
 

 
 

 

 
Sensors 2024, 24, 2461. https://doi.org/10.3390/s24082461 www.mdpi.com/journal/sensors 

Review 

Reinforcement Learning Algorithms and Applications in 

Healthcare and Robotics: A Comprehensive and  

Systematic Review 

Mokhaled N. A. Al-Hamadani 1,2,3,*, Mohammed A. Fadhel 4, Laith Alzubaidi 4,5,6 and Harangi Balazs 1 

1 Department of Data Science and Visualization, Faculty of Informatics, University of Debrecen,  

H-4032 Debrecen, Hungary; harangi.balazs@inf.unideb.hu 
2  Doctoral School of Informatics, University of Debrecen, H-4032 Debrecen, Hungary 
3 Department of Electronic Techniques, Technical Institute/Alhawija, Northern Technical University,  

36001 Kirkuk, Iraq 
4 Research and Development Department, Akunah Company, Brisbane, QLD 4120, Australia;  

mohammed.a.fadhel@uoitc.edu.iq (M.A.F.); l.alzubaidi@qut.edu.au (L.A.) 
5 School of Mechanical, Medical, and Process Engineering, Queensland University of Technology,  

Brisbane, QLD 4000, Australia 
6 Centre for Data Science, Queensland University of Technology, Brisbane, QLD 4000, Australia 

* Correspondence: alhamadani.mokhaled@inf.unideb.hu 

Abstract: Reinforcement learning (RL) has emerged as a dynamic and transformative paradigm in 

artificial intelligence, offering the promise of intelligent decision-making in complex and dynamic 

environments. This unique feature enables RL to address sequential decision-making problems with 

simultaneous sampling, evaluation, and feedback. As a result, RL techniques have become suitable 

candidates for developing powerful solutions in various domains. In this study, we present a 

comprehensive and systematic review of RL algorithms and applications. This review commences 

with an exploration of the foundations of RL and proceeds to examine each algorithm in detail, 

concluding with a comparative analysis of RL algorithms based on several criteria. This review then 

extends to two key applications of RL: robotics and healthcare. In robotics manipulation, RL 

enhances precision and adaptability in tasks such as object grasping and autonomous learning. In 

healthcare, this review turns its focus to the realm of cell growth problems, clarifying how RL has 

provided a data-driven approach for optimizing the growth of cell cultures and the development of 

therapeutic solutions. This review offers a comprehensive overview, shedding light on the evolving 

landscape of RL and its potential in two diverse yet interconnected fields. 

Keywords: reinforcement learning; dynamic programming; Monte Carlo; temporal difference; cell 

growth; object grasping and manipulation 

 

1. Introduction 

Today, artificial intelligence (AI) is present in all areas of life and helps to operate in 

an increasingly dynamic way in line with its evolving capabilities. In the pursuit of 

creating machines that can think and learn autonomously, without human intervention, 

we have reached the crossroads of artificial intelligence (AI) and reinforcement learning 

(RL) [1,2]. As Alan Turing once said, “A machine that could learn from its own mistakes, 

now there’s a thought” [3]. Therefore, this “thought” has evolved into reality when RL 

illuminates the path to intelligent machines capable of autonomous decision-making and 

complex problem-solving [4]. 

RL is one of the machine learning branches that has gained tremendous a�ention in 

recent years [5]. RL’s goal is to allow machines to learn through trial and error, which 

surpasses all the other methods. More precisely, RL agents learn to map the optimal 
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situations to actions and this is what is called optimal policy. These actions have to obtain 

the highest reward. Although these actions may not affect the current reward, they may 

affect the subsequent rewards. Therefore, the reinforcement learning problem features can 

be distinguished by the actions and the subsequent outcomes of these actions which could 

include the reward signals [6]. Moreover, RL tries to imitate the mechanism of human 

learning, which is considered to be a step towards artificial intelligence [7]. 

In reinforcement learning problems, an agent engages in interactions with its 

environment. The environment, in turn, provides rewards and new states based on the 

actions of the agent. In reinforcement learning, the agent is not explicitly taught what to 

do; instead, it is presented with rewards based on its actions. The primary aim of the agent 

is to maximize its overall reward accumulation throughout time by executing actions that 

yield positive rewards and refraining from actions that yield negative rewards. 

Reinforcement learning differs from other categories of machine learning, namely 

supervised, unsupervised, and semi-supervised learning. RL learns through a process of 

trial and error that aims to maximize the cumulative reward of an action in any given 

environment. Traditional machine learning branches can be specified as shown in Figure 

1. Supervised learning: This method involves learning from a training dataset labeled with 

desired results [8,9]. It is the most common learning approach in the machine learning 

field. The objective is to generalize the model so that it can perform effectively on data not 

present in the training set. Unsupervised learning: This method operates with unlabeled 

data, unlike supervised learning. It is more challenging as it lacks actual labels for 

comparison. The model a�empts to learn the characteristics of the data and then clusters 

these data samples based on their similarities [10]. Semi-supervised learning: This type is 

a combination of supervised and unsupervised learning. The dataset is partially labeled, 

while the rest is unlabeled data [11]. The goal is to cluster a large amount of the unlabeled 

data using unsupervised learning techniques and then label them based on supervised 

techniques. 

 

Figure 1. Machine learning branches. 

Reinforcement learning presents several distinctive challenges that set it apart from 

other machine learning approaches. These challenges involve aspects like managing the 

trade-off between exploration and exploitation to maximize the cumulative reward and 

addressing the broader issue of an agent interacting with an unfamiliar environment [6]. 

Before delving deeply into our review paper, it is essential to present recent survey 

and review papers that are related to reinforcement learning in robotics manipulation and 

healthcare (cell growth problems). Table 1 summarizes their contributions and highlights 

the differences between their work and ours. In [12], a systematic review of deep 

reinforcement learning (DRL)-based manipulation is provided. The study 

comprehensively analyzes 286 articles, covering key topics such as grasping in clu�er, 

sim-to-real, learning from demonstration, and other aspects related to object 
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manipulation. The review explores strategies for data collection, the selection of models, 

and their learning efficiency. Additionally, the authors discuss applications, limitations, 

challenges, and future research directions in object grasping using DRL. While our work 

in the robotics section broadly covers object manipulation using RL approaches, this study 

specifically focuses on DRL, offering a nuanced examination of approaches and their 

limitations. In [13], the authors conduct an extensive examination of deep reinforcement 

learning algorithms applied to the field of robotic manipulation. This review offers a 

foundational understanding of reinforcement learning and subsequently places a specific 

focus on deep reinforcement learning (DRL) algorithms. It explores their application in 

tackling the challenges associated with learning manipulation tasks, including grasping, 

sim-to-real transitions, reward engineering, and both value-based and policy-based 

techniques over the last seven years. The article also delves into prominent challenges in 

this field, such as enhancing sample efficiency and achieving real-time control, among 

others. Nevertheless, it is worth noting that this study does not offer a detailed analysis of 

the results of these techniques, whether in simulation or real-world scenarios, as is 

undertaken in the present review. In [14], the authors aim to provide an extensive survey 

of RL applications to various decision-making problems in healthcare. The article 

commences with a foundational overview of RL and its associated techniques. It then 

delves into the utilization of these techniques in healthcare applications, encompassing 

dynamic treatment regimes, automated medical diagnosis in structured and unstructured 

data, and other healthcare domains, including health resource scheduling and allocation, 

as well as drug discovery and development. The authors conclude their work by 

emphasizing the most significant challenges and open research problems while indicating 

potential directions for future work. Our work distinguishes itself from this study in terms 

of its specific focus on RL techniques and healthcare applications, which take a particular 

direction concerning cell growth problems. Finally, in [15], the authors discuss the impact 

of RL in the healthcare sector. The study offers a comprehensive review of RL and its 

algorithms used in healthcare applications. It highlights healthcare applications grouped 

into seven categories, starting with precision medicine and concluding with health 

management systems, showcasing recent studies in these areas. Moreover, the authors 

employ a statistical analysis of the articles used to illustrate the distribution of articles 

concerning various terms, including category and approach. Lastly, the study explores the 

strengths and challenges associated with the application of RL approaches in the 

healthcare field. 

Table 1. Comparisons with existing reviews. 

Ref. Type of Paper Year Coverage Databases Used 

Taxono

my-

Based 

Integrated Using RL 

Algorithms and Applications 

(Robotics and Healthcare) 

[12] Review paper 2016 to 2020 
WoS, SD, IEEEXplore, and 

arXiv 
 × 

[13] Survey 2015 to 2022 
Google Scholar, IEEE 

Xplore, or ArXiv 
 × 

[14] Survey 1970 to 2020 N/A × × 

[15] Survey 1957 to 2019 N/A  × 

Our 

review 

paper 

A comprehensive 

and systematic 

review 

2021 to 2023 
(SD), (IEEE), (WoS), Scopus, 

and others 
  

Therefore, this study distinguishes itself from the above review/survey papers by 

employing a combination of comprehensive and systematic reviews. It emphasizes the 

following key aspects: 
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 This study offers a fundamental overview of reinforcement learning and its 

algorithms. 

