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Abstract: Generating realistic road scenes is crucial for advanced driving systems, particularly
for training deep learning methods and validation. Numerous efforts aim to create larger and
more realistic synthetic datasets using graphics engines or synthetic-to-real domain adaptation
algorithms. In the realm of computer-generated images (CGIs), assessing fidelity is challenging
and involves both objective and subjective aspects. Our study adopts a comprehensive conceptual
framework to quantify the fidelity of RGB images, unlike existing methods that are predominantly
application-specific. This is probably due to the data complexity and huge range of possible situations
and conditions encountered. In this paper, a set of distinct metrics assessing the level of fidelity
of virtual RGB images is proposed. For quantifying image fidelity, we analyze both local and
global perspectives of texture and the high-frequency information in images. Our focus is on the
statistical characteristics of realistic and synthetic road datasets, using over 28,000 images from at least
10 datasets. Through a thorough examination, we aim to reveal insights into texture patterns and
high-frequency components contributing to the objective perception of data realism in road scenes.
This study, exploring image fidelity in both virtual and real conditions, takes the perspective of an
embedded camera rather than the human eye. The results of this work, including a pioneering set of
objective scores applied to real, virtual, and improved virtual data, offer crucial insights and are an
asset for the scientific community in quantifying fidelity levels.

Keywords: image analysis; fidelity scores; datasets; data processing; automated driving systems

1. Introduction

In the context of both vision-based and AI-based systems for automated transport
systems, it is necessary to address functional evaluation and validation at the level of the
algorithms and applications employed by automated mobility systems, as well as in terms
of tools, software, and test models, particularly in simulation environments. Therefore,
perception is essential and must meet availability and quality requirements. Creating such
safe and reliable perception applications with both AI-based and vision-based percep-
tion systems poses significant challenges, requiring consideration of numerous variables.
Learning-based algorithms for specific tasks, such as semantic segmentation and object
detection, are increasingly robust. High-quality, high-fidelity, and high-variety datasets are
critical for achieving even more accurate results and enhancing the performance of these
algorithms. However, collecting real-world annotated data that capture all these cases is
often very time-consuming and difficult. Datasets created from simulated environments
are progressively mirroring real-world scenarios with a greater quality. To address this
issue, the use of synthetic data has emerged as a viable solution [1–3]. Thus, in a simulated
environment, it has become possible to incorporate various scenes, actors, lighting, weather
simulations, and sensors with ever-improving techniques based on rendering simulators,
game engines, and deep learning methods. Moreover, the use of a simulation platform
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and framework [4,5] is adaptable and efficient for the generation of annotations, ground
truths, and data simultaneously, without the need for human intervention. However, there
is still a gap between real and simulated data. Indeed, ensuring that synthetic data closely
resemble reality is crucial to mitigate the risk of learning-based methods overfitting to
unrealistic details.

Part of PRISSMA’s objectives (project involved in the French Grand Challenge on AI)
address these issues. Firstly, PRISSMA aims to develop a methodology for the evaluation
and validation of systems of systems and AI-based systems. Secondly, PRISSMA also
aims to propose a methodology for the verification and validation of tools and models
used to carry out the evaluation and validation of applications. To be effective, PRISSMA
also proposes procedures for automating the simulation chain, ranging from data and
scenario generation, implementation, and execution to the implementation of analysis
procedures. Our research fits into this context, and we aim to propose a methodology and
metrics to evaluate the quality and especially the fidelity of the synthetic data used in the
evaluation and validation process of AI-based systems. The challenge we address consists
of proposing a score that provides a quality label to ensure that generated simulation data
are sufficiently realistic (from the perspective of a real sensor onboard a vehicle) to be used
in the learning, evaluation, and validation stages of perception AI algorithms. With the
increase in automated mobility, this topic has become very important and critical.

In [6], a framework of fidelity is proposed, divided into objective and subjective fidelity.
Objective fidelity allows for quantification through physical metrics. In our study, fidelity
denotes the similarity between features in virtual and real environments. A high fidelity
implies a faithful representation, while a low fidelity suggests a simpler one. These terms
are commonly used in prior works [7,8], but no quantification methods are proposed. Other
works addressing fidelity are primarily application-based, divided into two groups. Some
of them focus on quantifying the simulation-to-reality gap (S2R) in sensor models for object
detection [9–12]. They assess sensor performance by comparing real and simulated data,
such as point clouds and bounding boxes, to measure the disparity between simulation and
reality, validating sensor models. Another group enhances image realism using translation
methods, often employing GAN-based architectures [13,14]. Our research introduces novel
elements, directly analyzing simulation data features to derive fidelity scores, making it
applicable to diverse tasks.

In this work, a set of metrics assessing the level of fidelity of virtual RGB images
is proposed. The produced scores will assess if the datasets are faithful enough with
respect to the chosen features for evaluating automated vehicle perception. To achieve this,
we propose using three feature-based extraction models and a statistical approach based
on [15]. Different feature-based extraction models have already been proposed for different
applications, with highly satisfactory results [16–18].

In Haralick’s work [15], three key elements are identified for image interpretation:
spectral, contextual, and textural features. Spectral features capture tonal variations, con-
textual features stem from data blocks, and textural features denote tonal distribution in
a specific band. These features typically characterize the information present in realistic
images. Following this, we decided to analyze the texture and frequency features of both
synthetic and real images. Specifically, we decided to use texture information from images
by employing a statistical texture analysis method known as the gray level co-occurrence
matrix method (GLCM) [15]. The GLCM allows one to assess the image structural prop-
erties of spacial relation between pixels through a set of 14 Haralick metrics. In addition
to this global texture analysis, we have also incorporated the local binary pattern (LBP)
method, which provides a more localized texture analysis. Additionally, we have decided
to use wavelet transforms to handle high-frequency information, which can be useful for
detecting photorealistic images. These methods serve as inputs for convolutional neural
networks (CNNs), with the aim of determining the degree of fidelity of synthetic images
with respect to the three discussed texture and frequency features. These features provide
insight into different aspects of image fidelity. Afterwards, a statistical method is proposed,
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involving Haralick metrics. In contrast to CNN approaches, we derive fidelity scores with
a closed-form equation from the Haralick metrics. The experiments are conducted on data
collected in an urban area, under clear daytime weather conditions.

