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Abstract: Rotary machines commonly use rolling element bearings to support rotation of the shafts.
Most machine performance imperfections are related to bearing defects. Thus, reliable bearing
condition monitoring systems are critically needed in industries to provide early warning of bearing
fault so as to prevent machine performance degradation and reduce maintenance costs. The objective
of this paper is to develop a smart monitoring system for real-time bearing fault detection and
diagnostics. Firstly, a smart sensor-based data acquisition (DAQ) system is developed for wireless
vibration signal collection. Secondly, a modified variational mode decomposition (MVMD) technique
is proposed for nonstationary signal analysis and bearing fault detection. The proposed MVMD
technique has several processing steps: (1) the signal is decomposed into a series of intrinsic mode
functions (IMFs); (2) a correlation kurtosis method is suggested to choose the most representative
IMFs and construct the analytical signal; (3) envelope spectrum analysis is performed to identify the
representative features and to predict bearing fault. The effectiveness of the developed smart sensor
DAQ system and the proposed MVMD technique is examined by systematic experimental tests.

Keywords: smart sensors; data acquisition; bearing fault detection; vibration signal analysis; variational
mode decomposition

1. Introduction

Rotating machines are commonly used in various industries, such as electric vehicles,
aircraft, and machine tools. Machine component defects will influence machine perfor-
mance quality and reliability. Based on this investigation, up to 75% of imperfections in
small- and medium-size rotating machines are related to defects in rolling element bear-
ings [1,2]. This work will focus on condition monitoring and fault diagnosis of rolling
element bearings. Bearing defects can not only generate extra vibrations and noise, but
also result in the degradation of machine operation accuracy or even the early breakdown
of rotating machines. Thus, reliable machine condition monitoring systems are critically
needed in industries to detect the bearing fault in its early stage so as to prevent machine
performance degradation and improve operation efficiency and reliability.

A real-time machine condition monitoring system includes modules, such as data
acquisition (DAQ) to collect signals, and signal processing for fault detection and diagnosis.
Vibration signals will be used for bearing fault detection in this work due to its high signal-
to-noise ratio. A traditional DAQ system uses a DAQ board to collect signals, which is not
convenient in real industrial applications due to reasons such as the use of pre-conditioning
hardware, sensor cable installation limitations, and high expenses. An alternative is to use
smart sensor-based DAQ systems. A smart sensor integrates a sensing unit, pre-processing
functionality, and wireless communication in one chip, controlled by a microcontroller unit
(MCU) [3]. Although there are some smart vibration sensors available on the market [3–5],
they cannot meet the comprehensive requirements of measurement range, frequency
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bandwidth and sensitivity, used in this monitoring application. Subsequently, the first
objective of this work is to develop a new smart sensor-based DAQ system to collect
vibration signals wirelessly.

Reliable fault detection in rolling element bearings remains a very challenging task
in the research field of machine health monitoring and fault diagnosis. A bearing is not a
component like a gear or shaft, but it is a system comprising components, such as an outer
ring, an inner ring, a cage, and a set of rolling elements. Bearing defect-related feature
properties depend on bearing geometry, defect location, and operating conditions. In
addition, bearing features are also modulated by other strong vibration signals generated
from vibratory sources such as gear meshing [1,6].

There are many signal processing techniques proposed in the literature for bearing
fault detection [7–10]. The most commonly used approach is based on Fourier transform
(FT) spectral analysis by examining health-related characteristic frequency components on
the spectrums. However, FT analysis cannot be applied to analyze nonstationary signals
whose spectral and statistical properties change with time [11,12]. Nonstationary and
transient signals can be processed by analyzing multiresolution time–frequency information
using techniques such as the Hilbert–Huang transform (HHT) [13]. The HHT uses empirical
mode decomposition (EMD) to extract intrinsic mode functions and residual signature for
signal property analysis; however, its signal decomposition approximation is sensitive to
noise, which can affect the overall processing accuracy [14,15].