 It conducts a comparative analysis of RL algorithms based on various criteria. 

 The applications covered in this review encompass both the robotics and healthcare 

sectors, with specific topics selected for each application. In the realm of robotics, 

object manipulation and grasping have garnered considerable a�ention due to their 

pivotal roles in a wide range of fields, from industrial automation to healthcare. 

Conversely, for healthcare, cell growth problems were chosen as a focus area. This 

topic is of increasing interest due to its significance in optimizing cell culture 

conditions, advancing drug discovery, and enhancing our understanding of cellular 

behavior, among other potential benefits. 

The remainder of this paper is organized as follows: Section 2 outlines the 

methodology employed in this study. Section 3 illustrates the comprehensive science 

mapping analysis for all the references used in this review. Section 4 introduces RL and 

its algorithms. Section 5 reviews recent articles on two RL applications, elucidating their 

challenges and limitations. Finally, Section 6 contains the conclusion and future directions 

of this review. 

2. Methodology 

This review paper is structured into two distinct sections, as illustrated in Figure 2. 

The first part is a comprehensive review, which is a traditional literature review with the 

objective of offering a broad overview of the existing literature on a specific topic or subject 

[16]. This type of review, also known as a literature review or narrative review, can 

encompass various sources, including peer-reviewed original research, systematic 

reviews, meta-analyses, books, PhD dissertations, and non-peer-reviewed articles [17]. 

Comprehensive literature reviews (CLRs) have several advantages. They are generally 

easier to conduct than systematic literature reviews (SLRs) as they rely on the authors’ 

intuition and experience, allowing for some subjectivity. Additionally, CLRs are shaped 

by the authors’ assumptions and biases, which they can openly acknowledge and discuss 

[18]. Consequently, the initial part of this review offers a highly comprehensive 

introduction to reinforcement learning and its components. Subsequently, this review 

delves into the specifics of RL algorithms, highlighting their differences based on various 

criteria. 

 

Figure 2. Structure layout of our review paper. 

The second part of this paper is a systematic literature review (SLR), which follows a 

rigorous and structured approach to provide answers to specific research questions or 

address particular problems [19]. Systematic reviews are commonly employed to confirm 
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or refute whether current practices are grounded in relevant evidence and to assess the 

quality of that evidence on a specific topic [20] An SLR is an evaluation of the existing 

literature that adheres to a methodical, clear, and replicable approach during the search 

process [17]. This methodology involves a well-defined research question, predefined 

inclusion and exclusion criteria, and a comprehensive search of relevant databases, often 

restricted to peer-reviewed research articles meeting specific quality and relevance criteria 

[21]. What sets SLRs apart from CLRs is their structured, replicable, and transparent 

process, guided by a predefined protocol. Consequently, the remainder of the paper, 

focusing exclusively on RL applications, including those in robotics and healthcare, 

adheres to the systematic review process. This approach involves concentrating on 

specific topics and analyzing articles to generate evidence and answers for those specific 

questions or topics. 

This study has collected articles following the systematic review procedures outlined 

in Figure 3 [22,23]. The PRISMA statement, which is known as Preferred Reporting Items 

for Systematic Reviews and Meta-Analysis, was adopted to carry out a systematic review 

of the literature. The review process in this study involved queries from multiple 

reputable databases, including Science Direct (SD), IEEE Xplore digital library (IEEE), 

Web of Science (WoS), and Scopus. Additionally, other papers, PhD dissertations, and 

books were selected from ArXiv, PubMed, ProQuest, and MIT Press, respectively. The 

search for publications encompassed all scientific productions up to December 2023. 

 

Figure 3. An outline of the approach of selecting studies, search query, and inclusion criteria. 
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2.1. Search Strategy 

A comprehensive review was performed of the articles in the mentioned databases 

above. This article employed a Boolean query (conclude OR, AND) to establish a 

connection between the keywords for each part of the review. The search strategy for this 

comprehensive review includes this query (“Reinforcement Learning” OR “RL”) AND 

(“RL algorithms”) AND (“RL algorithms applications”). The search strategy for this 

systematic review incorporates the following query: (“RL” OR “DRL” OR “DQRL”) AND 

(“Robotics Grasping” OR “Robotics Manipulation”). The other query is identical, with the 

only difference being the replacement of (“Robotics” with “Cell Growth” OR “Cell 

Movements” OR “Yeast Cells”). The collected articles for this systematic review from 

databases were published from 2022 to December 2023. 

2.2. Inclusion and Exclusion Criteria 

The inclusion criteria for this study encompass articles wri�en in the English 

language and presented to reputable journals and conferences. The primary focus of this 

study involves reinforcement learning (RL) and RL algorithms, with specific a�ention to 

applications in robotics and healthcare. In healthcare, we concentrate on issues related to 

cell growth in yeast and mammalian cells. Conversely, the exclusion criteria encompass 

articles not composed in the English language and those lacking clear descriptions of 

methods, strategies, tools, and approaches for utilizing RL in these applications. 

2.3. Study Selection 

The selection process has been conducted based on the PRISMA statement for 

conducting a systematic review of the literature [22,23]. The articles were collected using 

Mendeley software (v2.92.0) to scan titles and abstracts. Research articles meeting the 

inclusion criteria mentioned in Section 2.2 were fully read by the authors. 

In the initial search, a total of 710 studies were obtained, comprising 485 from SD, 120 

from Scopus, 35 from IEEE, 42 from WoS, and 28 from other sources. The included articles 

in this study were disseminated starting from the initiation of scientific production until 

December 2023. Approximately 130 duplicate articles were eliminated from the databases, 

reducing the total number of articles to 580 contributions. During the screening phase of 

the titles and abstracts, 502 articles were excluded. In the full-text phase, 50 studies were 

deemed irrelevant, and the remaining 28 articles were selected according to the inclusion 

criteria. The following section explores the utilization of various bibliometric methods for 

analyzing the selected studies. 

3. Comprehensive Science Mapping Analysis 

The proliferation of contributions and the implementation of practical research made 

the task of identifying crucial evidence from previous studies more arduous. Keeping up 

with the literature became a considerable problem due to the extensive flow of practical 

and theoretical contributions. A number of scholars have proposed using the PRISMA 

methodology to restructure the results of prior research, condense issues, and pinpoint 

promising areas for further investigation. Systematic reviews, on the other hand, have the 

objective of broadening the knowledge base, improving the study design, and 

consolidating the findings of the literature. Nevertheless, systematic reviews encounter 

challenges regarding their credibility and impartiality since they depend on the authors’ 

perspective to rearrange the conclusions of prior investigations. In order to enhance the 

clarity in summarizing the findings of prior research, a number of studies have proposed 

techniques for carrying out a more thorough scientific mapping analysis using R-tool and 

VOSviewer [24]. The bibliometric technique yields definitive outcomes, investigates areas 

of study that have not been addressed, and presents the findings of the existing literature 

with a high degree of dependability and clarity. Moreover, the tools given in this context 

do not need significant expertise and are regarded as open source. Consequently, this 
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research has used the bibliometric technique, which will be thoroughly explained in the 

subsequent subsections. The science mapping analysis demonstrates notable pa�erns of 

expansion in the field of reinforcement learning. The annual publication tally increased 

consistently, albeit with fluctuations, from one in 1950 to thirteen in 2023. Reputable 

publications such as Proceedings of the National Academy of Sciences received numerous 

citations. The literature is predominantly characterized by the prevalence of usual terms 

like “reinforcement learning” and “machine learning”. The word cloud emphasizes 

critical concepts such as ‘control’ and ‘algorithms’. Through the identification of clusters 

of related terms, co-occurrence network analysis reveals both fundamental and 

specialized concepts. In general, the analysis offers significant insights into the dynamic 

field of reinforcement learning investigation. 

3.1. Annual Scientific Production 

The discipline of reinforcement learning has observed significant advancements in 

the last decade. Figure 4 displays the yearly scientific output, measured by the number of 

papers, in a specific study domain spanning from 1950 to 2024. The data may be analyzed 

and examined using the following methods: 

General trajectory: The general trajectory shows a consistent increase, as the annual 

publication count has risen from 1 in 1950 to 13 in 2023. Nevertheless, the data show 

significant variations, with some years seeing a decline in output. 

Early years: During the first time of the table’s existence (1950–1970), there was a 

minimal amount of scholarly output, with a mere four publications published in total. 

Indications point to the fact that the scientific area was in its nascent phase of advancement 

during this period. 

Growth era: The period spanning from 1971 to 1995 had a substantial surge in 

scientific output, with a total of six publications produced throughout this timeframe. This 

indicates that the study area was starting to acquire momentum and receive more 

a�ention from scientists. 

In the years spanning from 1996 to 2024, there has been a notable increase in scientific 

productivity, resulting in the publication of 54 publications within this time frame. These 

findings indicate that the research area has reached a state of maturity and is flourishing. 