2. Related Works
2.1. Quality Metrics

Many works focus on generating realistic images with the aim of aligning human
perception, and do not take into account the camera’s point of view. A recent work pre-
sented in [19] proposes an exploration of metrics and datasets to assess the fidelity of
GAN-generated images. Among them, the classical SSIM, PSNR, FID, IS, KID and LPIPS
are mentioned. The IS (inception score) metric assess the quality and diversity by com-
puting the Kullback–Leibler divergence between class probabilities of generated and real
images. In contrast, the FID (Frechet inception distance) metric quantifies the distance
between feature distributions in a high-dimensional feature space for generated and real
images. LPIPS (learned perceptual image patch similarity) gauges the perceptual similarity
by comparing feature representations with a defined neural network. The SSIM calculates
structural similarity based on luminance, contrast, and structure. The KID (kernel inception
distance) uses kernel methods to measure the disparity between empirical distributions of
features in real and generated images. Ref. [20] proposes an image quality assessment spe-
cific to underwater images based on color space multi-feature fusion, involving histogram
features, moment statistics, local binary patterns (LBPs), and morphological features. First,
underwater images are converted from RGB color to the CIELab color space, which has
a higher correlation to human subjective perception of underwater visual quality. The
objective is not to quantify the level of fidelity but to quantify the level of quality of un-
derwater images. However, these metrics do not necessarily allow one to measure the
difference in terms of perceived realism and fidelity. Moreover, they align with the human
perception of image quality, but not with camera perception, and some metrics are strongly
dependent on the inception classifier by Google [21]. The authors of [19] recommend com-
bining these measures to get as close as possible to a measure of fidelity of GAN-generated
synthetic images, while our proposed study specifically provides fidelity scores. A recent
approach [18] introduces a mean for assessing the quality levels of synthetic underwater
images. This is achieved by extracting three feature-based measures—statistical, perceptual,
and texture-based—from a transmission map. Additionally, the method proposes color
features associated with human perception and fractal-based texture features. This work is
related to ours since the mentioned method focuses on determining the faithfulness of the
underwater images it produces, whereas our objective is to quantify the level of fidelity in
computer-generated images.

2.2. Simulation-to-Reality Gap Estimation

Recent studies have investigated the S2R gap across various modalities, including
camera-based [9,10], RADAR-based [11], and LiDAR-based [12] approaches for object detec-
tion algorithms. The S2R gap approach consists of training models using synthetic datasets
on the one hand and real data on the other hand. In [9], a comparison between environment
simulation software and real-world test drives was conducted, evaluating the gap between
simulation and reality using metrics such as precision, recall, MOTA, and MOTP applied
to object lists from both domains. Ref. [10] proposes domain adaptation via conditional
alignment and reweighting (CARE) to systematically leverage target labels in order to
explicitly reduce the gap between simulated and real domains, but it does not offer scores
or metrics. Ref. [11] aims to evaluate the fidelity of typical radar model types and their
applicability in virtually testing radar-based multi-object tracking with a multi-level testing
method. Ref. [12]’s main objective is to quantify the simulation-to-real domain shift by ana-
lyzing point clouds at the target level by comparing real-world and simulated point clouds
within the 3D bounding boxes of the targets. However, these works were carried out in the
context of a specific application, which is object detection and tracking using digital twins.
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Ref. [17] proposes a method for estimating the S2R gap by computing the Euclidean dis-
tance between various real and synthetic datasets. Their approach is similar to ours in that
it employs feature embedding methods to extract pertinent features. This method requires
the use of existing real datasets to obtain a gap value. This approach is interesting since it
does not involve the use of digital twins, as with the previous mentioned methods, which
involve more constraints.

2.3. Synthetic Dataset Generation

Existing synthetic datasets offer a substantial amount of data covering a wide range of
tasks (including object detection, depth estimation, segmentation, instance and panoptic
segmentation, and pose estimation) and data from various sensor technologies. In this
subsection, we delve into three different methods to generate these synthetic datasets.

2.3.1. Autonomous Driving Simulators for Realism Operating

The use of simulators has brought about remarkable advancements in the field of
advanced driving systems. The implementation of multi-agent control in three-dimensional
road environments is very challenging. However, it enables the creation of intricate envi-
ronments with the ability to manipulate various parameters, including lighting, reflections,
and weather conditions, in order to simulate real-world conditions with a high fidelity.
Some of the notable simulators include the following.

CARLA [5] (CAR Learning to Act) is an open driving simulator designed to facilitate
the development, training, prototyping, and validation of autonomous driving models. It
has been developed from the Unreal Engine library with a focus on providing a compre-
hensive platform for simulating urban driving scenarios.

The Pro-SIVIC [4] platform allows for the simulation of vehicle dynamics in a realistic
environment using a wide range of sensors such as cameras, GPS, lidar, and radar. It is
also possible to control the lighting as well as the weather conditions. This platform uses a
LGPL graphical engine (mg engine).

SCANeR [22] is a comprehensive graphical environment that leverages the Unreal
rendering engine. It provides users with the ability to configure simulation settings, prepare
scenarios, execute simulations, and analyze the obtained results.

Ansys Autonomous Vehicle Simulation [23] was designed specifically to support
development, testing, and validation of safe automated driving technologies.

SWEET [24] (Simulating Weather for Intelligent Transportation Systems) is a Monte
Carlo simulator developed by the French road planning institute CEREMA. It serves as
a research-oriented and physically based simulator designed for internal use. SWEET
complements the fog and rain simulation capabilities of the PAVIN platform [25], providing
a comprehensive tool set for studying and analyzing weather conditions.

2.3.2. Game Engines for Dataset Generation

Some synthetic datasets have been created with the Unity game engine like virtual
Kitti (vKitti) [26] to recreate real-world autonomous driving videos for the digital twins of
sequences from the Kitti dataset [27]. The vKitti dataset has been extended to vKitti 2 [3],
which provides supplementary data, including diverse weather conditions, and enhances
the dataset’s quality.

The Synthia dataset [1], for the synthetic collection of imagery and annotations of urban
scenarios, provides a novel virtual world created with the Unity framework. It consists of
collection of diverse urban images including RGB images and semantic segmentation.

The GTA V dataset was generated using the open-world video game Grand Theft
Auto 5 [2]. It features car perspectives in the streets of American-style virtual cities.