The variational mode decomposition (VMD) method decomposes the vibration signal
into several signatures with different center frequencies by using a set of adaptive Wiener
filters [16]. Although VMD has been used in the extraction of nonlinear features and
machine fault detection [17,18], it still has some limitations. For example, it requires pre-
choosing the number of modes and the bandwidth control parameters. Most of the available
research in this area has focused on adaptability improvement and parameter optimization.
For example, a prediction method was proposed in [19] for decomposition prediction
by recursively modifying the related system parameters; however, it was an empirical
algorithm and was difficult to implement in bearing fault detection, as different bearings
have different system parameters and installation dynamics. A spectrum distribution-based
VMD was presented in [20] to detect wheel set-bearing faults; however, its processing
accuracy could degrade due to possible over-decomposition. A particle swarm method
was suggested in [21] to optimize the VMD parameters, but the ratio errors with respect to
the average value and the variance could decrease impact component accuracy. In addition,
some other optimization algorithms were adopted in [22,23] to update the number of
modes in VMD analysis for some specific applications. However, these mode selection
algorithms still have some problems, such as slow convergence of parameter optimization
due to complex spectrum distribution and trapping due to local minima.

To tackle the above limitations in VMD analysis, the second objective of this work
is to propose a new VMD method, called modified VMD or MVMD, for nonlinear signal
analysis and bearing fault detection. It is a great extension of the related work of the
authors’ research team. For example, in comparison with the smart sensors in [4,5], the
smart sensors developed in this work have a wider bandwidth and higher resolution.
On the other hand, the adaptive VMD method in [6] applies the first IMF for bearing
fault detection. Different from our previous related work, the novelties of the proposed
MVMD technique include: (1) a new smart sensor-based DAQ system is developed for
wireless vibration data collection, which has a wider measurement bandwidth and higher
processing resolution accuracy; (2) in the proposed MVMD technique, a new correlation
kurtosis approach is suggested to select the three most representative IMFs and formulate
a new analytical signal. An envelope spectrum analysis is performed to recognize the
representative features for bearing fault detection. The effectiveness of the developed smart
sensor DAQ systems and the MVMD technique is verified by systematic experimental tests.
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The remainder of the paper is organized as follows: The developed smart sensor DAQ
system is described in Section 2. The proposed MVMD technique is discussed in Section 3.
The effectiveness of the MVMD technique is examined in Section 4 by experimental tests.

2. Development of Smart Sensor-Based DAQ System

A DAQ system is used to collect signals in different forms. A smart sensor node is a
system that integrates the sensing units and signal conditioning functions (e.g., power sup-
plies, amplification, adjustment, filtering, etc.) for data collection [3]. The related functions
are controlled by a microcontroller unit (MCU) through a communications interface [4,5].
Wireless smart sensors are preferred in industrial applications to reduce costs and prevent
DAQ cable distribution problems. The architecture of the developed smart sensor DAQ
system is illustrated in Figure 1. The signals are measured using proper sensing units.
After proper pre-conditioning operations, signals are digitized by the analog-to-digital
conversion (ADC) unit integrated in the MCU. The digital vibration signals are transmitted
to the receiver wirelessly, and then stored and processed in the computer for machine fault
detection and diagnosis.
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Figure 1. Block diagram of the smart sensor-based DAQ system.

2.1. Sensing Unit

The ICP (Integrated Circuit Piezoelectric) piezoelectric accelerometer is used as the
sensing unit in this work (model HA1N100 from Hangjia Technology, Nanjing, China). Its
frequency range is over [0.5, 10,000] Hz, with a sensitivity of 100 mV/g, and measurement
range of ±50 g. This sensor requires an excitation DC voltage over [18 V, 28 V] and a
constant current source over [2 mA, 20 mA].

2.2. Signal Conditioning Circuitry

The signal conditioning circuitry is used to support the sensor requirements and
process the analog data. The smart sensor node has a voltage regulated output, a boost
converter, a constant current source, anti-aliasing filters, as well as other related circuits.
Figure 2 shows the block diagram of the developed signal conditioning circuitry.
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The developed smart sensor node is a battery-powered unit; its input voltage may
vary with time, which can cause interruptions in operation. To prevent this problem, a
constant voltage supply is needed. A voltage regulator (LD1117, from ST Microelectronics,
Aliso Viejo, CA, USA) is selected to provide a constant 3.3 VDC voltage to the circuit [24].
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The LD1117 is an adjustable voltage regulator, which can reduce the influence of the power
supply fluctuations on the operation of the smart sensor nodes.