 

Figure 4. Annual Scientific Production. 
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A three-field plot is a graphical representation used to exhibit data involving three 

variables. In this specific instance, the left field corresponds to keywords (DE), the center 

field corresponds to sources (SO), and the right field corresponds to Title (TI_TM). The 

plot is often used for the analysis of the interrelationships among the three parameters 

(refer to Figure 3). The analysis, identified in the middle sector (SO) of Figure 5, reveals 

that the Proceedings of the National Academy of Sciences, IEEE Transactions on Neural 

Networks and Learning Systems, and Computers and Chemical Engineering have 

received the highest number of citations from the sources (TI_TM) situated on the left side. 

The Proceedings of the National Academy of Sciences is the preeminent source that 

specifically addresses the subject of reinforcement learning. In addition, it is 

acknowledged in the field of DE that the most frequently used keywords across all 

categories are ‘reinforcement learning’, ‘machine learning’, ‘optimal control’, ‘healthcare’, 

‘deep learning’, and ‘artificial intelligence’. These keywords are also commonly found in 

the journals listed in the middle field (SO). 

 

Figure 5. Three-field plot: left (SO), middle (CR_SO), and right (DE). 

3.2. Word Cloud 

The use of word cloud has facilitated the identification of the most recurrent and 

crucial terms in previous research. Figure 6 compiles the essential keywords extracted 

from previous research results to provide a comprehensive overview and restructure the 

existing knowledge. 

The word cloud visually displays the predominant phrases used in a scientific work 

pertaining to reinforcement learning (RL). The dominant words include reinforcement, 

learning, algorithms, methods, control, data, decision, deep, environment, and model. 

This study primarily emphasizes the advancement and utilization of RL algorithms and 

methodologies for managing robots and other systems in intricate contexts. 

This study also examines the use of reinforcement learning (RL) in the domains of 

decision-making and task planning. Indicatively, this article pertains to a broad spectrum 

of applications, including robotics and healthcare. 

Based on the word cloud and table, it can be inferred that this article provides a 

thorough examination of the current advancements in RL. This publication is expected to 

captivate scholars and practitioners in the area of RL, as well as anyone intrigued by the 

capacity of RL to address practical issues. 
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Figure 6. World cloud. 

3.3. Co-Occurrence 

A co-occurrence network is another method used in bibliometric analysis. Previous 

research studies have identified common terms and analyzed them using a semantic 

network. This network offers valuable insights to professionals, policymakers, and 

scholars on the conceptual framework of a certain area. Figure 7 specifically presents data 

on a co-occurrence network that is constructed using the names of reinforcement learning 

methods and applications. 

 

Figure 7. Co-occurrence network. 

The co-occurrence network Table 2 displays the associations among the most 

prevalent phrases in a scholarly publication on reinforcement learning (RL). The nodes in 

the table correspond to the terms, while the edges reflect the connections between the 

terms. The words are categorized into clusters according to their interconnections. The 

most prominent cluster shown in Figure 7 comprises the phrases reinforcement learning, 

learning, algorithms, methods, and control. This cluster embodies the fundamental 

principles of reinforcement learning. The phrases data, decision, applications, techniques, 

and review are intricately interconnected with these fundamental principles. The 

additional clusters shown in Figure 6 correspond to more specialized facets of 
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reinforcement learning. For instance, the cluster including the phrases grasping, 

manipulation, and robotic signifies the use of reinforcement learning (RL) in the context 

of robotics applications. The cluster including the phrases deep learning, policy, and 

reward signifies the use of RL for deep reinforcement learning. In general, the co-

occurrence network table offers a comprehensive summary of the main ideas and 

connections in the scientific article on RL. Table 2 serves the purpose of discerning the 

important words in the document, together with the interconnections among these 

phrases. The co-occurrence network table serves as a tool to detect novel research 

prospects in the field of reinforcement learning (RL) and to pinpoint regions that need 

further investigation. 

Table 2. Statistical representation of edge weights. 

Node1 Node2 Edge Weight 

reinforcement learning learning High 

learning algorithms High 

learning methods High 

algorithms methods High 

grasping manipulation High 

manipulation robotic High 

deep learning policy High 

policy reward High 

reinforcement learning algorithms Moderate 

reinforcement learning methods Moderate 

reinforcement learning control Moderate 

learning control Moderate 

algorithms control Moderate 

methods control Moderate 

grasping robotic Moderate 

deep learning reward Moderate 

4. Reinforcement Learning (RL) 

Reinforcement learning has emerged from two essential fields: psychology, inspiring 

trial-and-error search; and optimal control, using value functions and dynamic 

programming [6,25]. The first field has been derived from the animal psychology of trial-

and-error learning. The concept of this learning started with Edward Thorndike [26]. 

Thorndike referred to this principle as the law of effect, describing how reinforcing events 

influence the trajectory of selected actions. In other words, it implies that the agent should 

take actions that yield the best rewards instead of facing punishment because the objective 

of RL is to maximize the cumulative reward through the concept of trial and error. In the 

second field, the ‘optimal control’ problem was proposed to devise a controller that 

minimizes a measure of a dynamical system over a duration of time [27]. The optimal 

control problem was introduced in the late 1950s for the same reasons mentioned earlier. 

Richard Bellman developed one of the techniques for this problem, creating an equation 

that utilizes the state of a dynamic system and a value function, widely recognized as the 

Bellman equation, which serves to define a functional equation [28]. The Bellman equation 

represents the long-term reward for executing a specific action corresponding to a 

particular state of the environment. This equation will be subjected to an elaborate 

analysis in Section 4.2.1. Furthermore, in 1957, Richard Bellman extended the work of 

Hamilton and Jacobi to solve optimal control problems using the Bellman equation, giving 

rise to what is known as dynamic programming [29]. Later in the same year, Bellman 

introduced Markov Decision Processes (MDPs), a discrete stochastic version of the 

optimal control problem. In 1960, Ronald Howard established policy iteration for Markov 
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Decision Processes. Consequently, these two fields played a pivotal role in the 

development of the modern field of reinforcement learning. For more details about the 

history of RL, please refer to [6]. 

4.1. Reinforcement Learning Components 

As previously stated, reinforcement learning is a subfield of machine learning that 

teaches an agent to take an action in an unknown environment that maximizes the reward 

over time. In other words, the purpose of RL is to determine how an agent should take an 

actions in an environment to maximize the cumulative reward. Accordingly, we noticed 

that RL has some essential components such as an agent, the program or algorithm that 

one trains, or what is called a learner or decision maker in RL, which aims to achieve a 

specific goal; an environment, which refers to the real-world problems or simulated 

environment in which an agent takes an action or interacts; action(�), the move that an 

agent makes in the environment which causes a change in the status; and a reward(ℛ), 

which refers to the evaluation of the agent by taking an action that could give a positive 

or negative reward. Moreover, it has some other important components such as state (�), 

the place that an agent is located in in the environment; episode, the whole training process 

phase; step (�), as each operation in an episode is a step time; and value (�), which refers 

to the value of the action that agent takes from state to another. Furthermore, there are 

three major agent components, as mentioned in [30] which are policy, value function, and 

the model. Policy (�) refers to the agent behavior in the environment and which strategy is 

used to reach the goal, whether it is stochastic or deterministic policy. The value function 

(�) refers to the value of each state that has been reached by the agent to maximize the 

reward and to evaluate the effectiveness of the states. Finally, the model refers to the 

prediction algorithm or techniques that a�empt to predict the next state based on the next 

immediate reward. To ensure consistency throughout the review paper, we primarily 

follow the notation established by [6]. The following subsection thoroughly explores RL 

and its algorithm categories, as shown in Figure 8. RL algorithms have been divided into 

two categories, model-based and model-free algorithms, which will be explained in detail 

in Section 4.3.1. Model-free algorithms are also divided into two parts, value-based and 

policy-based algorithms, which will be clarified in Section 4.3.2. Additionally, value-based 

algorithms are divided into two phases, on-policy and off-policy algorithms, as 

demonstrated in Section 4.3.3. Moreover, a comprehensive review of RL algorithms 

mentioned in Figure 8 is conducted in Section 4.4. 

 

Figure 8. Taxonomy of reinforcement learning algorithms. 
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4.2. Markov Decision Process (MDP) 

The MDP is recognized by various names, including “sequential stochastic 

optimization, discrete-time stochastic control, and stochastic dynamical programming” 

[31]. For the purpose of reinforcement learning, the MDP represents a discrete-time 

stochastic control mechanism that can be utilized to make decisions without the 

requirement of prior knowledge of the problem’s history, as in Markov Property [6,32]. 

Consequently, most reinforcement learning problems can be formalized as an MDP and 

can be solved with discrete actions. In other words, the MDP is a mathematical framework 

for modeling decision-making situations in which the outcome of a decision is uncertain. 

The MDP is similar to the Markov Reward Process but involves making decisions or 

taking actions [33]. The formal definition of the MDP is a five-tuple of (�, �, �, ℛ, �) [34], 

where: 

� is a set of finite states that includes the environment. 

� is the set of finite actions that an agent takes to go through all the states. 

