adaptive Canny operator
to perform preliminary segmentation on the bilaterally filtered, enhanced wear particle
image, then used a histogram similarity measure to distinguish between wear particles and
background, and finally filled the contour of the wear particles to obtain more accurate
wear particle segmentation. At present, the academic community mainly studies how to
process and optimize online wear particle images, but there is little research on the overall
processing process of online wear particle images, that is, how to convert irregular data
such as online wear particle images into regular data and then into wear indicators, to
diagnose the wear condition of the equipment. Lakshmi, H.R. et al. [20] present an effective
adaptive reversible image watermarking. The approach utilizes the selection of an optimal
location for embedding according to entropy, where the appropriate threshold for entropy
selection is taken care of by the particle swarm optimization (PSO) algorithm. A technique
in integer wavelet transform (IWT) domain is proposed, further discrete cosine transform
(DCT) and singular value decomposition (SVD) are hybridized for embedding process
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in all the chosen blocks, and the fractal-encrypted watermark bits are integrated into the
coefficients of the image using the average proximity coefficient.

The traditional foreground segmentation algorithm for wear particle images has
the following problems: due to the influence of high temperature on the lubricating oil
during the operation or detection of mechanical equipment, it will dissolve or mix with
air during the circulating flow stage, resulting in a large number of bubbles [21,22]. This
makes it impossible to avoid the interference of bubbles in the capture process of wear
particle images, and traditional image segmentation algorithms misjudge the bubbles
in the wear particle images as wear particles for analysis. The threshold-based image
segmentation algorithm cannot distinguish the threshold of bubbles and abrasives, and all
bubbles and abrasives are segmented and recognized as abrasives, resulting in abnormal
analysis. With the improvement in computing power, an increasing number of artificial
intelligence algorithms have been widely applied, according to Suvizi. A et al. [23] proposed
a parallel computational architecture based on the concept of cellular automata to accelerate
the numerical solution of the steady-state water distribution network model, and the
performance of the proposed method was compared with EPANET software (EPANET
V2.0) for networks with different complexities and topologies. Zarreh. M et al. [24] present
a mathematical model using game theory for the pricing of drinking water in a competitive
environment comprising a Public Water System (PWS) and a Bottled Water Plant (BWP)
under government intervention. This paper adopts a dynamic approach to address the
time-dependent nature of precipitation and water demand, incorporating uncertainty in
the tap water supply. The study also introduces models for peak and volumetric water
pricing, deriving several key corollaries through parametric analysis, and presents a case
study, modeled on real-world scenarios, to validate the proposed model.

This paper proposes a method for diagnosing the wear condition of mechanical
equipment based on online wear particle images. Firstly, a foreground segmentation pre-
processing method based on the U-Net network can effectively eliminate the interference
of bubbles and dark fields in online wear particle images, providing high-quality segmen-
tation results for subsequent image processing, A total of 1960 wear particle images were
collected in the experiment, the average intersection union ratio of the validation set is
0.9299, and the accuracy of the validation set is 0.9799. Secondly, based on the foreground
segmentation preprocessing of wear particle images, by using the watered algorithm to
obtain the number of particles in each size segment, we obtained the number of magnetic
particle grades in three different ranges: 4–38 µm, 39–70 µm, and >70 µm. Thirdly, we
proposed a method named multidimensional transformer (MTF) network, MSE, RMSE,
and MAE evaluation indexes are used to obtain the error, and the maintenance strategy
is formulated according to the predicted trend. The experimental results show that the
predictive performance of our proposed model is better than that of LSTM and TCN. Finally,
the online real-time monitoring system triggered three alarms, and at the same time, our
offline sampling data analysis was conducted three times, the accuracy of online real-time
monitoring alarms was verified, and the equipment was disassembled for maintenance
and repair.

2. Materials and Methods
2.1. Working Principle and Logical Control Process of the Digital Imaging Excitation Sensor (DIES)

When the oil flows into the sensor and passes through the high-intensity magnetic
field generated by the two magnetic poles, the ferromagnetic wear particles in the oil will be
adsorbed on the glass surface by the magnetic field. The image of the wear particles will be
collected through optical lens imaging and a CMOS industrial camera and processed and
analyzed using specific artificial intelligence image recognition algorithms to achieve the
real-time monitoring of the size, morphology, and other parameters of the ferromagnetic
particles in the oil. It can further monitor the wear development process of easily worn
parts of mechanical equipment (such as gears and bearings). Once the wear reaches a
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certain threshold, an alarm function can be achieved which can effectively avoid unplanned
downtime and secondary damage to the equipment.