A boost converter is used to generate the excitation voltage of 18–24 VDC for the
piezoelectric accelerometer sensing unit. In this work, LT1930 (from Linear Technology,
Milpitas, CA, USA) is used as the DC boost converter [25]. The LT1930 has a 1.2 MHz
switching frequency, and it can convert the 3.3 VDC input to a 24 VDC to signal conditioning
circuitry to maintain operation stability of the sensing unit.

A constant current source is required to provide a constant excitation current for
piezoelectric accelerometers. The LM234 chip (from Texas Instruments, Dallas, TX, USA) is
selected in this work [26], which can provide a constant excitation current between 2 mA
and 20 mA. It has good current regulation and wide dynamic voltage ranges from 1 V to
40 V, with an accuracy of ±3%.

Figure 3a shows the developed two-layer printed circuit board (PCB) testing board for
the signal conditioning circuitry.
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Figure 3. (a) Signal conditioning circuitry on a testing PCB board (two-layer): (1) Voltage regulator
LD1117; (2) DC boost converter LT1930; (3) Constant current source LM234. (b) The smart sensor
prototype: (4) The signal conditioning circuitry; (5) PIC32 MCU; (6) Pickit programmer; (7) CC1101
wireless transceiver.

2.3. Microcontroller PIC32MX

The MCU used in this smart sensor is PIC32MX250F128B (from Microchip Technology,
Chandler, AZ, USA) [27]. PIC32 is a 32-bit MCU with 128 kB reprogrammable flash memory,
3 kB dedicated boot flash memory, and 32 kB SRAM. It can provide a 20 kHz sampling
frequency, which can meet the bandwidth requirement in this work (i.e., 10,000 Hz). PIC32
also has a relatively low current consumption of 0.5 mA/MHz (versus 1.5 mA at 4 MHz for
Atmega328p MCU). In addition, it can support UART, SPI, and I2C communications protocols.

In general, machine condition monitoring is not conducted continuously, but periodi-
cally, for example, every 4 h. The MCU will provide sleep mode control to shut down the
power system in the smart sensor nodes to save battery power when no data collection
operation is conducted.

2.4. SRAM

An extra SRAM is needed in the developed wireless sensor DAQ system to store
the digital data after the ADC and before wireless transmission. The 23LC1024 (from
Microchip) SRAM chip is selected as the extra memory in this work. A single SRAM chip
features 131,072 × 8-bit data points, and its memory for 10-bit ADC is 65,536 data points.
If more data storage capacity is required, multiple SRAM chips can be used as slave devices.
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2.5. Wireless Communication

The wireless transmitter chip CC1101 transceiver (from Texas Instruments) [28] is used
for wireless communication. CC1101 is a low-power and sub-1 GHz transmitter designed
for different short-range frequency bands at 315 MHz, 433 MHz, 868 MHz, and 915 MHz. In
this work, a 915 MHz ultra-high frequency band is chosen, which is assigned for industrial,
scientific, and medical applications in North America. CC1101 can also provide extensive
hardware support for functionalities.

The receiver can accept the digital data from different sensor nodes, and transmit
the data to a computing unit, such as an analyzer or a computer. It can also control the
operations of the smart sensor nodes for data acquisition processes, such as data collection
intervals, sampling frequency, data transmission rate, sleep mode control, etc. The receiver
unit uses the same type of MCU and wireless module as used in smart sensor nodes
in this case.

The maximum transmission distance between a smart sensor node and the receiver
depends on factors such as obstacles and noise interference. The maximum distance for
using the C1101 ZigBee wireless communication protocol with 915 MHz is up to 500 m in
an open space. Figure 4 shows the smart sensor node (a primary prototype for testing).
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Figure 4. Experimental setup for testing the smart sensors: (1) Oscilloscope, (2) Tested two-layer PCB
board, (3) Power amplifier, (4) Frequency generator, (5) Vibration sensing unit, (6) Excitation shaker.