�(�, �, ��) is the transition probability matrix; it represents the trajectory of the agent 

ending up in state �� after taking an action �. 

ℛ(�, �, ��)  is the reward function, which calculates the immediate reward after a 

transition from state � to ��. 

� and ℛ are slightly different with respect to actions, as shown in Equations (1) and 

(2). 

 ����
� =  ℙ [���� =  ��| �� = �, �� = � ] (1)

ℛ�
� =  � [����|�� = �, �� = �] (2)

� is the discount factor, determining the significance of both of the immediate and 

future returns, where a discount factor � ∈  [0, 1]. 

At each step (� ), the learning agent observes a state �  from � , selects an action � 

from � based on a policy � with parameters �, and with probability. �(��|�, �), moves 

to the next state ��, receiving a reward �(�, �) from the environment. 

In essence, the MDP operates as follows: the agent takes an action � from the current 

state �, transitioning to another state ��, guided by the transition probability matrix �. 

This iterative process persists until the agent reaches the final state with the highest 

possible reward, as depicted in Figure 8. These procedures are contingent on the value 

function of the state and the action, respectively. Through the value function, a policy 

function is derived to guide the agent in selecting the best action that maximizes the 

cumulative reward in the long run (Figure 9). 

 

Figure 9. The MDP framework for modeling the interaction between an agent and its environment 

[6]. 
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There are three different versions of Markov Decision Processes, which are used to 

model decision-making situations with different characteristics. These versions include 

fully observable MDPs (FOMDPs), partially observable MDPs (POMDPs), and semi-

observable MDPs (SOMDPs) [25,35]. Fully observable MDPs (FOMDPs) refer to MDPs in 

which the agent possesses complete knowledge of the current state of the environment. 

Conversely, partially observable MDPs (POMDPs) involve scenarios where the agent 

lacks complete knowledge of the current state. In other words, the agent can only observe 

a portion of the environment’s state at each time step and must use this limited 

information for decision-making. Semi-observable MDPs (SOMDPs) are a variation of 

POMDPs in which the agent has some knowledge of the environment’s state, but this 

knowledge is incomplete and may be uncertain. In the following subsubsections, we will 

cover all the materials related to solving MDPs. 

4.2.1. Value and Policy Functions 

Value functions are pivotal in all reinforcement learning algorithms as they estimate 

the future reward that can be expected from a given state and action [36,37]. Specifically, 

they measure the effectiveness of being in a specific state and taking a specific action, in 

terms of expected future reward, also known as expected return. To be�er understand the 

types of value and policy functions, it is essential to define the concept of return (denoted 

as ��). 

The return �� represents the cumulative reward that the agent receives through its 

interactions with the environment, as depicted in Equation (3) [38]. It is calculated as the 

sum of discounted rewards from time step �. The use of a discount factor is crucial to 

prevent the reward from becoming infinite in tasks that are continuous in nature. The 

agent’s objective is to maximize the expected discounted return, which balances the 

importance of immediate rewards versus future rewards, as determined by the discount 

factor. 

�� =  ���� +  ����� +  ������ + ⋯ =  � ��������

�

���

(3)

Interacting with the environment requires updating the agent’s value function (�(�)) 

or action-value function (�(�, �)) under a specific policy [39]. The policy, represented as 

�(�) → � , is a mapping between states and actions that guides the agent’s decisions 

towards achieving the maximum long-term reward [38]. The policy determines the 

behavior of the agent and can be stationary, meaning that it remains constant over time. 

Mathematically, a policy can be defined in Equation (4) as follows: 

�(�|�) =  �[�� = �|�� = �] (4)

In reinforcement learning, the policy may manifest as deterministic or stochastic. A 

deterministic policy always maps a state to a specific action, utilizing the exploitation 

strategy. In contrast, a stochastic policy assigns different probabilities to different actions 

for a given state, promoting the exploration strategy. 

According to aforementioned the policy above, the value function can be partitioned 

into two parts: the state-value function (�) and the action-value function (�) [40]. The state-

value function �� (�) represents the expected return for an agent starting in state � and 

then acting according to policy � . �� (�)  is determined by summing the expected 

rewards at future time steps, with a given discount factor applied to each reward. This 

function helps the agent evaluate the potential value of being in a particular state as shown 

in Equation (5). 

�� =  �� [��|�� = �] =  �� �� ��������|�� = �

�

���

� , for all � ∈ � (5)
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The action-value function �� (�, �) or Q-function represents the expected return for 

an agent starting in state � and taking action �, then operating based on policy � [40]. 

�� (�, �) is determined by summing the expected rewards for each state action pair as 

shown in Equation (6). 

��(�, �) =  ��[��| �� = �, �� = �] =  �� �� ��������

�

���

� �� = �, �� = �� (6)

By defining the principles of MDP for a specific environment, we may apply the 

Bellman equations to identify the optimal policy, as exemplified in Equation (7). These 

equations, developed by Richard Bellman in the 1950s, are utilized in dynamic 

programming and decision-making problems. The Bellman equation and its 

generalization, the Bellman expectation equation, are utilized to solve optimization 

problems where the la�er accommodates for probabilistic transitions between states. 

�(�) =  �[���� +  ��(����)|�� = �] (7)

The state-value function can be decomposed into the immediate reward (����) at 

time � + 1  and the discounted value of the successor state at time � + 1 (�(����)) 

multiplied by the discount factor (�). This can be wri�en as shown in Equation (8): 

��(�) =  ��[���� +  ���(����)|�� = �] (8)

Similarly, the action-value function can be decomposed into the immediate reward 

(����) at time � + 1 on performing a certain action in the state (�) and the discounted 

value of the successor state at time � + 1 (�(����)) multiplied by the discount factor (�). 

This can be wri�en as shown in Equation (9): 

��(�, �) =  ��[���� +  ���(����, ����)|�� = �, �� = �] (9)

After the decomposition of the state-value function and action-value function as 

described above, the optimal value functions can be obtained by finding the values that 

maximize the expected return. This can be carried out through iterative methods such as 

value iteration or policy iteration, which use the Bellman equations to update the value 

functions until convergence to the optimal values. Therefore, for a finite MDP, there is 

always one deterministic policy known as the optimal policy that surpasses or is 

equivalent to all other policies. The optimal policy leads to the optimal state-value 

function or the optimal action-value function. The optimal state value function is 

calculated as the highest value function �(�) across all stationary policies as shown in 

Equation (10): 

�∗(�) =  max
�

��(�) (10)

Likewise, the optimal action-value function is determined as the highest action-value 

function �(�, �) overall policies, as shown in Equation (11): 

�∗(�, �) =  max
�

��(�, �) (11)

4.2.2. Episodic versus Continuing Tasks in RL 

Reinforcement learning can be divided into two types of tasks: episodic and 

continuing. Episodic tasks are decomposed into separate episodes that have a defined 

endpoint or terminal state [41,42]. Each episode consists of a sequence of time steps 

starting from an initial state and ending at the terminal state, and a new episode begins. 

The objective of an episodic task is to maximize the total rewards obtained over a single 

episode. 

In contrast, continuing tasks have no endpoint or terminal state, and the agent 

interacts with the environment continuously without any resets [41,42]. The continuing 



Sensors 2024, 24, 2461 15 of 41 
 

 

task aims to maximize the expected cumulative reward gained over an infinite time 

horizon. 

4.3. Types of RL Models 

 This subsection introduces the differences between reinforcement learning models. 

Therefore, to delve deeper into reinforcement learning algorithms and their applications, 

it is important to understand the two categories they are divided into: model-free and 

model-based reinforcement learning algorithms. Additionally, there are two primary 

approaches in reinforcement learning for problem-solving, which are value-based and 

policy-based, both of which can be categorized under model-free methods [43]. Lastly, 

reinforcement learning algorithms can be categorized into two main types: on-policy and 

off-policy learning [6]. 

4.3.1. Model-Based versus Model-Free RL Algorithms 

Model-based reinforcement learning methods, also known as “Planning Model”, aim 

to learn an explicit model of the environment in which a complete and accurate 

understanding of how the environment works (a complete MDP), including the rules that 

govern the state transitions and the reward structure [36]. This understanding is typically 

represented as a mathematical model that describes the state transitions, the rewards, and 

the probabilities associated with each action. In other words, model-based reinforcement 

learning methods encompass the computation of action values through the simulation of 

action outcomes using a mental map or model of the environment that includes the 

environment’s various states, transition probabilities, and rewards [44,45]. The agent has 

the capability to acquire a model of the environment through experiential learning, 

enabling it to explore various trajectories of the map in order to choose the optimal action. 

The benefit of model-based learning is the ease with which the map can be modified to 

adapt to changes in the environment. However, this method is computationally expensive 

and time requirements, which may not be ideal for time-sensitive decisions. This model 

has several common algorithms, including model-based Monte Carlo and Monte Carlo 

Tree Search. 