The working logic flowchart of the sensor is based on Figure 1 when the sensor starts,
the LED lights up, and the micro pump starts flushing mode, and then, the micro pump
switches to the adsorption pump speed, and the controller loads magnetic force through the
excitation coil to adsorb wear particles, and next, industrial cameras collect images of wear
particles and perform image processing, analysis, and storage. Secondly, the micropump
switches back to flushing mode to remove magnetic force and release wear particles. Finally,
the micropump stops, the LED light turns off, and, at the same time, the sensor waits for
the next acquisition.
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Figure 1. (a) Schematic diagram of the imaging structure principle of wear particles in oil. (b) Imaging
of wear particles in oil.

2.2. U-Net Network Preprocessing Method

The U-Net network structure diagram is shown in Figure 2. The U-Net network
architecture [25] is divided into two main parts: compression path and expansion path.
The former uses continuous convolution and pooling layers to reduce the dimensional-
ity of the feature space, usually including two unfilled 3 × 3 convolutions followed by
ReLU activation and batch normalization, followed by 2 × 2 max pooling to reduce the
dimensionality of the feature map and increase the number of feature channels in each
step. The latter uses 2 × 2 sampling convolution to double the size of the feature map,
connects the result with the corresponding cropped compressed path feature map, and then
performs two 3 × 3 convolutions, followed by ReLU activation. The output of the network
is reduced to the required number of classifications by 1 × 1 convolution of the final feature
map. The design of U-Net highlights the advantages of fully convolutional networks with
their unique U-shaped structure, especially for fine foreground segmentation tasks. It
can effectively combine the contextual information of different resolutions to ensure the
accuracy of segmentation results at edge details and solve the bubble interference problem
in traditional image segmentation methods.
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Figure 2. U-Net network structure.

2.3. Marked Watershed Algorithm

Figure 3 is a schematic diagram of the two-dimensional watershed algorithm [26],
where the black solid line represents the terrain, which includes four basins A1~A4; the
blue dashed lines L1~L5 represent different water surface heights. When the waterline
rises to L1, water begins to enter Basin A1. As the waterline rises to L2, Basin A2 also
begins to flood. When the water level reaches L3, the water in Basin A1 and Basin A2 is
about to meet, and Dam D1 is constructed at this time. When the water level rises to L4,
the water in A3 and A4 is about to meet, and Dam D3 is being built at this time. Finally,
when the waterline reaches L5, the water from Basin A2 and Basin A3 meet, and Dam D2 is
constructed. This separates the four basins of the model through dams D1, D2, and D3.
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The extraction of image markers includes foreground (abrasive) marker images and back-
ground marker images. Firstly, the threshold t is set, then all local minimum points are detected
in the gradient image, and whether each minimum point is greater than the threshold t is
determined. All points that are greater than the threshold t are marked, as Equation (1):

gimark (x, y) = 1 (i f Hb
(rec) (x, y) > t) else i f gimark (x, y) = 0

(
i f Hb

(rec) (x, y) ≤ t
)

(1)

In the above Equation (4), Hb
(rec) (x, y) represents the reconstructed image after

composite opening and closing, and gimark (x, y) represents the foreground marker image.
The morphological gradient image g(x, y) obtained after background subtraction is

used as the original image for watershed transformation, and the minimum value forcing
technique in mathematical morphology is used to modify the original segmented image.
The extracted foreground gimark (x, y) and background markers gemark (x, y) are used to
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modify the local minima of the original gradient image. Therefore, in the modified gradient
image, only the corresponding binary-labeled image that is not zero is forced to have local
minima. The modified gradient image gws (x, y) is represented by Equation (2):

gws (x, y) = Mmin
[

g (x, y), gimark (x, y) /gemark (x, y)
]

(2)

Among them, Mmin() represents the minimum imposed operation. Finally, the
watershed algorithm is used to the achieve automatic segmentation of wear particle images
as in Equation (3):

SEG (f) = WS (gws (x, y)) (3)

The formula WS (gws (x, y)) represents watershed operation, and label control is the
key to the watershed segmentation algorithm, which directly affects the final segmentation
effect. For the image of wear particles, they are in an oil environment with rough and
irregular surfaces, and it is difficult to determine the boundaries between particles from
the gradient map. The gradient map is not as suitable as the original image for watershed
segmentation. At the same time, it is noted that, under the action of a magnetic field, the
wear particles are distributed along the direction of the magnetic field line, presenting a
“chain” shape. The majority of the wear particles are connected up and down, with a few
being connected left and right.