2.6. Performance Evaluation of the Smart Sensors

To evaluate the accuracy of the developed smart vibration sensor nodes, systematic
tests are conducted using the experimental setup, as shown in Figure 4. The signal generator
provides an excitation signal with a specified frequency. After amplification, the signal is
fed to the shaker to generate the vibration signal with the specified frequency and mode
used in the testing. Figure 5 shows some spectrum of the collected vibration signals at
30 Hz, 60 Hz, 2.3 kHz, and 3.7 kHz, respectively. The extra spectral components are due to
noise, for example, generated by the parts on the table and shaker connecting frequencies.
It is seen that input signals can be acquired accurately by the smart sensor node.

Figure 6 shows the final prototype of the developed smart sensor DAQ system with
four-layer PCBs, which has been used successfully in industrial applications.
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3. MVMD Technique for Bearing Fault Detection

A new signal processing technique, modified VMD or MVMD, is proposed in this
work for bearing fault detection. The MVMD technique consists of the following processing
steps: (1) VMD analysis to generate intrinsic mode function (IMFs), (2) selecting most
representative IMFs and reconstruct the signal, and (3) envelope spectral analysis for
bearing fault detection. Details will be discussed in this section.

3.1. VMD Processing

VMD is an adaptive time–frequency analysis method that can process nonlinear and
nonstationary signals [16]. In processing, the VMD decomposes a signal x(t) into a series
of IMFs, each having a finite bandwidth and located around a center frequency. An IMF,
uk(t), can be expressed as:

uk(t) = Ak(t) cos(φk(t)), k = 1, 2, . . . , K (1)
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where Ak(t) is the instantaneous amplitude; φk(t) in rad is the phase angle; K is the number
of IMFs considered. The instantaneous frequency ωk(t) =

dφk(t)
dt in rad/sec.

The VMD aims to solve a constrained variational problem represented by:

min{uk},{ωk}

{
K

∑
k=1

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2

2

}
(2)

where
K
∑

k=1
uk(t) = x(t); ∂t represents the partial derivative of time; δ = 2π/ωk(t) is the

Dirac delta distribution; j is the complex number; * is the convolution operator.
Equation (2) can be converted into an unconstrained optimization problem using

the augmented Lagrangian method [6,16]. An optimal solution can be obtained using an
alternated direction method of multipliers [16]. Thus, mode uk can be updated by:

un+1
k = arguk∈Fmin

{
αk

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2

2
+

∥∥∥∥∥x(t)− ∑
i

ui(t) +
λ(t)

2

∥∥∥∥∥
2

2

 (3)

where αk is a penalty factor and λ(t) is Lagrangian multiplier. Using Parseval/Plancherel
Fourier isometry under the L2 norm and the Hermitian symmetry of the FT, Equation (3)
can be solved in the frequency domain:

Un+1
k = argUk ,uk∈Fmin


∫ ∞

0
4αk(ω − ωk)

2|Uk(ω)|2 +2

∣∣∣∣∣X(ω)− ∑
i

Ui(ω) +
Λ(ω)

2

∣∣∣∣∣
2

dω

 (4)

where uk(t) ↔ Uk(ω) , x(t) ↔ X(ω) , λ(t) ↔ Λ(ω) and the related FT pairs.
This quadratic optimization problem can also be represented as [29]:

Un+1
k (ω) =

X(ω)− ∑
i ̸=k

Ui(ω) + Λ(ω)
2

1 + 2αk(ω − ωk)
2 (5)

In addition, the center frequency ωk of IMF mode uk can be updated by:

ωn+1
k = argωk

min

{∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2

2

}
(6)

Similarly, the center frequency can also be optimized in the frequency domain by:

ωn+1
k = argωk

min
{∫ ∞

0
(ω − ωk)

2|Uk(ω)|2dω

}
(7)

This quadratic optimization problem can be solved by:

ωn+1
k =

∫ ∞
0 ω|Uk(ω)|2dω∫ ∞

0 |Uk(ω)|2dω
(8)

The Lagrangian multiplier can be updated by:

Λn+1 = Λn(ω) + τ

(
X(ω)− ∑

k
Un+1

k (ω)

)
(9)

where τ is the iteration step size (τ = 0 is selected in this case). The iteration will be
terminated if the errors meet the following convergence condition:
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∑
k

∥∥∥Un+1
k − Un

k

∥∥∥2

2∥∥Un
k

∥∥2
2

< ε (10)

where ε is the convergence threshold (ε = 0.01 is selected in this case).