In contrast, model-free methods directly learn the optimal policy without explicitly 

modeling the environment’s dynamics, including the transition probabilities and the 

reward function [36]. In other words, model-free reinforcement learning is a decision-

making approach where the value of various actions is learned through the process of 

trial-and-error interaction with the black box environment, without a world model [44,45]. 

Additionally, decisions are made based on cached values learned through the process of 

trial-and-error interactions with the environment. During each trial, the agent perceives 

the present state, takes an action relying on estimated values, and observes the resulting 

outcome and state transition. Subsequently, the agent calculates a reward prediction error, 

denoted as the disparity between the obtained outcome and the expected reward. This 

approach is more data-driven and is not contingent upon prior knowledge about the 

environment. The estimated values are used to guide action selection, and the values are 

updated trial-by-trial through a process of computing prediction errors. Once learning 

converges, action selection using model-free reinforcement learning is optimal. However, 

since the values rely on accumulated past experience, the method is less flexible in 

adapting to sudden changes in the environment, and it requires a significant amount of 

trial-and-error experience to become accurate. This model has several common algorithms 

including Q-learning, SARSA, and TD-learning that will be covered in the next section. 

4.3.2. Value-Based versus Policy-Based 

A value-based method estimates the value of being in a specific state or action [46]. 

This method aims to find the optimal state-value function or action-value function from 

which the policy can be derived. For this reason, it is known as the indirect approach [47]. 
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Value-based methods generally use an exploration strategy, such as ε-greedy or softmax, 

in order to guarantee an adequate exploration of the environment by the agent. Instances 

of value-based approaches encompass Q-learning and SARSA, which will be extensively 

discussed in the next section. 

On the other hand, in a policy-based approach, the agent updates and optimizes the 

policy directly according to the feedback received from the environment, without the need 

for intermediate value functions [46]. This makes policy-based RL a conceptually simpler 

algorithm compared to value-based methods, as it avoids the computational complexities 

and approximations involved in estimating value functions [47]. Policy-based methods 

have demonstrated their effectiveness in learning stochastic policies that can operate in 

high-dimensional or continuous action spaces. This property makes them more practical 

than their deterministic counterparts, thereby widening their scope of application in real-

world scenarios. 

4.3.3. On-Policy versus Off-Policy 

An on-policy algorithm is based on a single policy, denoted as π, which is utilized by 

an agent to take actions in a given state s, aiming to obtain a reward [48]. In contrast, off-

policy algorithms involve the use of two policies, the target policy and the behavior policy, 

denoted as π and µ, respectively [49,50]. The target policy is the one that the agent seeks 

to learn and optimize, while the behavior policy generates the observations that are used 

for learning. To ascertain the optimal policy, the agent uses the data generated by the 

behavior policy to estimate the value function for the target policy. Off-policy learning is 

a generalization of on-policy learning, as any off-policy algorithm can be converted into 

an on-policy algorithm by se�ing the target policy equal to the behavior policy. 

4.4. RL Algorithms 

This subsection presents the reinforcement learning algorithms along with their 

details. It focuses on three main algorithms: dynamic programming, Monte Carlo, and 

ends with temporal difference. The temporal difference algorithm is further divided into 

two methods: SARSA and Q-Learning. 

4.4.1. Dynamic Programming (DP) 

Dynamic programming (DP) is a well-known model-based algorithm. DP consists of 

a collection of algorithms capable of determining the best policies if a complete model of 

the problem is available as MDP with its five-tuple of (�, �, �, ℛ, �) [6,25]. Additionally, 

DP is a general approach to solving optimization problems that involves breaking down 

a complex problem into smaller sub problems and solving them recursively. Dynamic 

programming represents a key concept that relies on value functions as a means to 

structure and organize the quest for optimal policies. Despite their ability to find optimal 

solutions, DP algorithms are not frequently used due to the significant computational cost 

involved in solving non-trivial problems [51]. Policy iteration and value iteration are two 

of the most commonly used DP methods. The optimal policies can be easily obtained 

through DP algorithms once the optimal value functions (�∗  or �∗ ) have been found, 

which satisfy the Bellman optimality equations as shown in Equations (12) and (13), 

respectively: 

�∗(�) = max
�

� [���� + ��∗(����)| �� = �, �� = �] (12)

�∗(�, �) =  � ����� + � max
��

�∗(����, ��)� �� = �, �� = �� (13)

Policy iteration is an algorithm in reinforcement learning that aims to find the 

optimal policy by iteratively improving a candidate policy through alternating between 

two steps: policy evaluation and policy improvement [52]. The goal of policy iteration is 

to maximize the cumulative returns, achieved by repeatedly updating the policy until the 
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optimal policy is found. The process is called policy iteration because it iteratively 

improves the policy until convergence to an optimal solution is reached. The algorithm 

consists of two main parts: policy evaluation and policy improvement. 

Policy evaluation is the process of estimating the state-value function �� for a given 

policy �  [52]. This is often referred to as a prediction problem because it involves 

predicting the expected cumulative reward from a given state by following the policy �. 

The value function for all states is initialized to 0, and the Bellman expectation equation is 

applied to iteratively update the value function until convergence. This rule is utilized in 

Equation (14): 

����(�) = �[���� + ���(����)|�� = �]  

=  � �(�|�) � �(��, �|�, �)

��,��

[� + ���(��)] 
(14)

The policy evaluation update rule involves �, which represents the ��� update step, 

and �� + 1  represents the predicted value function under policy �  after � + 1  update 

steps, where �� =  ��. This update, known as the Bellman backup, is depicted in Figure 

10, illustrating the relationship between the value of the current state and the value of its 

successor states. In the diagram, open circles denote states, while solid circles represent 

state–action pairs. Through this diagram, the value information from successor states is 

transferred back to the current states. The Bellman backup involves iteratively updating 

the value function estimates for every state in the state space based on the Bellman 

equation until convergence is achieved for the given policy. This process is called iterative 

policy evaluation, and under certain conditions, it is assured to converge to the true value 

function �� as the number of iterations approaches infinity. 

 

Figure 10. Backup diagram for �� [6]. 

After computing the value function, the subsequent step is to enhance the policy by 

utilizing the value function. This step is known as policy improvement, and it is a 

fundamental stage in the policy iteration algorithm. 

Policy improvement is a process in RL that aims to construct a new policy, which 

enhances the performance of an original policy, by making it greedy with respect to the 

value function of the original policy [52,53]. Policy improvement step seeks to improve 

the current policy by selecting the actions that lead to higher values �� (�, �)  by 

considering the new greedy policy ��, given by Equation (15). 

��(�)  =  argmax
�

��(�, �) (15)

More precisely, during the policy improvement step, for each state in the state space, 

the action is selected that maximizes the expected value of the next state based on the 

provided value function. The resulting policy is guaranteed to possess a minimum level 
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of quality equivalent to that of the original policy �� ≥  � and may surpass it if the value 

function is accurate. 

���(�) ≥  ��(�) (16)

After improving a policy π using �� to generate a be�er policy ��, the next step is to 

compute ��� and use it to further improve the policy to ���. This process can be repeated 

to acquire a sequence of policies and value functions that improve monotonically, denoted 

as ��, ���
, ��, ���

, ��, ���
, ……., �∗, �∗ as shown in Equation (17), 

��

 � 
→  ��� 

 � 
→  ��  

 � 
→  ���

 
 � 
→ ��

 � 
→ … 

 � 
→ �∗

 � 
→ �∗ (17)

until convergence to the optimal policy and optimal value function is achieved, where 

��∗(�) ≥  �� � �∗(�)  for all � � �  is found. For greater clarity on the policy iteration 

algorithm, Figure 11 illustrates the two components of this algorithm. 

 

Figure 11. Illustrating the policy evaluation and improvement based on [6]. 

Value iteration commences by employing an initial arbitrary value function, 

subsequently proceeding to iteratively update its estimate to obtain an improved state 

value or action value function, ultimately resulting in the computation of the optimal 

policy and its corresponding value [6,25,37]. It is important that value iteration is a special 

case of policy evaluation in which the evaluation process terminates after one iteration. 

Furthermore, this algorithm can be derived by transforming the Bellman optimality 

equation into an update rule as shown below in Equations (18) and (19), respectively. 

����(�) =  max
�

� [���� +  ���(����)|�� = �, �� = �] (18)

����(�, �) =  � ����� +  � max
����

�� (����, ����)� �� = �, �� = �� (19)

As illustrated above, value iteration update involves taking the maximum over all 

actions, distinguishing it from policy evaluation. An alternative method to illustrate the 

interrelation of these algorithms is through the backup operation diagram, as shown in 

Figure 7, which is used to calculate ��, �∗. After obtaining the value functions, the optimal 

policy can be derived by selecting the actions with the highest values while traversing 

through all states. Similar to policy evaluation, this algorithm necessitates an infinite 

number of iterations to converge to �∗ . It is important to note that these algorithms 

achieve convergence towards an optimal policy for a discounted finite MDP. Both policy 

and value iteration use bootstrapping, which involves using the estimated value of a 

future state or action to update the value of the current state ��(����) or action ��(����) 
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during the iterative process. Bootstrapping offers the advantage of improving data 

efficiency and enabling updates that explicitly account for long-term trajectory 

information. However, a potential disadvantage is that the method is biased towards the 

starting values of �(��, ��) or �(��). 