2.4. Multidimensional Transformer Network (MTF)
2.4.1. Multidimensional Data Preprocessing and Multi-Head Attention Module

This module is employed for data preprocessing to extract redundant and comple-
mentary features related to oil wear. By utilizing Equation (4), the initial data are averaged
on a minute basis to acquire daily data.

xi = ∑T
i=1 xi / T (4)

xi represents the monitoring value at the i-th instance, while xi corresponds to the
average value over T instances. To process the raw data, a numerical accumulation method
is employed, as demonstrated in Equation (5).

Xi
′ = diff (log (xi)) (5)

The diff () function is a mathematical tool for calculating the derivative of a given function.
Furthermore, the multi-head attention mechanism is employed to improve the self-attention
learning capability. This involves mapping Query, Key, and Value to distinct subspaces within a
higher-dimensional space while maintaining a consistent total parameter count. The module
then integrates attention information from these various subspaces, as depicted in Figure 4. The
main goal of the multi-head attention mechanism is to improve the expressive power of the
model and the ability to capture the different levels of information.

Additionally, the process of calculating attention mapping inputs across various
representation spaces can be described as follows:

MultiHead (Q,K,V) = Concat (head1,. . ., heads) WO (6)

Head = Attention (QWi
Q, KWi

Q, VWi
Q) (7)

where WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv , and WO ∈ Rhdv×dmodel . h represents

the number of attention heads, while dk, dv, and dmodel are predefined coefficients. The attention
mechanism is calculated using the weight matrix (Q, K and V) and the coefficient matrix (WQ,
WK and WV). x refers to thinking machines, with each attention head containing multiple
pairs of Q0 and WQ

0 . By conducting n self-attention calculations using distinct weight matrices,
n different Z-matrices can be obtained. Furthermore, these n matrices are combined into a
single matrix.
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2.4.2. Positional Encoding and Encoder–Decoder Module

The primary components of this module are position encoding and the encoder–
decoder. Position encoding in the transformer model serves to represent sequence order,
aiding the model in determining the position of each element in the sequence and the
relative distance between features. The vector computation for position encoding is demon-
strated in Equations (8) and (9):

PE (pos,2i) = sin
(

pos/100002i/dmodel
)

(8)

PE (pos,2i+1) = cos
(

pos/100002i/dmodel
)

(9)

pos denotes the position. PE(pos + k) can be expressed as a linear function of PE(pos):

cos (α + ß) = cos (α) cos (ß) − sin (α) sin (ß) (10)

sin (α + ß) = sin (α) cos (ß) + cos (α) sin (ß) (11)

2.4.3. Prediction and Maintenance Strategy Module

We employed Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean
Absolute Error (MAE) as assessment metrics for the model’s predictive capabilities, with
their respective calculations provided in Equations (12)–(14). Lower error values indicate
superior prediction performance.

ErrorMSE =
1
m ∑m

i=1 (yi − ŷi)
2 (12)

ErrorRMSE =

√
1
m ∑m

i=1 (yi − ŷi) 2 (13)

ErrorMAE =
1
m
|yi − ŷi| (14)
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3. Establishment of the Experimental Platform

The on-site testing site of this article is installed at a wind power plant in Guangdong,
and the status monitoring of two wind turbines in the wind farm is carried out.

3.1. Information and Monitoring Indicators of Wind Power Gearbox Equipment

The device information table is shown in Table 1.

Table 1. Equipment information table.

Equipment Installation
Location Guangdong Yuedian Power Plant

Device name 15#, 24#, wind
power gearbox Lubrication oil Mobil 320 gear oil Lubricating

system Gearbox

Lubricating oil
temperature (60–65) ◦C On-site

temperature −10 ◦C–45 ◦C Pressure 0.1 Mba

Oil change interval Offline inspection twice a year and oil
change according to quality

Online detection
indicators

Wear particle size distribution and
particle images

3.2. Engineering Testing Platform

The gearbox of the doubly fed wind turbine is shown in Figure 5a, and the specific
installation position of the sensing system is shown in Figure 5b.
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the sensing system; and (c) oil pick-up and return positions.