Kitti-Carla is a Kitti-like dataset generated by the CARLA v0.9.1 simulator [28]. The
simulated vehicle is equipped with sensors identical to the real Kitti vehicle’s sensors.
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2.3.3. Deep Learning for Data Improvement

Several works aim to address the gap between synthetic and real images by improving
the photorealism of generated outputs from rendered images. This can be achieved by
employing image-to-image translation methods, such as those proposed in [13,14]. Image
translation is the ability to learn a mapping function between an input image and a target
image in order to transfer it to another domain. In this context, the input image is synthetic
and the target is a real-world image. Intel proposed an image enhancement network [13]
by generating photorealistic outputs from rendered images. In particular, they extract
rendering buffers from their pipeline in order to provide different information about the
scene, such as geometry, materials, and lighting. This approach has led to more faithful
results when enhancing images from the GTA V dataset. Some works [14] took inspiration
from the Cycle-GAN [29] method to enhance the realism or change the style of images
into an intricately designed video game. Some other works are very promising, such as
DUNIT [30], MGUIT [31], and InstaFormer [32].

Diffusion models [33] have emerged recently, with very impressive results in various
tasks, including image generation and image-to-image translation [34]. Some of these
models include PALETTE [35] and UNIT-DDPM [36]. There is no specific method tailored
to this application yet but these new image-to-image diffusion models outperform the
state-of-the-art GAN on several tasks without task-specific architecture customization [35].

3. Method

A feature-based analysis of images from different synthetic datasets was conducted
in order to study and quantify their degree of fidelity. To characterize this type of image
effectively, it is useful to consider specific features such as texture and frequencies. To ad-
dress high-frequency information, we opted for discrete wavelet transforms. This efficient
technique in signal and image analysis allows for the extraction of valuable information
at different scales and frequencies from the input data, enhancing our ability to analyze
and evaluate the fidelity of images. Texture information, which is also a key feature in
images, is dealt with using two complementary approaches: the gray level co-occurrence
matrix (GLCM) and the local binary pattern (LBP). The GLCM is often used to characterize
the texture of an image by calculating the co-occurrence of pixels within image areas. The
LBP is a texture descriptor commonly employed in image texture analysis. Unlike the
GLCM, which primarily examines statistical properties, the LBP focuses on local spatial
patterns. Employing both of these methods enables an analysis of various aspects of image
texture. Moreover, the use of the GLCM allows us to extract the statistical metrics known
as Haralick metrics, constituting the second approach.

The resulted pre-processed data are then fed into a CNN network to enable the classi-
fication of images as faithful to reality or not. Using feature learning instead of working
directly with raw data provides enhanced control over the results while also generating
more interpretable and insightful data representations. Indeed, the main hypothesis is
that the fidelity calculation is directly dependant of the features. Hence, different types of
features must be considered in order to obtain an accurate measurement of a score.

Summarized in Figure 1, our first approach consists of exploring the use of global
(GLCM) and local (LBP) representations of the texture and investigates the effectiveness
of complementing them with wavelet transforms to emphasize frequency features. The
GLCM both serves as an input to the Cross-GlNet model and extracts statistical measures
from this matrix known as Haralick metrics.
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Figure 1. Diagram of the proposed method.

3.1. Dataset Overview

In the context of our exploratory work, datasets are essential. We have collected several
well-known and free datasets that are either real or simulated. The real datasets include
Kitti [27], Cityscapes [37], ONCE [38], and NuScenes [39], and the synthetic datasets consist
of vKitti [3], Kitti-CARLA [28], GTA V [2], and Synthia [1]. In our approach, it is both
interesting and desirable to use real and synthetic images which represent the same scenes
in order to perform a more efficient and reliable comparison and interpretation. In this
context, we selected a clear urban scene consisting of cars, roads, buildings, and vegetation.
Finally, we also investigated synthetic data that have been improved from a photorealistic
point of view, including GTA V, GTA/Cityscapes and GTA/Mapillary Vistas data. A
comparison of these data with the original data is also very interesting for understanding
the concept of fidelity in synthetic data and developing algorithms to measure the fidelity
scores. All these datasets belong to our custom dataset. For the learning-based methods,
each dataset is split into three subsets for algorithm training, validation, and testing; there
are 20, 572 images in the training set, 6755 in the validation set, and 1000 in the test set.

Each image in the dataset is assigned a label, where the label 0 represents synthetic
images and the label 1 represents real ones. The outcomes produced by these networks
represent the probability that the images are faithful to reality. Consequently, results
approaching 0 indicate a higher likelihood of the images being synthetic, while probabilities
closer to 100 suggest that the images are more likely to be realistic. This probability is
defined as a fidelity score.

3.2. Learning-Based Feature Extraction

In this subsection, we describe the methods employed to obtain texture and frequency
features, namely GLCM, LBP, and wavelet transforms.

3.2.1. Gray Level Co-Occurrence Matrices

The GLCM technique provides valuable insights into the co-occurrence of pixels
within image regions. Previous studies have successfully used this method to distinguish
between GAN-generated images and real images based on their co-occurrence patterns,
leading to some very interesting results [40]. In a more specific context, ref. [40] suggests
applying six co-occurrence matrices calculated from the R, G, and B channels, as well
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as the cross-band R + G, G + B, and B + R channels of the images. These matrices are
then employed as inputs to a CNN model. Thus, the network can learn to distinguish
features between images generated by GANs and those from real images. Inspired by this
method, we have chosen to employ GLCMs as a part of the proposed method to quantify
the degree of fidelity in images. For this purpose, an analysis of pixel co-occurrence levels
was conducted on images from both real and synthetic datasets. This analysis reveals that
these two types of images have different characteristics.

Figure 2 illustrates the difference in distribution between synthetic and real images
based on the GLCM analysis. As a reminder, the GLCM measures the degree of correlation
between pairs of pixels, with the largest values typically being distributed along the
diagonal. In the lower part of the synthetic datasets, particularly for the Synthia and the
vKitti datasets, the values do not appear to be distributed evenly across the diagonal of the
matrices, leading to holes. This could be attributed to a lack of homogeneity and coherence
among the objects that constitute the image. With regard to the results of the real images
(bottom part of the figure), the values appear to be mainly concentrated in the upper part
of the diagonal, indicating a strong presence of co-occurrence without holes. On the other
hand, it can be noticed that the GLCMs of the GTA V and Kitti-Carla datasets exhibit a
continuous distribution of values along the diagonal. Specifically, some values appear to
be concentrated in the upper part of the diagonal, like the GLCM obtained from the real
datasets. The lower part of the GLCM presents the aspects found in simulated images. We
have chosen to consider the entire matrix and not just the upper part, because it is necessary
to enable the network to identify information that may not be perceptible to the human eye.