3.2. Determination of the Penalty Factor

The penalty factor αk is used to determine the bandwidth of the mode component [16].
In general, a higher penalty factor will generate a narrower bandwidth of the mode com-
ponent, and vice versa. According to the spectral characteristics of different bearing fault
representative features, the penalty factor αk will be empirically estimated by [6]:

αk =

 1

1 + elog10
2 fkc

fs

− 0.5

 · fs

2
(11)

where fkc is the center frequency of the k-th mode component; fs is the sampling frequency.
Based on Equation (8), the discrete form of frequency fkc in Hz can be calculated by:

fkc =

N/2
∑

n=1

[
n · fs/N · |Uk[n]|2

]
N/2
∑

n=1
|Uk[n]|2

(12)

where N is the length of the vibration signal, and Uk[n] is the discrete FT of the k-th mode
component uk.

3.3. A Correlation Kurtosis Method for IMF Section and Signal Reconstruction

VMD analysis will be used to select the IMFs containing the fault characteristic features.
Some IMFs are more sensitive to machine faults than others. A correlation kurtosis method
is proposed to screen the most sensitive IMFs related to machine faults so as to improve
the accuracy of fault diagnosis, while improving processing efficiency by using fewer
representative IMFs.

Rolling element bearings have periodic impact components in the vibration signal
when a bearing component is damaged. The kurtosis is sensitive to tail modulation in
probability distribution functions but less sensitive to machine operating conditions in
terms of speed and load. When the kurtosis value of an IMF is large, it usually indicates
that this IMF would contain more characteristic features related to bearing defects. The
kurtosis KU,k of the IMF uk in the discrete form, uk[n], can be calculated by:

KU,k =

1
N

N
∑

n=1
(uk[n]− uk)

4

σ4
k

(13)

where σk and uk are the standard deviation and mean of uk[n], n = 1, 2, . . ., N and N is the
length of the IMF signature.

In general, the more IMFs that are used for analysis, the higher the processing accuracy,
but it will take a longer time for processing. To improve processing efficiency, based on a
systematic investigation, the first ten IMFs will be selected in this work for analysis (i.e.,
K = 10), without using the general recursive selection algorithm for K selection [16] so as
to further reduce processing time. However, when a bearing is damaged, the representa-
tive features may time-vary, especially considering slip among bearing components [5,6].
In this work, a new correlation kurtosis method will be applied to rank IMF uk[n] as
described below.
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Cross-correlation is a measure of similarity between two signals even if they have
phase differences from one another. In this work, a normalized cross-correlation is used for
analysis. The correlation indicator Ck is computed by

Ck =
1
N

N

∑
n=1

E
[
(x − µx)

(
uk − µuk

)]
σxσuk

(14)

where x is the input vibration signal; uk is the IMF; µx and µuk represent the mean values
of x and uk, respectively; σx and σuk are the corresponding standard deviation values; E[.]
denotes the expectation operator.

In the proposed MVMD technique, IMFs are ranked based on the weight factor, Wk,
associated with both IMF kurtosis and its correlation with the original signal:

Wk = CkKU,k (15)

If three IMFs with the highest weight factor values are selected to reconstruct the
signal such that:

x′ =
3

∑
m=1

Wmum (16)

where Wm = Wm
3
∑

m=1
Wm

. The analytical signal can be formulated by using the Hilbert

transform:
xa = x′ + jH(x′) = Axejφx (17)

where H(.) represents the Hilbert transform; φx = arctan(H(x′)/x′) is the instantaneous

phase; Ax =
√
(x′)2 + (H(x′))2 is the instantaneous amplitude (i.e., signal envelope).