(1) Oil sampling point: Before filtration, a sample is taken, and the G1/4 quick pressure
measuring connector at the base of the circulating oil pump input filter element is replaced
with a G1/4 three-way valve. It is divided into two oil circuits, one of which is installed
back to the original pressure measuring connector, and the other is equipped with a G1/4
ball valve and connected to the high-pressure hose oil circuit to connect to the oil inlet of
the oil online monitoring instrument. As shown in Figure 5c, a return point is present on
the upper oil cover of the main engine, the original G1/4 quick pressure measuring joint is
replaced with a G1/4 three-way joint, and it is divided into two oil circuits. One circuit is
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installed back to the original pressure measuring joint, and the other circuit is equipped
with a G1/4 ball valve and connected to the high-pressure hose oil circuit to connect to the
return port of the oil online monitoring instrument, as shown in Figure 5c.

4. Experiments and Results
4.1. U-Net Network and Watershed Algorithm
4.1.1. Dataset Preparation

Firstly, we use DIES to collect the images of various types of wear particles, such as
those with bubbles, uneven distribution of light and dark, a large amount of oil sludge,
individual wear particles, a large number of wear particles, different types of wear particles
present simultaneously, and only normal wear particles. A total of 1960 wear particle images
were collected in the experiment. Image annotation based on semantic segmentation uses
LabelMe to annotate the foreground of wear images. Figure 6 shows the overall effect of
wear image data annotation. The labeled wear particle images are divided into a training
dataset of 1373, a testing dataset of 391, and a validation dataset of 195, based on a ratio of
70% for the training dataset, 20% for the testing dataset, and 10% for the validation dataset.
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annotation, and (c) overlay effect.

4.1.2. Model Training

For the 1960 collected wear images, the input size of the images is set to 640 px in
width and 450 px in length, with an epoch of 200, a learning rate of 0.02, and a batch size of
4. The method for reducing the learning rate is polynomial, and the optimization method
is Stochastic Gradient Descent (SGD). The model parameters can be gradually adjusted
during the training process to find local optimal solutions. This enables the model to better
fit the training data.

To achieve better training results, data augmentation was carried out by randomly
flipping, blurring, brightness, contrast, saturation, and color tone operations on wear
images. The probability of brightness, contrast, saturation, color, and minimum truncation
area ratio was set to 0.5. The color range was set to 18, and the aspect ratio was set to 0.33.
At the end of the training, the loss function value of the training set is 0.0506.

4.1.3. U-Net Preprocessing Results

The training results of the U-Net network model are as follows: the average intersec-
tion union ratio (MIOU) of the validation set is 0.9299, and the accuracy of the validation
set (OACC) is 0.9799. The final evaluation indicators for image segmentation include an
average accuracy rate (MACC) of 0.9805 and an average intersection-to-union ratio (MIOU)
of 0.9329. The overall average indicators after segmentation are shown in Table 2. Among
them, category 0 is the background after segmentation, and category 1 is the wear particles
in the foreground after segmentation.
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Table 2. Global average index.

Category (Precision) (Recall) (IOU)

0 (background) 0.9890 0.9875 0.9768
1 (prospect) 0.9378 0.9448 0.8891

Figure 7 shows the segmentation results of effect images based on U-Net network
training. Figure 7a,c,e show the image when U-net does not exist, and Figure 7b,d,f show
the segmentation results of effect images based on U-Net network training.
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4.1.4. Watershed Feature Processing Results

Figure 8 was a schematic diagram of the foreground labeling process. After one
corrosion, the abrasive chain was divided into four parts and sorted from top to bottom.
The length-to-length ratio of the third part of the particles met the standard of seed points
and was directly saved as seed points without further processing. The remaining three parts
were processed separately. The fourth part was divided into two parts after one corrosion,
both of which met the seed point standard and will not be processed after preservation. In
the second part, after multiple corrosion operations, two seed points were finally obtained.
After multiple corrosion operations, the first part ultimately obtained three seed points.
The end was the final foreground marker point.
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The background area was obtained by inverting the foreground area, processing the
border, and then enabling morphological corrosion. Foreground markers are overlaid with
background markers to obtain the final marker image, as shown in Figure 9.
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Figure 9. Mark combination diagram: (a) foreground markers; (b) background markers; and (c) mark
combination.