Figure 2. The average of the GLCM was calculated on hundreds of synthetic (top) and real (down)
images from different datasets. Only three of six channels are displayed for more clarity.

3.2.2. Local Binary Pattern

The LBP is a texture descriptor that gained popularity in 2003 [41]. It computes
the local texture representation of a grayscale image by comparing each pixel with its
surrounding neighbors to determine if they have a higher or lower value than the center
pixel. This comparison results in a binary output, where a pixel is assigned a value of 1 if it
is greater than or equal to the center pixel, and 0 if it is lower. The equation of the LBPP,R is
written as:

LBPP,R =
P−1

∑
p=0

s(gp − gc)2p, (1)

where R is the distance between the center and the neighborhood pixels and P is the number
of neighborhood pixels. gc is the intensity value of the central pixel, gp is the intensity of
the neighboring pixel with index p, and s is a threshold function equal to 1 if x ≥ 0 and
equal to 0 if x < 0.

Figure 3 presents the visualization of the LBP computation on both the Kitti and vKitti
datasets. A circle pattern with a radius of 3 is employed for the computation. A noticeable
distinction can be observed between the LBPs of the images captured from the digital twin
datasets Kitti (real) and vKitti (synthetic). Specifically, there is a clear disparity in the sky
region and the shading of the trees. This method seems to offer a promising approach for
distinguishing the characteristics of real images and synthetic images. By incorporating
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the LBP as a pre-processing step, the CNN can potentially capture and learn distinctive
features that differentiate real and synthetic images.

Figure 3. LBP computation on Kitti and vKitti datasets.

3.2.3. Wavelet Transforms

In our approach, we incorporate a multi-scale discrete wavelet transform (DWT) as
one of the inputs of our CNN-based method. Initially, the algorithm estimates the image
edges at a broader scale, progressively refining the scale to reveal frequencies within the
image. The equation of the DWT [42] is defined as:

T(a, b) =
1√
a

∫ +∞

−∞
x(t)ψ(

t− b
a

)dt, (2)

where a is the scale parameter, b is the location of the wavelet, ψ is a wavelet function, and
x is the image.

Analyzing the high frequencies in real and synthetic images can provide insights into
the textures present in both types of images. Using the two-dimensional DWT may be
appropriate in this case. The DWT can transform the resulting image into a combination of
four sub-bands, as illustrated in Figure 4, each representing different frequency components:
LL (low–low) for image approximation, HL (high–low) for vertical details, LH (low–high)
for horizontal details, and HH (high–high) for diagonal details. Figure 4 shows six levels of
decomposition using the biorthogonal wavelet function, with orders of (1, 3). Considering
all six levels and the HL, LH, and HH components as input from the CNN, this would
result in dimensions of 18×W × H. Since finer decompositions are more susceptible to
noise, we opted to compute the median absolute deviation (MAD) on each channel. This
calculation provides us with an indication of the dispersion of the pixel intensities present
in each channel and measures the variability of different levels of the decomposition. Its
robustness to outliers makes it reliable for characterizing the data’s variability accurately.
Table 1 shows the results. The LL sub-band is not used since it contains an approximation
of the original image and lacks substantial information.

Table 1 presents the MAD results of the different frequency components within the
six levels. The highest values of MAD indicate a high dispersion of pixels intensities and
therefore a high level of noise. Moreover, the first two levels represent low-frequency
components involving coarse image details. Ultimately, since our goal is to analyze high-
frequency components, we decided to use levels 4, 5, and 6. The sixth level allows us to
obtain even finer details than the previous two. Employing a multi-scale approach enables
us to incorporate features from early levels later in the process while preventing noise from
propagating throughout the network.

Table 1. Mean MAD of different-frequency components (%) depending on the levels (L).

Components L1 L2 L3 L4 L5 L6

LH 212 168 133 107 88 75
HL 292 204 152 119 97 82
HH 73 64 52 43 35 30
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Figure 4. Results obtained after applying the DWT on Kitti images at different levels.

3.3. Statistical Approach Using Haralick Metrics

The use of Haralick metrics offers an alternative to the models commonly employed
for various tasks today. They make it possible to compare the amount of information
in simulated images, thereby determining how realistic they are. Indeed, images are
composed of both tones and textures, with one often dominating over the other, depending
on the image. The predominance of either can significantly impact the results. This is why
comparing the metrics on two fully different images may not be useful, as the variations in
tonal and textural characteristics can be significantly different. To utilize Haralick metrics
with the aim of quantifying fidelity, it may be beneficial to compute the metrics on small
patches to obtain textures of isolated regions, like roads or vegetation, to ensure a more
important and localized comparison of the Haralick metrics. The Haralick metrics used in
the following tables are the angular second moment (ASM), contrast, correlation, sum of
squares, variance (Var), inverse difference moment (IDM), sum average (SA), sum entropy
(SE), entropy (E), difference variance (DVar), difference entropy (DE), info measure of
correlation 1 (IMC1), and info measure of correlation 2 (IMC2). This statistical approach is
relevant since it allows us to find a simple formula from the calculations.

4. Experiments
4.1. CNN-Based Models for Fidelity Score Generation

We propose three sub-networks, namely Cross-GlNet, WLet-Net, and LoPB-Net, that
are trained separately in a supervised manner using a custom dataset, as presented in
Section 3.1. Each of these sub-networks takes, respectively, GLCM maps, DWT, and LBP
maps calculated from RGB images as inputs into CNN networks.