4.4.2. Monte Carlo (MC) 

Unlike dynamic programming, where the model is completely known and used to 

solve MDP problems, Monte Carlo, also known as a model free algorithm, works with an 

unknown model of the environment, where the transition probabilities are unknown [6]. 

In MC, to gain experience, the agent must interact with the environment, which is then 

utilized to estimate the action value function. MC methods do not require prior 

knowledge of the environment’s dynamics to obtain optimal behavior; instead, they 

obtain experience–sample sequences of states, actions, and rewards [54]. Therefore, MC 

methods are utilized to find solutions to reinforcement learning problems based on 

average sample returns, which are updated after each trajectory. To ensure that returns 

are obtainable, MC methods exclusively utilize episodic tasks. In these tasks, the agent 

interacts with the environment for a fixed number of time steps; the episode terminates 

after a specific goal is achieved or a terminal state is reached. Moreover, only complete 

episodes can estimate the values and change the policies, which means that they are 

incremental in an episode-by-episode sense. 

In MC methods, the return of an action in one state is estimated by sampling and 

averaging returns for each state–action pair [55]. However, since the action selections are 

learned and updated in each episode, the problem is considered nonstationary, as the 

return of an action in one state is determined by the actions taken in subsequent states 

within the same episode. To overcome this nonstationary situation, a General Policy 

Iteration (GPI) approach is used. In GPI, value functions are learned from sample returns 

using MC methods rather than computing them from knowledge of the MDP as in 

dynamic programming. 

To determine ��, the general idea of MC methods is to estimate it from experience 

by averaging the returns observed after visiting each state. The more returns observed, 

the closer we can become to the expected value. There are various approaches to estimate 

��(�) , which is the value of a state s under a prescribed policy π. This estimation is 

achieved by using a collection of episodes obtained by following π and traversing through 

s. In each episode, the state s may be visited more than once. Therefore, there are different 

approaches for estimating and updating ��(�), which are as follows: 

1. First-Visit MC Method 

This method has been extensively studied since the 1940s [6]. This approach considers 

only the first visit of each state in each episode when computing the average return 

for that state [54]. The First-Visit MC Method can provide an estimate of the true state-

value function by averaging the returns acquired on each first visit. As the number of 

first visits to states approaches infinity, this method converges to the optimal state-

value function. 

2. Every-Visit MC Method 

The Every-Visit MC approach exhibits dissimilarities when compared to the First-

Visit MC method in that it averages the returns received after every visit to a state 

across all episodes, rather than just the first visit [56]. The value function estimate for 

a state is updated after every visit to the state in an episode, regardless of whether it 

has been visited before. Similar to the First-Visit Method, the Every-Visit Method 

converges to the optimal state-value function as the number of visits to each state 

approaches infinity 

Similar to dynamic programming, the Monte Carlo algorithm employs a backup 

diagram, as shown in Figure 12; however, it differs from the one used in DP. In the MC 

diagram for estimating vπ, a state node is located at the root, representing the initial state 
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of the episode. The diagram demonstrates the sequence of transitions that take place 

during a single episode and ends at the terminal state, marking the conclusion of the 

episode. The MC diagram extends to the end of the episode since Monte Carlo methods 

necessitate complete episodes to estimate values and update policies based on average 

returns. 

 

Figure 12. Monte Carlo Backup Diagram [6]. 

In cases where the environment is unknown, Monte Carlo methods offer a suitable 

approach for estimating the value of state–action pairs, as opposed to state values. This is 

due to the fact that state–action pair estimation provides more informative measures for 

determining the policy [57]. The policy evaluation problem is utilized for the action-value 

��(�, �)  to estimate �∗  in Monte Carlo, which represents the expected return when 

starting from state s, taking action a, and then following policy π. There are two 

approaches for estimating state–action values in MC: First-Visit and Every-Visit 

approaches. The First-Visit MC Method computes the average of returns following the 

initial visit to each state and the action pair within an episode. Conversely, the Every-Visit 

MC Method estimates the value of a state–action pair by averaging the returns from all 

the visits to it. These two approaches converge as the number of visits to a state–action 

pair approaches infinity. 

The main problem with MC methods is that numerous state–action pairs may remain 

unvisited if the policy is deterministic. To address this issue, the exploring starts 

assumption is utilized. This assumption dictates that episodes begin from a state–action 

pair, with each pair having a non-zero probability of being chosen as the starting point. 

This ensures that every state–action pair will be visited an indefinite number of times as 

the number of episodes’ approaches infinity. 

The MC control algorithm uses the same concept of Generalized Policy Iteration as 

in DP. To obtain an optimal policy, classical policy iteration is performed by starting with 

an arbitrary policy π_0 and iteratively conducting policy evaluation and improvement 

until convergence, as shown below. 

��

 � 
→  ��� 

 � 
→  ��  

 � 
→  ���

 
 � 
→ ��

 � 
→ … 

 � 
→ �∗

 � 
→ �∗ (20)

where 
�
→  means a complete policy evaluation and 

�
→  means a complete policy 

improvement. Policy evaluation is conducted using the same method as in DP. Policy 

improvement is achieved by adopting a policy that follows a greedy approach concerning 

the current value function. The optimal policy can be extracted by selecting the action that 

maximizes the action-value function. 

�(�)  =  argmax
�

��(�, �) (21)

In Monte Carlo policy iteration, it is customary to alternate between policy evaluation 

and policy improvement on an episode-by-episode basis. Once an episode is completed, 

the observed returns are utilized to evaluate the policy. Subsequently, the policy is 
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enhanced with every state visited during the episode. For a detailed description of on-

policy and off-policy MC algorithms, refer to [6]. 

There are several key differences between Monte Carlo (MC) and dynamic 

programming (DP). For example, MC estimates are based on independent samples from 

each state, while DP estimates rely on estimating values for all states simultaneously, 

taking into account their interdependencies. Another key difference is that MC is not 

subject to the bootstrapping problem because it uses complete episodes to estimate values. 

In contrast, DP estimates rely on one-step transitions. Furthermore, MC estimates state–

action values by averaging the returns obtained from following a policy until the end of 

an episode, whereas DP focuses on one-step transitions. Finally, MC learns from 

experience that can be obtained from actual or simulated episodes. These differences 

between DP and MC show that the temporal difference (TD) learning algorithm was 

developed to overcome the limitations of both DP and MC techniques by combining ideas 

from both approaches. Its main goal is to provide a more efficient and effective approach 

to reinforcement learning which will be discussed in the next section. 

4.4.3. Temporal Difference (TD) 

Temporal difference learning is a model-free RL model and it is widely regarded as 

a fundamental and pioneering idea in reinforcement learning [6,56]. As mentioned in the 

previous section, temporal difference learning is a combination of the ideas of both Monte 

Carlo and dynamic programming. Therefore, the TD algorithm learns from experience 

where there is an unknown model or no model of the environment’s dynamic, similar to 

MC [58]. On the other way, TD, like DP algorithms, updates estimates depending on the 

other learned estimates without waiting for a whole episode to be finished. Therefore, the 

TD method bootstraps like DP too. There are two problems to discuss with this algorithm: 

prediction and control problems [54]. The prediction problem regards estimating the 

value function ��  for a given policy � . For the control problem, TD, like MC and DP 

methods, uses the idea of General Policy Iteration (GPI) to find the optimal policy. 

TD methods update their value function at each time-step � + 1 by incorporating the 

observed reward ����  and the estimated value �(����) . The value and action-value 

function updates for TD methods can be expressed using the following equation: 

�(��)  ⟵ �(��) +  � [���� +  ��(����) − �(��)] (22)

Here, ← refers to the update operator, � is a constant step-size parameter, and � is 

the discount factor. This particular method is known as TD (0) or one-step TD. The backup 

diagram for TD (0) shows that the value estimates for the state node positioned at the 

summit of the diagram are updated based on one sample transition from the current state 

to the subsequent state, as shown in Figure 13. 

 

Figure 13. TD Backup Diagram [6]. 

TD (0) update can be understood as an error that quantifies the disparity between the 

estimated value of �� and the be�er estimate ���� +  ��(����). This error is known as the 

TD error and is represented by the following equation: 

�� =  ���� +  ��(����) − �(��) (23)
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where �� represents the TD error at time t. As the agent traverses through each state–

action pair multiple times, the estimated values converge to the true values, and the 

optimal policy can be extracted using Equation (21). 

�(�)  =  argmax
�

��(�, �) (24)

SARSA 

SARSA is an on-policy TD control algorithm where the behavior policy is exactly the 

same as its target policy [59]. This method must estimate ��(�, �) for the current behavior 

policy �  and for all the states �  and actions �  by using the same TD method as 

previously explained and shown in Figure 14. 

 

Figure 14. SARSA algorithm [6]. 