The segmentation effect is shown in Figure 10. Figure 10a was the original image,
Figure 10b was the original watershed segmentation line (with a line width of one pixel),
Figure 10c was the result of morphological expansion in Figure 10b, Figure 10d was the
final segmented template image of wear particles, and Figure 10e was the color image of
segmented wear particles.
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4.1.5. Classification of Wear Particles in Lubricating Oil

Oil wear particles were analyzed based on the following two parameters:

1. Coverage area ratio

It refers to the ratio of the area occupied by wear particles in the wear particle image
to the overall area of the image. This parameter can intuitively reflect the degree of
contamination of the oil. The calculation formula is as follows, where R is the coverage
area ratio, AF is the total number of pixels in the abrasive coverage area, and M and N are
the length and width of the image, as in Equation (15).

R =
AF

M ∗ N
(15)

2. Grading and counting of wear particles

It refers to classifying wear particles according to the size of wear particles and
calculating the number of wear particles in each category. At present, the particle size of
wear particles is divided into six levels based on the equivalent circular diameter of the
particles, including 4–6, 6–14, 14–21, 21–38, 38–70, and above, in micrometers (µm). The
conversion formula for equivalent circle diameter and area, where D is the equivalent circle
diameter and A is the abrasive area, is provided in Equation (16).

D =

√
4 ∗ A

π
(16)

3. Extraction of Morphological Features of Single Large Wear Particle

The extraction of two-dimensional morphological feature parameters of wear par-
ticles was crucial for wear particle analysis, as it can obtain rich wear particle feature
information, which can meet the classification needs of common types of wear particles.
The two-dimensional morphological feature parameters of wear particles referred to the
morphological feature parameters directly extracted from two-dimensional static wear
particle images. The main feature parameters extracted in this article include the following:
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a. Area of wear particles

The total number of pixels in the connected domain with a median of one in a binary graph.

b. Perimeter of wear particles

The total number of boundary pixels in a connected domain with a median of one in a
binary graph.

c. Equivalent area circle diameter of wear particles

The abrasive area is converted to the equivalent circular area diameter according
to Equation (8).

The long axis and short axis of the wear particles are the length and width of the
smallest rectangle surrounding the target. This parameter can distinguish slender targets
from approximately circular or square targets. Figure 11 shows a separately extracted
particle, with the smallest rectangle surrounding it marked with a red rectangle and the
center of mass of the wear particles marked with a red solid circle.
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Figure 11. Individual large wear particles.

4.1.6. Test Results of Oil Wear Particle Classification Experiment

The repeatability error of particles was an indicator of traditional shading particle
counters. To test the stability of the software’s calculation data, the same wear particle image
was repeatedly processed to analyze whether there were fluctuations in the resulting data.
Specific operation included the following: randomly selecting an original wear particle
image, with segmentation effect image being shown in Figure 12, copying 100 copies and
placing them in a certain folder, naming them according to (i), and using I values from
1 to 100 as the image number. We selected the batch image processing mode to calculate
the classification and counting data of ferromagnetic particles. Table 3 lists a total of four
rows of data from the test data in Figure 12.
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Table 3. Grading of wear particles.

Serial Total Number of
Wear Particles 4–6 µm 6–14 µm 14–21 µm 21–38 µm 38–70 µm >70 µm Coverage Area

Ratio (%)

1 23 3 1 1 8 10 0 2.60391

2 23 3 1 1 8 10 0 2.60391

3 23 3 1 1 8 10 0 2.60391

. . . . . . . . . . . . . . . . . . . . . . . . . . .

100 23 3 1 1 8 10 0 2.60391

The data results indicated that the repeated test data of the same sample were all the
same, and there was no repeatability error in particle counting. A large number of samples
were tested, and the results showed zero repeatability error in particle counting. This also
reflected an advantage of image-based particle counting compared to shading based on
particle counting.

According to empirical data partitioning, it can be divided into three intervals, such as
4–38 µm, 39–70 µm, and >70 µm.

4.2. The MTF Network

Wear usually occurs first with small particles, followed by large particles. The number
of ferromagnetic particles is the most direct indicator for evaluating the wear condition
of gears. The real-time monitoring characteristics of oil products mainly include three
different sizes of ferromagnetic particles (4–38 µm, 39–70 µm, >70 µm). We consider the
4–38 µm- and the 39–70 µm-sized ferromagnetic particles as the health status, and the other
monitoring characteristic data are selected as evaluation factors. The structure of the MTF
network is outlined in Table 4.

Table 4. Comprehensive structure of the MTF model.