Inspired by CoNet and Cross-CoNet, Cross-GlNet models use the GLCM or LBP maps
as input, but there are some differences in their approach. For clarity, we designate the
CNN with GLCM inputs as Cross-GlNet (Figure 5b), and the CNN with LBP inputs as
LoPB-Net (Figure 5c). Cross-GlNet computes the GLCM in two directions (horizontal and
diagonal) with a pixel distance of 5 on the cross-band RGB channels (R + G, G + B, B + R)
of the images. These GLCMs are then stacked together to form an input tensor with size
256× 256× 6. Only cross-band channels are used in Cross-GlNet, as further experiments
demonstrated their superior performance compared to single RGB channels. The models
discussed in this section share a nearly identical architecture, as observed in Figure 5. They
consist of:
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• CB 1: A convolutional layer with 32 filters of size 3 × 3, batch normalization, and ReLu
activation followed by a max-pooling layer;

• CB 2: A convolutional layer with 64 filters of size 3 × 3, batch normalization, and ReLu
activation followed by a max-pooling layer;

• CB 3: A convolutional layer with 128 filters of size 3 × 3, batch normalization, and
ReLu activation followed by a max-pooling layer;

• A dense layer with 256 nodes followed by an ReLu layer;
• A dense layer with one node followed by a sigmoid layer.

(a) WLet-Net network.
(b) Cross-GlNet network.

(c) LoPB-Net network.

Figure 5. Schematic structure of the three networks.

The key difference between WLet-Net (Figure 5a) and the two others is the incorpora-
tion of multi-scale inputs. As levels 5 and 6 have lower resolutions and finer frequencies
than level 4, they are incorporated at a higher stage in the network, fading into a CNN layer
with, respectively, 32 and 64 filters of size 1 × 1 followed by a concatenation layer. This type
of coarse-to-fine architecture has already been proposed [43] and enables the restoration of
high-frequency information through the network. Moreover, incorporating these levels at
higher stages seems appropriate since their inputs are noisier compared to those of level 4.
For each model, Keras/TensorFlow frameworks are used, employing the SGD optimizer
with a learning rate of 0.0001 and using binary cross-entropy as the loss function. The batch
size is set to 32, and epochs start at 40, with early stopping to reduce the risk of overfitting.

Tables 2 and 3 show the fidelity scores (predictions) and accuracy on real and synthetic
datasets, respectively. The three models consistently achieve a high accuracy in both
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scenarios, inspiring confidence in their predictions. Nevertheless, Cross-GlNet exhibits a
slight overfitting tendency, which can be attributed partly to the simplicity of the input
data. The advantage of employing multiple models lies in their ability to process various
aspects of the images, including texture, frequencies, and pixel co-occurrence, ultimately
contributing to accurate scores.

Table 2. Fidelity score predictions/accuracy (%) of Cross-GlNet, WLet-Net and LoPB-Net on real test
sets (1000 images).

Real Test Set Cross-GlNet WLet-Net LoPB-Net

Nuscenes 90.94/97.89 98.54/96.06 60.46/61.43

Cityscapes 96.67/99.59 98.05/99.86 87.46/93.00

Once 97.13/99.09 76.05/78.73 63.30/70.13

Kitti 99.81/100 96.85/98.49 94.87/99.20

Table 3. Fidelity score predictions/accuracy (%) of Cross-GlNet, WLet-Net and LoPB-Net on synthetic
test sets (1000 images).

Virtual Test Set Cross-GlNet WLet-Net LoPB-Net

Synthia 10.42/99.90 3.60/98.94 22.53/78.92

GTA V 12.03/91.90 4.30/97.16 19.08/83.11

Kitti-Carla 0.37/100 1.61/99.14 05.87/98.90

vKitti 0.05/100 51.21/47.97 02.24/99.60

The fidelity scores are consistent with the initial hypothesis. Indeed, the real datasets
have high scores of fidelity while the synthetic datasets achieved low scores. Those obtained
from real datasets provide an indication of the threshold at which images can be considered
as realistic. According to Table 2, images scoring 70% or higher can be considered realistic.
Nonetheless, training these models can be cumbersome, particularly when it comes to
dataset setup and subsequent learning processes. In the following subsection, we employ a
more time-efficient approach by calculating Haralick metrics on image patches extracted
from various datasets.

4.2. Statistic-Based Approach for Fidelity Score Generation

In this section, a comparison in terms of Haralick metrics is made between four
synthetic and four real datasets. Additionally, another comparison is conducted between
GTA V and two enhanced GTA V datasets, which are photorealistic datasets created by
Intel [13] from the GTA V dataset. This analysis is applied on 100,000 image patches with a
resolution of 64 by 64. The hue channel of the HSV color space was used for this analysis,
as this color space allows for better discrimination of image types using Haralick metrics.
Min/max normalization is applied to all metrics to ensure that the results are within the
range of 0 to 1. Figure 6 illustrates an example of patches cut from the digital twin vKitti
and Kitti datasets. The use of small-sized patches enables us to capture various image
regions, including roads, vegetation, cars, and buildings.

Figure 6. Example of cutting images into patches. Left: vKitti patches, right: Kitti patches. The patch
size used in this figure is 224× 224 for more visibility.

Table 4 presents Haralick metrics results for four synthetic datasets. These results
correspond to the mean values and the standard deviation of metrics, with a total of
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100,000 image patches of size 64 by 64 pixels. Figure 7 shows images from the various
datasets for a visual comparison. These Haralick metrics have also been computed for
the real and improved datasets. At first glance, these results do not provide sufficient
information to draw conclusions about which metric is representative or not of the real
or synthetic datasets. To deepen the analysis of the results obtained with the Haralick
metrics, we propose applying a principal component analysis (PCA). PCA is generally
used to reduce the dimensionality of data, but it is also an effective tool for analyzing
and interpreting data. This approach is employed to better understand the individual
contribution of each metric to the overall information, the links between the various metrics,
and their contribution to each principal component (PC). As the first two components
contain over 50 % of the data’s information, we focus on the first two PCs for dataset
analysis. Then, we compute the contribution of each metric to each principal component
PC1 and PC2 using:

Ki,k =
c2

i,k

λk
, (3)

where k is the PC index, i is the metric index, λk is the eigenvalue associated with the PCk,
ci,k is the component of the vector

√
λkuk for the ith metric, and uk is the kth eigen vector.

Table 4. Haralick metric computation from synthetic datasets, mean (std).

