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This document includes all the framework figures that have been used in Table 5. These figures
are high-resolution and more readable now.

1. Supplementary figures

The framework figure for reference [68] is shown below:
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The framework figure for reference [69] is shown below:
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The framework figure for reference [70] is shown below:
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The framework figure for reference [71] is shown below:
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The framework figure for reference [72] is shown below:
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The framework figure for reference [73] is shown below:
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The framework figure for reference [74] is shown below:

PA-Net
—lp PA
QBPA

SA-Net
Q5

Spherical Affordance, Q5



The framework figure for reference [75] is shown below:
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The framework figure for reference [76] is shown below:
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The framework figure for reference [777] is shown below:
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