MTF Model

pos_encoder PositionalEncoding ()

encoder TransformerEncoderLayer
self_attn MultiheadAttention
out_proj LinearWithBias
Linear1/2 Linear
norm1/2 LayerNorm
dropout1/2 Dropout

transformer encoder TransformerEncoder
ModuleList TransformerEncoderLayer
self_attn MultiheadAttention
out_proj LinearWithBias
Linear1/2 Linear
norm1/2 LayerNorm
dropout1/2 Dropout

decoder Linear

4.2.1. Wear Prediction Results of the MTF Network

The proposed MTF network was used to make intelligent predictions of the data trend
of Ferromagnetism 4–38 µm and Ferromagnetism 39–70 µm particles in oil. The input step
size of the model was 50, the prediction step size was 1, the batch size was 250, and the
epochs were 150. The logarithmic cumulative sum of the original data was preprocessed,
and the model prediction results are shown in Figure 13.
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Figure 13 shows that our proposed model can effectively predict the data trend of
Ferromagnetism 4–38 µm and Ferromagnetism 39–70 µm particles in oil.

4.2.2. Experimental Results and Analysis

To evaluate the performance of various intelligent prediction networks for time series data,
we employ the classic LSTM and TCN methods for comparison and examine their respective
predictive outcomes. The LSTM network is composed of a 1D convolution layer, LSTM layers,
dense layers, and lambda layers, while the TCN network primarily consists of the input layer,
TCN layer, and dense layer. The comparison results can be found in Table 5.

Table 5. The results of forecasting methods.

Method MSE RMSE MAE

LSTM 0.004736 0.068817 0.066858
TCN 0.000156 0.012498 0.012073
MTF 3.458 × 10−5 0.005881 0.003568

As illustrated in Table 5, the prediction errors for the MTF model are lower than
those of the other two classic methods. The experimental outcomes demonstrate that the
predictive performance of our proposed model surpasses that of LSTM and TCN, exhibiting
outstanding generalization capabilities.

4.3. Data Consistency Analysis Verification
4.3.1. Offline Sending of the Samples to the Laboratory for Comparative Verification and Analysis

On 29 November 2023, there was a sharp increase in particles of 4–38 µm and 39–70 µm.
The system has an alarm reminder, with both interface alarm and sound alarm simultane-
ously. The data are shown in Tables 6–8.

Table 6. The measured data of 15# are as follows (corresponding to samples sent on 3 December).

Number Time Temperature Ferromagnetism
4–38 µm

Ferromagnetism
39–70 µm

Ferromagnetism
>70 µm Flag

10 2023/11/29 6:55 78.39 19 10 1 1

9 2023/11/29 6:50 78.39 17 10 1 1

8 2023/11/29 6:45 78.29 17 7 1 1
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Table 6. Cont.

Number Time Temperature Ferromagnetism
4–38 µm

Ferromagnetism
39–70 µm

Ferromagnetism
>70 µm Flag

7 2023/11/29 6:40 78.29 16 5 1 1

6 2023/11/29 6:35 78.39 13 5 1 1

5 2023/11/29 6:30 78.39 12 5 1 1

4 2023/11/29 6:25 78.39 12 5 1 1

3 2023/11/29 6:20 78.39 12 5 1 1

2 2023/11/29 6:15 78.39 12 5 1 1

1 2023/11/29 6:10 78.39 12 5 1 1

Average Value 78.39 14.2 6.2 1 1

Table 7. The measured data of 15# are as follows (corresponding to the sample sent on 12 December).

Number Time Temperature Ferromagnetism
4–38 µm

Ferromagnetism
39–70 µm

Ferromagnetism
>70 µm Flag

10 2023/12/9 10:19 78.39 7 6 1 1

9 2023/12/9 10:14 78.39 6 5 1 1

8 2023/12/9 10:09 78.39 5 5 1 1

7 2023/12/9 10:04 78.39 5 4 1 1

6 2023/12/9 9:59 78.39 4 4 1 1

5 2023/12/9 9:54 78.39 4 4 1 1

4 2023/12/9 9:49 78.39 3 3 1 1

3 2023/12/9 9:44 78.39 3 2 1 1

2 2023/12/9 9:39 78.39 2 1 1 1

1 2023/12/9 9:34 78.39 2 1 1 1

Average Value 78.39 4.1 3.5 1 1

Table 8. The measured data of 15# are as follows (corresponding to the sample sent on 14 December).