Metric Synthia Kitti-CARLA GTA V vKitti

ASM 0.224 (0.091) 0.254 (0.047) 0.189 (0.073) 0.239 (0.061)

Contrast 0.102 (0.027) 0.074 (0.026) 0.158 (0.066) 0.146 (0.06)

Correlation 0.575 (0.087) 0.535 (0.071) 0.630 (0.073) 0.695 (0.07)

Variance 0.105 (0.055) 0.093 (0.032) 0.197 (0.084) 0.220 (0.06)

IDM 0.494 (0.054) 0.452 (0.073) 0.467 (0.091) 0.505 (0.076)

S. Average 0.266 (0.102) 0.340 (0.062) 0.416 (0.176) 0.400 (0.09)

S. Variance 0.108 (0.064) 0.094 (0.031) 0.195 (0.085) 0.220 (0.061)

S. Entropy 0.472 (0.056) 0.434 (0.054) 0.508 (0.089) 0.510 (0.069)

Entropy 0.464 (0.061) 0.447 (0.058) 0.498 (0.086) 0.480 (0.069)

D. Variance 0.295 (0.094) 0.280 (0.036) 0.272 (0.105) 0.200 (0.065)

D. Entropy 0.438 (0.072) 0.447 (0.070) 0.451 (0.093) 0.450 (0.066)

IMC1 0.532 (0.065) 0.560 (0.036) 0.579 (0.079) 0.540 (0.049)

IMC2 0.760 (0.072) 0.688 (0.050) 0.756 (0.070) 0.780 (0.061)

Figure 7. Images from the analyzed datasets.
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Tables 5 and 6 present the computed contribution of each metric to PC1 and PC2 for
different datasets. In Table 5, sum entropy (SE), entropy (E) and difference entropy (DE)
metrics contribute equally to PC1 for both synthetic and real datasets. These results do
not allow us to draw conclusions about the representativeness of the metrics based on the
datasets. However, in Table 6, we can observe that some metrics are more significant for the
synthetic datasets (highlighted in bold, including correlation, SA, and IMC1), while others
(underlined, such as Var and SVar) are more indicative of the real datasets. Table 7 presents
the contributions of each metric to PC1 and PC2 for the improved GTA datasets. The
contribution of the metrics to PC2, which is characteristic of synthetic images, as shown in
Table 6, has noticeably decreased. Specifically, the correlation decreased significantly from
0.15 to 0.038 for GTA/City and to 9e-6 for GTA/Map. Similarly, IMC1 dropped from 0.30
to 0.0005 and 0.056, respectively. As for more informative metrics related to real datasets,
Var and SVar increased from 0.11 and 0.12 to 0.26 and 0.26 for GTA/City, and to 0.29 and
0.29 for the GTA/Map dataset. Additionally, there was a notable increase observed in the
contrast metric.

Table 5. Contribution of each metric to PC1. The best contributions are in bold.

Metric Kitti City Once NuScenes vKitti GTAV Kitti-C Synthia

ASM 0.11 0.032 0.089 0.10 0.098 0.083 0.094 0.078

Contrast 0.069 0.036 0.063 0.069 0.072 0.070 0.036 0.075

Corr 0.064 0.061 0.012 0.031 0.014 0.0002 0.068 0.027

Var 0.061 0.058 0.065 0.059 0.075 0.073 0.051 0.067

IDM 0.11 0.082 0.12 0.12 0.12 0.12 0.073 0.082

SA 0.052 0.011 0.021 9× 106 0.002 0.004 5× 105 0.010

SVar 0.048 0.058 0.064 0.055 0.071 0.068 0.052 0.063

SE 0.12 0.14 0.13 0.13 0.12 0.15 0.13 0.14

E 0.12 0.13 0.12 0.13 0.12 0.14 0.12 0.13

DVar 0.032 0.088 0.12 0.075 0.065 0.075 0.074 0.10

DE 0.12 0.12 0.13 0.13 0.12 0.14 0.11 0.12

IMC1 0.0004 0.065 0.028 0.060 0.068 0.0002 0.075 0.025

IMC2 0.08 0.11 0.032 0.039 0.041 0.056 0.10 0.068

Table 6. Contribution of each metric to PC2. The best contributions among the synthetic datasets are
in bold. The best contributions among the real datasets are underlined.

Metric Kitti City Once NuScenes vKitti GTAV Kitti-C Synthia

ASM 0.015 0.15 0.095 0.032 0.027 0.040 0.015 0.091

Contrast 0.064 0.10 0.19 0.16 0.009 0.029 0.071 0.020

Corr 0.055 0.016 0.030 0.006 0.18 0.15 0.14 0.10

Var 0.18 0.19 0.21 0.27 0.008 0.11 0.036 0.079

IDM 0.033 0.12 0.012 0.024 0.006 0.074 0.12 0.13

SA 0.018 0.005 0.079 0.084 0.34 0.009 0.25 0.16

SVar 0.22 0.19 0.21 0.28 0.013 0.12 0.028 0.084

SE 0.002 0.011 0.025 0.019 0.0005 0.001 2× 105 0.009

E 0.014 0.031 0.026 0.026 4× 105 0.019 0.003 0.036

DVar 0.077 0.088 0.12 0.075 0.056 0.008 0.081 0.005

DE 0.12 0.12 0.13 0.13 0.003 0.020 0.049 0.053

IMC1 0.28 0.10 0.005 0.06 0.17 0.30 0.13 0.18

IMC2 0.037 0.002 0.084 0.014 0.18 0.11 0.076 0.042

Figure 8 shows diagrams of the best metrics’ contributions to PC2 for all datasets.
Notably, the synthetic datasets (green) and the real datasets (blue) are distinctly grouped
for each metric, except for the IMC1 metric, where an overlap is observed. A blue dot
from the real data is in the middle of synthetic data. The yellow dots, which represent the
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improved datasets, GTA/Cityscapes and GTA/Mapillary (imp in the legend), are in close
proximity to the blue ones, which represent the real data. These observations highlight
the possibility of discriminating real and synthetic data and improving the fidelity using
specific Haralick metrics.

Table 7. Contribution of each metric to PC2 (improved datasets). The best contributions are in bold
and distinct between PC1 and PC2.

Metric GTA/City PC1 GTA/Map PC1 GTA/City PC2 GTA/Map PC2

ASM 0.11 0.11 0.043 0.037

Contrast 0.036 0.055 0.27 0.22

Corr 0.003 0.012 0.038 9× 106

Var 0.046 0.050 0.26 0.29

IDM 0.14 0.13 0.013 0.023

SA 0.0008 2× 105 0.013 0.021

SVar 0.045 0.048 0.26 0.29

SE 0.14 0.14 0.023 0.019

E 0.14 0.14 0.022 0.026

DVar 0.10 0.061 0.002 5× 105

DE 0.14 0.14 0.010 0.011

IMC1 0.038 0.071 0.0005 0.056

IMC2 0.039 0.037 0.038 0.009

Figure 8. Diagrams of the best metrics’ contributions to PC2.
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Based on these figures and the metrics highlighted in bold, some metrics were selected
to create a score. The contributions of correlation, SA, and IMC1 metrics to PC2, which are
representative of synthetic datasets, will be included in the fidelity score as penalties, using
the associated correlation contributions. This will place a greater emphasis on the metrics
that are representative of real datasets.