Therefore, this algorithm considers transitions from a state–action pair to a state–

action pair, learning the values of the state–action pair. As SARSA is an on-policy 

approach, the update of the action-value functions is performed using the equation below. 

�(��, ��) ← �(��, ��) +  � [���� +  ��(����, ����) − �(��, ��)] (25)

The update is performed after each transition from a non-terminal state ��; when the 

���� is terminal, the value of �(����, ����) is set to 0. This algorithm uses all the elements 

of the quintuple (��, ��, ����, ����,����) that takes a transition from one state–action pair 

to another, leading to the naming of the algorithm as SARSA, which stands for state–

action–reward–state–action. The estimation of ��  continues for the behavior policy � , 

and the policy changes to the optimality with respect to �� . The SARSA algorithm 

converges to an optimal policy and action-value function by using �-greedy or �-soft with 

the probability of 1, under the condition that all state–action pairs are visited infinitely. 

Q-Learning 

Q-learning is a widely recognized off-policy algorithm in reinforcement learning 

(RL). The key feature of Q-learning is that it estimates the action-value function Q which 

leads to directly approximating �∗ (the optimal action-value function), regardless of the 

policy being executed [58,59]. This technique is defined in Equation (24) as follows: 

�(��, ��) ← �(��, ��) +  � ����� +  � max
�

� (����, �) − �(��, ��)� (26)

where the Q-learning updates use only the four elements (��, ��, ����, ����)  while 

assuming ���� is a decision variable to optimize the action-value function. This approach 

guarantees that the agents can determine the optimal policy based on the assumption that 

each state–action pair is visited an infinite number of times. It has been demonstrated that 

Q converges to a particular value with probability 1 to �∗. 

4.5. Comparison between DP, MC, and TD 

A brief comparison between the DP and MC algorithms has been mentioned at the 

end of the MC algorithm subsection. However, a comprehensive comparison of dynamic 

programming (DP), Monte Carlo (MC), and temporal difference (TD) reinforcement 

learning (RL) algorithms is presented in Table 3. Table 3 summarizes the characteristics of 

each algorithm, including their requirement for a model of the environment to learn value 
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functions, which is only necessary for DP. Both MC and TD algorithms learn value 

functions from sampled experience sequences of states, actions, and rewards. MC does 

not suffer from the bootstrapping problem because it uses complete episodes to estimate 

value functions, whereas DP and TD use bootstrapping to estimate value functions 

because they rely on the previously estimated value functions. This leads to unwanted 

bias in the estimates. In contrast, MC algorithm estimates are based on independent 

samples from each state, which avoids the estimation bias. However, this method 

introduces high variance because the estimate of a value function is proportional to the 

variance of the returns. Since the returns from different episodes can have high variance 

because of the stochastic nature of the environment and the policy, the estimate of the 

value function can have high variance as well. In terms of on-policy or off-policy, DP and 

MC algorithms are on-policy methods, whereas TD is on-policy and off-policy method. In 

terms of computational cost, DP requires simultaneous updates of all value functions, 

making it computationally expensive. MC methods update value functions at the end of 

each episode, whereas TD updates them after a one-time step. Generally, model-based 

algorithms like DP converge faster than model-free algorithms like MC and TD. However, 

among model-free algorithms, TD converges faster than MC as it does not wait for only 

one time step to update value functions. 

Table 3. Comparison of DP, MC, and TD algorithms. 

Algorithm 
Model-

Based/Model-Free 

Requires 

Model 
Bias Variance On/Off-Policy 

Computational 

Cost 
Convergence 

DP Model-Based Yes High Low On-Policy High 
Faster than MC 

and TD 

MC Model-Free No Low High On-Policy Medium 
Slower than DP 

and TD 

TD Model-Free No High Low On/Off-Policy Low Faster then MC 

4.6. Function Approximation Methods 

Since we have discussed traditional RL algorithms and their role in solving MDP 

problems, it is important to note that MDPs typically involve discrete tasks where states 

and actions can be represented as arrays or tables, manageable by value functions. In 

fundamental RL algorithms, value iteration assigns values to states, facilitating the 

discovery of optimal value functions and policies. However, in complex environments 

with large state spaces, this approach becomes impractical due to high computational 

costs. 

To address this challenge, the adoption of function approximation methods becomes 

imperative. These methods generalize value functions through parameterized functional 

structures instead of relying on tables [6,25]. Rather than storing values for each state 

separately, function approximation methods represent states using features and weights. 

A common form of approximate value function is expressed as follows: 

�� (�, �) ≈  ��(�) (27)

where �� (�, �)  represents the approximated value function for state � , and � ∈  ℝ� 

denotes the weight vector parameter. ��(�) denotes the true value function under policy 

� for state �. The parameters � undergo adjustments throughout the training process in 

order to reduce the difference between the approximated and true value functions. These 

adjustments can be carried out by utilizing methods such as gradient descent (SG) or 

stochastic gradient descent (SGD). The benefits of function approximation include 

scalability, generalization, and sample efficiency. There are various types of function 

approximation, such as linear functions, Fourier basis functions, and non-linear neural 

network function approximation. To delve deeper into function approximation and its 
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types, readers are encouraged to consult references [6,25]. In the next subsection, we will 

explain the rise of deep reinforcement learning. 

The Combination of (Deep Learning and Reinforcement Learning) 

Deep learning and reinforcement learning are two powerful techniques in AI [6,23]. 

Deep learning employs a layered architecture that enables automated feature extraction, 

eliminating the need for manual feature engineering processes. Additionally, deep 

learning techniques excel in handling high-dimensional data due to their capability of 

automating feature extraction. Therefore, the combination of deep learning and 

reinforcement learning leads to deep reinforcement learning (DRL), where DRL addresses 

problems in which MDP states are high-dimensional and cannot be effectively solved by 

traditional RL algorithms. In DRL, deep neural networks are implemented for function 

approximation in Q-learning [25]. Table 4 illustrates the emergence of deep reinforcement 

learning algorithms. 

Table 4. Emergence of deep reinforcement learning algorithms. 

Year Algorithm’s Title Description Ref. 

2013 
Deep Q Learning 

Network (DQN) 

DQN is one of the pioneering deep reinforcement learning (DRL) 

algorithms that utilizes Q-learning and convolutional neural networks 

(CNNs) to learn control policies by processing vast amounts of high-

dimensional data. This algorithm was implemented in the context of seven 

Atari 2600 games, demonstrating superior performance compared to the 

existing methods and even surpassing human proficiency in half of the 

games. Additionally, this algorithm can handle continuous states and 

discrete actions. 

For more detailed 

information, we refer 

to [60]. 

2014 
Deterministic Policy 

Gradient (DPG) 

DPG is considered the first algorithm in RL designed to handle continuous 

action spaces. The estimation of the gradient of the action-value function is 

conducted deterministically, leading to enhanced computational efficiency 

compared to stochastic policy gradients. 

For more detailed 

information, we refer 

to [61]. 

2015 
Deep Deterministic 

Policy Gradient (DDPG) 

DDPG is an actor-critic algorithm designed to tackle challenges pertaining 

to continuous control problems in RL. This algorithm was based on DPG 

and has successfully addressed various simulated physics tasks. Both DQN 

and DPG have suffered from high bias and high variance, but this 

technique has combined previous techniques, leading to reduced bias and 

variance. 

For more detailed 

information, we refer 

to [62]. 

2015 
Trust Region Policy 

Optimization (TRPO) 

TRPO stands as an additional deep reinforcement learning (DRL) 

algorithm designed to optimize policies by ensuring a monotonic 

enhancement and showcasing sturdy performance across a range of tasks. 

This algorithm proves to be a potent technique in addressing high-

dimensional continuous control predicaments. 

For more detailed 

information, we refer 

to [63]. 

2017 
Proximal Policy 

Optimization (PPO) 

PPO is a DRL algorithm that is categorized within the realm of policy 

gradient techniques. In contrast to TRPO, PPO is noted for its ease of 

implementation, broader applicability, and superior performance in terms 

of sample efficiency. 

For more detailed 

information, we refer 

to [64]. 

5. RL Application 

This section presents a literature review of the most influential research papers on 

the application of reinforcement learning (RL) in both robotics and healthcare systems. A 

comparative analysis is provided between the articles, including the techniques employed 

and their corresponding outcomes. In the context of robotics, the focus is primarily on the 

use of RL algorithms for object grasping and manipulation, a rapidly developing research 

area with promising potential. Additionally, for healthcare applications, the emphasis is 

on the use of RL methods for addressing cell growth problems, an area of increasing 
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interest due to its significance in optimizing cell culture conditions, drug discovery, and 

enhancing understanding of cellular behavior, among other potential benefits. 