The envelope spectrum is obtained by taking the discrete FT of the envelope signal.
Bearing fault detection is undertaken by examining characteristic frequency information
on the envelope spectrum. Figure 7 shows the flowchart of the processing of the MVMD
technique, and the processing procedures are summarized as follows:
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Step 1: Initialize {U1
k }, {ω1

k }, Λ1, and n := 1.
Step 2: Calculate Uk and ωk using Equations (5) and (8), respectively, k = 1, 2, . . ., K, (K = 10).
Step 3: Update Λ in Equation (9).
Step 4: Repeat Steps 2–3 until the iteration meets the criterion in Equation (10).
Step 5: Compute IMFs uk, k = 1, 2, . . ., K.
Step 6: Compute the penalty factor using Equation (11)
Step 7. Compute the weight factor Wk through Equation (15).
Step 8: Reconstruct the signal using Equation (16).
Step 9: Formulate the analytical signal using Equation (17).
Step 10: Conduct envelope spectrum analysis and perform bearing fault detection.

4. Experimental Tests and Data Analysis

The effectiveness of the proposed MVMD technique will be evaluated experimentally
in this section.

4.1. Experimental Setup

The experimental setup used in this paper is shown in Figure 8. The system is driven
by a 3 HP motor, and its speed ranges from 100 to 3600 r/min. The shaft rotation is
controlled by using a speed controller. An optical transducer is used to provide a one-pulse-
per-revolution signal to measure the shaft speed. Two ball rolling element bearings are
fitted in the bearing housings for testing. The developed smart sensor node is mounted
on one of the bearing housings to measure vibration signals. The collected signals are
transmitted wirelessly to the receiver that is connected to a computer via a USB port. To
make a comparison, vibration signals are also collected using three commercially available
ICP accelerometers mounted along three directions on another bearing housing. The signals
collected by these ICP accelerometers and the optical transducer are fed to the computer
through a data acquisition board (NI PCI-4472) for further signal processing. The static
loading to the bearings is applied by load disks. The dynamic load is applied by a magnetic
brake system through a belt drive.

Sensors 2024, 24, x FOR PEER REVIEW 10 of 17 
 

 

Input vibration 

signal from DAQ

Initialize Uk , ωk , 

αk , Λ

Formulate IMFs

Compute Uk, ωk , 

k =1, 2, …, K

Formulate the 

analytical signal

Conduct envelope 

spectrum analysis 

and bearing fault 

detection

Compute IMF 

weight factor Wk

Reconstruct the 

original signal

Compute the 

penalty factor αk 

Select three IMFs 

based on Wk 

Update λ(t) via 

Λ(ω)

 

Figure 7. Flowchart of the processing procedures of the MVMD technique. 

4. Experimental Tests and Data Analysis 

The effectiveness of the proposed MVMD technique will be evaluated experimentally 

in this section.  

4.1. Experimental Setup 

The experimental setup used in this paper is shown in Figure 8. The system is driven 

by a 3 HP motor, and its speed ranges from 100 to 3600 r/min. The shaft rotation is 

controlled by using a speed controller. An optical transducer is used to provide a one-

pulse-per-revolution signal to measure the shaft speed. Two ball rolling element bearings 

are fitted in the bearing housings for testing. The developed smart sensor node is mounted 

on one of the bearing housings to measure vibration signals. The collected signals are 

transmitted wirelessly to the receiver that is connected to a computer via a USB port. To 

make a comparison, vibration signals are also collected using three commercially available 

ICP accelerometers mounted along three directions on another bearing housing. The 

signals collected by these ICP accelerometers and the optical transducer are fed to the 

computer through a data acquisition board (NI PCI-4472) for further signal processing. 

The static loading to the bearings is applied by load disks. The dynamic load is applied 

by a magnetic brake system through a belt drive.  