5. Fidelity Score Results

Several indices need to be considered when quantifying the fidelity of images due
to the complexity of real scenes. Indeed, relying solely on Haralick metrics may not be
sufficient for establishing an accurate score of fidelity. Therefore, we propose a set of scores
including the models described in Section 3.2 and the selected Haralick metrics, which
provides a more comprehensive assessment of fidelity. The Haralick sub-score is defined
by the following equation:

sH =
1
5
(λ2KVar,2 + λ2KSvar,2 + (1− λ2KCorr,2) + (1− λ2KSA,2) + (1− λ2KIMC1,2)) (4)

where KVar,2, KSvar,2, KCorr,2, KSA,2, and KIMC1,2 are, respectively, the contributions to PC2
of Var, Svar, correlation, SA, and IMC1 metrics. λ2 is the eigenvalue associated with PC2.
This equation uses the arithmetic average of the correlation contributions λ2Ki,2 of the
selected metrics. It takes into account all the best contributions to PC2 for both synthetic
and real datasets.

Table 8 presents the fidelity scores of synthetic and real datasets employing the dif-
ferent proposed methods, including model-based and Haralick metrics. While the scores
obtained from the real datasets (right part of the table) provide valuable information re-
garding the result consistency, the primary objective is to assess the level of fidelity in the
synthetic datasets. The scores obtained for all the datasets reveal a substantial disparity
between the synthetic and real data. The evaluated synthetic datasets exhibit a relatively
low fidelity. It would then be relevant to evaluate the improved synthetic datasets to
analyze the impact of these methods on fidelity scores.

Table 8. Final fidelity scores (%).

Methods vKitti GTAV Kitti-C Synthia City NuScenes Once Kitti
GLCM 0.05 12.03 0.37 10.42 96.67 90.94 97.13 99.81

Wavelets 51.21 4.30 1.61 3.60 98.05 98.54 76.05 96.85

LBP 02.24 19.08 05.87 22.53 87.46 60.46 63.30 94.87
sH 34.10 48.14 38.98 41.80 72.76 73.60 72.74 62.42

Table 9 presents the scores obtained with the three proposed models and Haralick
sH of the enhanced datasets, enabling a comparison with the GTA V scores. A significant
improvement is observed across all scores for the enhanced GTA dataset compared to
the GTA V dataset. Moreover, adapting this dataset to the style of Cityscapes seems to
outperform the Mapillary style. The fidelity scores achieved on enhanced datasets surpass
those of GTA V, demonstrating the effectiveness of the photorealism enhancement methods
on synthetic datasets [13]. Our proposed method yields promising results, enabling us to
quantitatively assess the level of fidelity in synthetic datasets.

Fidelity scores give a reliable indication of the detection algorithms’ potential perfor-
mance. Figure 9 shows images where the YOLOv5 algorithm was used for object detection
in both the original GTA V and the enhanced GTA datasets, which should be more faithful
versions, as illustrated in Table 9.
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Table 9. Final scores obtained with the enhanced synthetic datasets (%) (GTAV to Cityscapes
(GTAV/City) and GTAV to Mapillary (GTAV/Map)) compared to the original GTAV dataset.

Datasets GTAV GTAV/Map GTAV/City

Cross-GlNet 12.03 21.04 42.32

WLet-Net 4.30 29.92 59.63
LoPB-Net 19.08 31.85 43.11

sH 48.14 81.89 82.54

Figure 9. Example of object detection with the YOLOv5 algorithm applied to GTA V and enhanced
GTA images.

Table 10 includes the detection probabilities associated with Figure 9. The detection
probability is organized based on the images in each row. The detection probabilities are
generally higher for the improved GTA datasets compared to GTA V, particularly in the
GTA to Mapillary scenario, where most of them are higher than the rest. However, this is
not systematic. For example, in the first row of the table, the probability increases from
0.78 for GTA V to 0.86 for GTA to Cityscapes but decreases to 0.75 for GTA to Mapillary.
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Furthermore, a few other details should be noted. There are some false positives, such as the
detection of the bonnet in the second row of Figure 9, although the detection probabilities
remain relatively low (<0.33). In the first row, the false positive in the GTA V image
(surfboard) is not detected in the enhanced images.

As the GTA V dataset does not provide the ground truth for object detection, some
images are presented as a qualitative evaluation. For quantitative evaluation, we use the
vKitti2 dataset and its previous version, which provide ground truths.

Table 10. Detection probabilities associated with Figure 9. The best and second best values are
respectively in bold and underlined.

Detection GTA V GTA to Cityscapes GTA to Mapillary
car 0.78 0.86 0.75
car 0.61 0.84 0.86
car 0.66 0.76 0.79

truck/car 0.57 0.51 0.70
car 0.93 0.92 0.93

train 0.82 0.85 0.86
person 0.64 0.68 0.74

bus 0.87 0.87 0.88
truck nan 0.37 0.42
truck nan 0.44 0.46
truck 0.85 0.88 0.89

truck 0.83 0.88 0.86
car 0.83 0.88 0.88
car 0.69 0.67 0.73
car 0.84 0.90 0.89
car 0.69 0.71 0.74

Table 11 presents the detection metrics and fidelity scores for two specific scenes
(S1 and S18) from the vKitti v1.3.1 and vKitti v2 datasets. The comparison between the
two versions is relevant since the second version is a more photorealistic representation
of the first. This enhancement is attributed notably to the post-processing refinements
implemented in the Unity game engine.

Table 11. Detection metric calculation (left side) and fidelity scores (right side) for both vKitti versions
for two scene types (1 and 18). The best values are in bold.