Number Time Temperature Ferromagnetism
4–38 µm

Ferromagnetism
39–70 µm

Ferromagnetism
>70 µm Flag

10 2023/12/13 10:19 78.39 5 1 1 1

9 2023/12/13 10:14 78.39 3 1 1 1

8 2023/12/13 10:09 78.39 2 1 1 1

7 2023/12/13 10:04 78.39 2 1 1 1

6 2023/12/13 9:59 78.39 2 1 1 1

5 2023/12/13 9:54 78.39 2 1 1 1

4 2023/12/13 9:49 78.39 2 1 1 1

3 2023/12/13 9:44 78.39 2 1 1 1

2 2023/12/13 9:39 78.39 2 1 1 1

1 2023/12/13 9:34 78.39 2 1 1 1

Average Value 78.39 2.4 1 1 1
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In early December, there was a sharp increase in particles between 4–38 µm and 39–70 µm.
The system has an alarm reminder, with both interface alarm and sound alarm simultaneously.

For this continuous alarm situation, the samples of gearbox lubricating oil were taken
on 3 December, 12 December, and 14 December, and sent to the laboratory for offline
inspection and analysis to verify the offline ferrography of the oil. The test results are
shown in Figures 14–16.
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From the analysis of ferrography and high-power microscopy, it can be seen that there
are indeed large-sized particles in the oil, with the maximum size reaching 120 µm. These
large-sized particles are within the detection range of the sensor, so they can be captured
by online monitoring devices, which also verifies the accuracy and reliability of online
real-time monitoring.

4.3.2. Disassembly and Maintenance

Based on the particle morphology, disassembly, maintenance, and repair were carried
out. Fatigue pitting on the tooth surface usually occurs near the tooth root, as this is usually
a single tooth meshing area where the direction of friction changes and the tooth surface
bears the maximum load. A certain part of the gear teeth captured on-site experienced
severe fatigue below the pitch line of the tooth surface, but there was still a portion of the
teeth that did not experience fatigue pitting in the root meshing area. However, severe
abrasion and wear occurred at the tooth tips, and a large area of material peeling occurred
at some tooth tips, as shown in Figure 17. This indicates that the tooth tips experienced
severe adhesive wear and also suffered significant impact forces.
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We determined that improper gear installation and adjustment was the root of the
gear issue by conducting an analysis. The center distance of the gear transmission is too
large or too small, or the bearings are installed incorrectly, resulting in biased load and
incorrect meshing of the gears. This leads to fatigue pitting of some teeth below the pitch
line adhesive abrasion and wear of some teeth at the tooth tip of high-speed gears.

5. Conclusions and Future Work

In this paper, we propose a method for diagnosing the wear condition of mechanical
equipment based on online wear particle images. Firstly, a foreground segmentation
preprocessing method based on the U-Net network can effectively eliminate the interference
of bubbles and dark fields in online wear particle images. A total of 1960 wear particle
images were collected in the experiment, and the average intersection union ratio of the
validation set is 0.9299, and the accuracy of the validation set is 0.9799. Secondly, based on
the foreground segmentation preprocessing of wear particle images, by using the watered
algorithm to obtain the number of particles in each size segment, we obtained the number
of magnetic particle grades in three different ranges: 4–38 µm, 39–70 µm, and >70 µm.
Thirdly, we proposed a method named multidimensional transformer (MTF) network, MSE,
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RMSE, and MAE evaluation indexes are used to obtain the error, and the maintenance
strategy is formulated according to the predicted trend. The experimental results show
that the predictive performance of our proposed model is better than that of LSTM and
TCN. Finally, the online real-time monitoring system triggered three alarms, and at the
same time, our offline sampling data analysis was conducted three times, the accuracy of
online real-time monitoring alarms was verified, and the equipment was disassembled for
maintenance and repair.

In the future, we will describe the correlation between various features in online moni-
toring of oil through the spectrum and will fully combine the data of online monitoring and
offline detection through multi-modal data fusion, to achieve accurate and early warning
of the fault of the machine. The online wear state digital imaging excitation sensors de-
signed for testing have the advantages of real-time and fast performance. However, under
complex and ever-changing actual working conditions, most of them are easily affected
by factors such as bubbles in the oil and equipment vibration, resulting in unclear images,
compared to offline laboratory testing and analysis, most detection particle size ranges are
still insufficient, and the collection of large-sized wear particles is not comprehensive when
wear is severe, and the segmented wear particles are graded into different scales.
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