 

Figure 8. Experimental apparatus used in this work: (1) The drive motor; (2) An optical transducer 

(3) Smart vibration sensor; (4) Bearing housing; (5) Shaft misalignment controller; (6) Shaft system 

Figure 8. Experimental apparatus used in this work: (1) The drive motor; (2) An optical transducer
(3) Smart vibration sensor; (4) Bearing housing; (5) Shaft misalignment controller; (6) Shaft system
platform; (7) Small radial load disc; (8) Heavy radial load disc; (9) ICP accelerometers; (10) Dynamic
load drive unit.

4.2. Performance Evaluation

Deep-groove ball bearings (MB ER-10 K) are tested with four bearing conditions:
healthy/normal bearings, bearings with outer race defect, inner race defect, and rolling
element fault. The tested bearings have the following parameters:

• the number of rolling elements: 8;
• rolling element diameter: 7.938 mm;
• pitch diameter: 33.503 mm;
• the angle of contact: 0 degree.
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The tests are undertaken with a shaft speed from 600 rpm to 3600 rpm, with the
load at light, medium, and heavy levels. Some typical processing results corresponding
to shaft rotating frequency fr ≈ 30 Hz (i.e., approximately 1800 rpm) at medium load
level (i.e., 6.5 Nm) are used for illustration. The sampling frequency is 32,000 Hz. The
theoretical characteristic frequencies corresponding to different bearing health conditions
are calculated using the related dynamics equations [1] and are summarized in Table 1. For
comparison, the test results of the proposed MVMD technique will be compared with the
related techniques, that is, the HHT [8] and a self-adaptive VMD as proposed in [23]. All
the techniques are implemented in MATLAB.

Table 1. The bearing fault characteristic frequencies in terms of shaft speed fr.

Characteristic Frequency (Hz)

Healthy bearing fH = fr
Outer race fault fod = 3.052 × fr
Inner race fault fid = 4.947 × fr

Rolling element fault fbd = 3.983 × fr

To quantitatively compare the performance of the related fault detection techniques, a
fault indicator FI is introduced for characterize feature properties:

FI = ∑
h

Ah − µA
µA

(18)

where Ah is the spectral component amplitude of the h-th harmonic of the characteristic
frequency that can be recognized; µA is the average spectral value over the bandwidth of
interest (400 Hz in this case).

(1) Processing results for a healthy bearing

Figure 9 shows processing result comparison for a healthy bearing using the related
techniques. Its characteristic frequency fH = 30 Hz in this case and the updated MVMD penalty factor
is 932, calculated using Equation (11). The selected IMFs are IMF1, IMF2, and IMF4.
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It is seen that the dominant spectral component is the third harmonic of the characteris-
tic frequency (approximately 90 Hz). All these three techniques can recognize this harmonic
clearly. However, the proposed MVMD in Figure 9c can also recognize the fundamental
frequency (30 Hz) and its second harmonic (60 Hz), due to its effective IMF processing and
denoising operations. The VMD in Figure 9b performed better than the HHT in Figure 9a
with the recognized second harmonic (60 Hz), due to its more efficient IMF selection and
processing than the HHT. Based on Equation (18), the fault indicator values are 3.75, 4.22,
and 5.09 for the HHT, VMD, and MVMD techniques, respectively.

(2) Processing results for a bearing with outer race defect

Figure 10 shows the processing results and performance comparison using the related
techniques for a bearing with outer race damage. The characteristic frequency is fod = 90.9
Hz, and the updated penalty factor is 971 in the MVMD technique. The selected IMFs are
IMF1, IMF2, and IMF3.
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Figure 10. Performance comparison of the related techniques for a bearing with outer race defect:
(a) the HHT, (b) the VMD, (c) the proposed MVMD. Arrows indicate characteristic frequency (90.9 Hz)
and its harmonics.