Datasets P R mAP50 mAP50-95 Wavelet GLCM LBP sH

vKitti v1 S1 0.699 0.488 0.516 0.238 17.46 38.58 11.09 51.44
vKitti v2 S1 0.766 0.471 0.552 0.264 22.47 38.70 5.97 57.92
vKitti v1 S18 0.969 0.416 0.486 0.244 06.87 38.99 19.96 53.99
vKitti v2 S18 0.969 0.436 0.494 0.286 10.18 38.81 29.83 80.87

Two types of scenes are used for this comparison. Scene 1 (S1) includes 447 images,
while scene 18 (S18) contains 339 images. The precision (P), recall (R), and mAP50 metrics
in Table 11 are very useful for assessing the classifier performance, especially in evaluating
object detection algorithms. In this context, we aim to demonstrate that higher fidelity
scores correlate with the improved performance of detection algorithms. The YOLOv5
algorithm is used in this case. The right part of the table illustrates a correlation between
the improved photorealism across different versions of the vKitti dataset and an overall
enhancement in fidelity scores. However, it is noteworthy that fidelity scores are slightly
higher for version 1 of vKitti in two cases: for the GLCM model in S18 and the LBP model
in S1. This kind of result shows the relevance of having several scores based on different
sets of features.
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To conclude, an overall increase in fidelity scores has a positive impact on the detection
performance. This scenario was also applied with both the GTA V and the enhanced
datasets (see Figure 9).

6. Discussion

The proposed approach uses several neural networks and metrics to analyze different
types of image features in different representative spaces (texture, frequency, co-occurrence).
The results showed that the proposed approach makes it possible to distinguish images that
are faithful to real images with respect to the chosen extracted features. This identification of
significant metrics could be useful in the construction of a model of ‘real’ data fidelity. In the
same way, this model could provide advice to modify virtual data and reach a high level of
fidelity. However, the data used in this paper were collected only from urban environments
under clear weather conditions. The question that arises is how this environment and these
weather conditions influence the results provided by our networks and metrics. In future
work, it would be valuable to apply these metrics and training processes to various scenes
under various weather conditions to further explore their applicability in different contexts.
Such an analysis could provide deeper insights into the performance and robustness of
the metrics across different scenarios. Road scenes can be divided into four distinct types:
rural, urban, peri-urban, and highways, as depicted in Figure 10. These classifications
provide a general framework for characterizing different possible environments. Then,
each type of scene can be subdivided into different weather conditions: clear, fog, and
rain. Taking into account adverse weather conditions is crucial, as they significantly impact
scene visibility. In the majority of cases, it is often visually discernible whether an image is
computer-generated or not.

Visual cues play a significant role in distinguishing between real and synthetic images.
While humans can easily differentiate both types in most cases, expressing the perception
of realism mathematically or physically is challenging. The intricacies of human perception
make it difficult to define accurate metrics for capturing our intuitive understanding of how
faithfully features in synthetic scenes resemble those in real scenes. Nevertheless, visual
disparities have been observed, particularly the presence of sharper contours in synthetic
images and an overall heightened saturation of colors compared to real images. Eventually,
we expect results which will lead us to question the choice of the most suitable features to
quantify the fidelity of synthetic images.

Figure 10. Diagram of various road scenes.

7. Conclusions

In the development of new automated mobility means, evaluation and validation have
become critical stages to assess the performance of components and functions (perception,
decision making, path planning, control of actuators) enabling driving automation. Increas-
ingly, these components use AI-based systems and therefore require a time-consuming
learning process and a significant number of representative datasets. Since constructing
these datasets in real conditions is challenging, it is becoming more common and efficient
to use simulation methods to generate the required data. However, when it is necessary to
generate synthetic road images covering various road configurations and road situations
(urban, suburban, countryside, forest, highway, etc.) with adverse and degraded condi-
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tions, there is a lack of effective and, most importantly, objective and rigorous means to
assess the level of fidelity of these images in order to use them in training, evaluation, and
validation processes. Our work consists of evaluating the characteristics of virtual images
as a whole in order to assess their degree of fidelity using a distinct set of metrics which is
slightly different from existing methods. Notably, there is no direct comparative method
within the existing literature that aligns with our contributions. We propose addressing
this critical issue by generating a set of metrics and methods that highlight the variables
and parameters quantifying the differences between real and virtual images by comparing
some features: GLCM, wavelet transforms, and LBPs. From our study, it appears that
quantifying texture information using statistics-based and learning-based metrics such as
GLCM, wavelet transforms, LBPs, and Haralick metrics provides valuable insights into
such datasets. The use of these two complementary approaches allows us to take advantage
of their respective strengths. Model-based methods allow for the analysis of several aspects
of an image and take into account the underlying features, despite their computational time
demands. In contrast, the statistical approach is much faster, yielding a straightforward
equation score despite the limited number of metrics. In addition, the presented method is
versatile, making it applicable across diverse applications. Thus, we have proposed the
first set of metrics that provide several scores that quantify the level of fidelity of synthetic
images. Generating a score is essential to determine whether a virtual dataset will be
sufficiently representative and faithful to reality so that is can be used in the learning,
evaluation, and validation procedures of AI-based perception systems. This initial work
opens the way for the generation of an efficient and objective labeling and certification
method for virtual data.

In future work, it would be relevant to deepen our analysis and apply these metrics to
different kinds of scenes within each dataset to gather more accurate information. Indeed,
the amount of information varies depending on the type of road scene, such as a country
road with abundant vegetation or a city road. In addition, investigating different color
spaces before applying the feature extraction techniques could be useful for understanding
and optimizing our method. To complete our texture-based analysis, it would be valuable
to study fractal-based features, which can provide insights into the structural complexity
of images.

Our objective was to assign fidelity scores to any synthetic dataset for evaluation
purposes. However, evaluating the fidelity in few-shot settings can increase the uncertainty
in class assignments, potentially resulting in incorrect classifications of fidelity. To mitigate
this uncertainty, various strategies can be employed. In future research, we propose to
consolidate the proposed scores with a fusion method in order to take into account the
different information sources, as well as the uncertainties and possible conflicts between
scores. Additionally, exploring alternative learning-based approaches [44,45] to reduce the
possible uncertainties could offer valuable insights.

Understanding the distinguishing characteristics that truly define a realistic image
compared to a synthetic image is a topic of significant interest. This information could
be used to propose models of what could be “real data” and identify methods of virtual
data modification to converge toward more realistic virtual data. It raises the question of
what specific attributes really contribute to the perception of realism from a camera point
of view.
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