In this case, all three techniques can recognize the characteristic frequency (90.9 Hz)
for the bearing outer race fault. This is because when the bearing outer race (fixed ring)
is damaged, the generated impulses and features are usually time-invariant, which are
relatively easy to extract using general fault detection techniques. The VMD in Figure 10b
performs better than the HHT in Figure 10a, with a clear second harmonic due to its more
efficient IMF processing in signal demodulation. However, the fundamental characteristic
frequency components (90.9 Hz) using both the HHT and the VMD contain adjacent
spectral components due to modulation of other vibration signals, which may generate
false diagnosis especially in automatic bearing health monitoring. On the other hand, the
proposed MVMD technique provides the best diagnostic result in this case, as demonstrated
in Figure 10c, due to its more effective IMF processing and denoising operation. In this
case, the fault indicator values calculated by Equation (18) are 2.94, 3.30, and 5.71 for the
HHT, VMD, and MVMD techniques, respectively.
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(3) Processing results for a bearing with inner race defect

Figure 11 shows the processing results and performance comparison using the related
techniques for a bearing with an inner defect. The characteristic frequency is fid = 147.9 Hz.
The updated penalty factor in the MVMD is 1210, and the selected IMFs are IMF1, IMF3,
and IMF4.
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its harmonics.

As stated before, bearing fault detection on a rotating inner race and a rolling element
is more challenging because the defect-related impulse resonance features vary with time,
especially considering the slip effects among bearing components. Although the HHT in
Figure 11a and VMD techniques in Figure 11b can recognize the occurrence of a bearing
inner race defect, their characteristic frequency (147.9 Hz) and/or the second harmonics do
not dominate the spectral maps. However, the proposed MVMD technique provides the
best performance in this case, which can clearly predict the bearing fault condition, with
the domain fault characteristic frequency (147.9 Hz) and its second harmonic as illustrated
in Figure 11c. Its higher resolution and better fault diagnostic accuracy are due to its feature
enhancement effects and efficient IMF feature demodulation. In this case, the fault indicator
values are 0.72, 0.65, and 3.87 for the HHT, VMD and MVMD techniques, respectively.

(4) Processing results for a bearing with rolling element defect

Figure 12 shows the processing results and performance comparison using the related
techniques for a bearing with rolling element damage. The theoretical characteristic fre-
quency is fbd = 91.57 Hz. The MVMD has an updated penalty factor 288, and the selected
IMFs are IMF1, IMF2, and IMF5.

In general, bearing fault detection in a rolling element could be the most challenging
task because the characteristic features are time-varying. In this case, both the HHT in
Figure 12a and VMD in Figure 12b have failed to identify the characteristic fault frequency
(91.57 Hz) clearly, even though the HHT performs a little better than the VMD in this case.
They cannot effectively demodulate the representative features from the collected vibration
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signal. The MVMD, on the other hand, is the only technique that can recognize the fault
characteristic frequency (91.57 Hz) in this case, as shown in Figure 12c, even though it is
not the dominant frequency component on the spectral map. In this case, the fault indicator
values are 0.39, 0.14, and 0.57 for the HHT, VMD, and MVMD techniques, respectively.
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In addition, the processing results using the vibration signals collected by the smart
sensor DAQ system are almost identical with those vibration signals collected by using
the commercial ICP accelerometers (along the vertical direction in this case). It demon-
strates that the developed smart sensors and DAQ system can be applied reliably for
data collection.

5. Conclusions

A new smart sensor-based monitoring technology has been developed in this work for
real-time machine condition monitoring and fault detection. As rolling element bearings
are commonly used in rotating machines, and most machine imperfections are related to
bearing defects, this work focuses on bearing fault detection. Firstly, a smart sensor-based
DAQ system is developed for wireless vibration signal collection. Secondly, a MVMD
technique is proposed for nonstationary signal analysis and bearing fault detection. The
proposed MVMD technique takes several processing steps: (1) the signal is decomposed
into a series of IMFs; (2) a correlation kurtosis method is suggested to choose the most
representative IMFs and construct the analytical signal; (3) envelope spectrum analysis is
conducted to identify the representative features for bearing fault detection. The effective-
ness of the developed smart sensor DAQ system and the MVMD technique is examined by
systematic experimental tests. Test results show that the developed smart sensor DAQ sys-
tem can collect vibration signals accurately. The proposed MVMD technique outperforms
the related techniques under tested bearing conditions. This monitoring technology has
the potential to be applied to machine condition monitoring and bearing fault detection in
industrial applications.
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