5.1. Robotics 

Humans have a direct sensorimotor connection to the environment, enabling them 

to see and observe objects and determine how to pick them up. However, robots have 

lagged far behind in possessing these capabilities [65]. Even tasks that are considered 

trivial for humans can pose significant challenges for robots. Robotic grasping and 

manipulating objects in unstructured and dynamic environments remain critical and 

challenging problems due to the variability and complexity of the real world. Traditional 

machine learning (ML) approaches often struggle to handle the diversity of objects in 

terms of size, weight, texture, transparency, and fragility [12]. Moreover, dealing with 

clu�ered scenes and managing uncertainties in perception and control proves even more 

challenging for ML. Consequently, reinforcement learning (RL) has emerged as a solution, 

allowing robots to learn through trial and error and adapt to various situations [66]. RL 

has gained significant traction in robotics, particularly in the field of grasping and 

manipulation [67]. In this section, we review some of the most recent influential papers 

on RL-based robotics applications for grasping and manipulation as shown in Tables 5 

and 6, respectively. We analyze the methods and results of these studies and discuss the 

challenges and limitations they have encountered in this field. For clearer and higher-

resolution framework figures used in Table 5, please refer to Supplementary Materials. 

Table 5. RL methods with their actions, framework, and codes. 

Ref. Year RL-Method Action Framework Code 

[68] 2022 
Graph-based Q-learning 

model (DQN and Q-Net) 

Grasping  

Pushing 

 

h�ps://github.com/�ongjiay

uan/the-dataset-of-

grasping-occluded-objects 

(accessed on 5 July 2022) 

[69] 2022 

Viewpoint Adjusting and 

Grasping Synergy 

(VAGS) strategy based on 

deep reinforcement 

learning (DRL) 

Viewpoint 

Adjusting  

Grasping 

 

N/A 

[70] 2022 

Proximal Policy 

Optimization (PPO) and 

Soft Actor-Critic (SAC) 

Grasping  

Lifting  

 

h�ps://github.com/Asad-

Shahid/Intelligent-Task-

Learning 

(accessed on 13 April 2022) 

[71] 2022 DDPG-Sparse + SLDR Pick and Place 

 

1- Source code 

(h�ps://github.com/W

MGDataScience/sldr) 

(accessed on 30 

October 2019) 

2- Environments Code 

(h�ps://github.com/W

MGDataScience/gym_

wmgds) 

(accessed on 30 

October 2019) 

[72] 2022 
Dueling Deep Q-learning 

Network (DDQN) 
Grasping  

 

 

N/A 
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[73] 2023 

You Only Look Once 

(YOLO) algorithm and 

Soft Actor-Critic (SAC) 

algorithm 

Grasping/Pick 

and Place 

 

N/A 

[74] 2023 

Q Mixing Network with 

Planar and Spherical 

Affordances (QMIX-PSA) 

Grasping 

 

N/A 

[75] 2023 

Grasp Pose is All You 

Need (G-PAYN) with the 

Soft Actor-Critic (SAC) 

algorithm 

Grasping 
 

h�ps://github.com/hsp-

iit/rl-icub-dexterous-

manipulation 

(accessed on 25 January 

2022) 

[76] 2023 deep Q-network (DQN) 

Pick-and-Place  

Prehensile 

(grasping) and 

non-prehensile 

(left-slide and 

right-slide) 
 

N/A 

[77] 2023 

Soft Actor-Critic (SAC) 

and Proximal Policy 

Optimization (PPO) 

Reach, Grasp, 

and Pick-and-

Place 
 

N/A 

In [68], the authors introduce a graph-based Q-learning model for grasping/pushing 

occluded objects. This model consists of an encoder, a graph reasoning module, and a 

decoder. In the encoder phase, state features are merged to facilitate the incorporation of 

the features of one region to contain features from other regions, leading to improved 

feature learning. Next, graph reasoning is used to integrate the features of adjacent 

regions. Finally, in the decoder phase, the updated features are mapped to specific 

features. The authors employ DQN as the underlying algorithm and design a graph Q-

Net to predict the Q-value. The experiment consists of two tasks: exploration and 

coordination. In the exploration phase, the robot only employs push actions, while in the 

coordination phase, the robot requires both grasping and pushing actions for cooperation. 

The experiment was conducted in two environments using a simulation with a UR5 robot 

arm and an RG2 gripper in the V-REP simulation environment, as well as with a real robot. 

To evaluate this model, two metrics were used: the rate of success (RS) and the motion 

number (MN). The results of the proposed model, using a dataset of 10 scenes with block 

shapes, achieved an RS of 100% and an average MN of less than 2 in the exploration task. 

In the coordination task, the model achieved an RS of 91% with an average MN of 3.2. 

When the dataset was extended to include 20 different scenes, in coordination tasks, the 

model achieved an SR of 95% with an average MN of 2. On the other hand, the experiment 

with a real robot achieved an SR of 91% with an average MN of 7.3. These results surpass 

the state-of-the-art results of previous methods. 

In [69], the authors introduce a VAGS strategy based on DRL that aims to empower 

the robot to independently adjust the camera viewpoint in achieving swift and precise 

grasping in clu�ered scenes. Through experiments, the authors demonstrate that the 

VAGS method improves the grasping success rate (GSR), scene clearing rate (SCR), and 

grasping efficiency (GE) in both simulation and real-world scenarios. Simultaneously, 
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they suggest a DAES method based on ε-greedy to expedite the training of VAGS and 

introduce a reward function to tackle the issue of sparse reward in RL. The model’s 

generalization ability is enhanced by randomly generating variations in color, shape, 

quantity, and posture of objects throughout the training phase. In the simulation 

experiment, when applying VAGS to scenes with 1 to 10 objects, the GSR was 83.50%, and 

the SCR was 95%. Subsequently, DAES was applied to VAGS to enhance training 

efficiency. The results, with and without VANet (viewpoint adjusting), showed an average 

GSR improvement (w/o VANet = 76.38%, w/VANet = 86.87%) and SCR improvement (w/o 

VANet = 84%, w/VANet = 95%). In real-world experiments, the results showed a GSR of 

83.05%, an average grasping time of 8.5 s, a mean picks per hour of 348, and a motion 

number of 1.38. The aforementioned findings suggest that the suggested framework 

surpasses prior frameworks. 

In [70], this article introduces a learning-based method that employs simulation data 

to instruct a robot in object manipulation. It employs two model-free RL algorithms. The 

first algorithm relies on the on-policy RL algorithm known as Proximal Policy 

Optimization (PPO) to train the controller of the robot. Additionally, the learning process 

incorporates an off-policy algorithm called Soft Actor-Critic (SAC) to assess learning 

performance. Furthermore, the article proposes a fine-tuning procedure that initializes the 

policy for the target task with the acquired policy for the base task, diminishing the 

necessary count of episodes and accelerating training. The objectives of this model 

encompass successful grasping and lifting of target objects, effective management of the 

robot’s redundancy to prevent exceeding joint constraints, evading obstacles to avoid 

collisions, and the refinement of control actions to facilitate the application of the acquired 

controller on an actual robot. The design of the reward function aims to guide the learning 

concerning task success/failure, the level of performance, and the consideration of safety. 

Consequently, experiments conducted in both simulation and real-world scenarios, using 

the Franka Emika Panda robot, have achieved a 100% success rate. This promising 

outcome suggests the potential applicability of the proposed approach in real-world 

se�ings. 

In [71], the authors introduce an approach to robotic manipulation, employing 

Simulated Locomotion Demonstrations (SLDs) in conjunction with reinforcement 

learning (RL). This method is distinctive in that it does not necessitate human 

demonstrations, instead capitalizing on the notion that any robotic manipulation task can 

be interpreted as a form of locomotion task when viewed from the object’s perspective. 

By employing a practical physics simulator, an object locomotion policy is derived, which 

is subsequently utilized to produce supplementary rewards termed Simulated 

Locomotion Demonstration Rewards (SLDRs). The primary method used in this study is 

Deep Deterministic Policy Gradient (DDPG) in conjunction with sparse rewards. 

Additionally, the authors have incorporated the following algorithms as baselines 

alongside DDPG-Sparse, namely, HER-Sparse and HER-Dense. DDPG-Sparse + SLDR 

and HER-Sparse + SLDR denote the proposed approach, integrating SLDR with distinct 

methods for policy learning. The approach has been assessed across 13 tasks, achieving a 

commendable 100% success rate. The outcomes demonstrate its competitiveness with 

state-of-the-art approaches that depend on human demonstrations. 

In [72], the authors discuss the application of Dueling Deep Q-Learning (DDGN) to 

acquire a grasping policy. The authors employ a five-DoF robotic arm to address the 

challenge of grasping a target object. This study not only explores the advantages of 

utilizing reinforcement learning algorithms for this purpose but also substantiates this 

strategy with continuous visual feedback. The DDGN algorithm is trained using a reward 

function specifically designed for it, utilizing visual data obtained from a Kinect camera 

through a simulation environment called the Webats Simulator. The presented approach 

represents an enhanced deep reinforcement learning algorithm structured for end-to-end 

learning, primarily reliant on vision-based robotic grasping. This architecture, with the 

assistance of a custom-designed CNN model, enables the agent to execute appropriate 
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grasping actions. The results indicate that a minibatch size of 16 yields superior results in 

terms of immediate reward value when compared to a minibatch size of 32, utilizing an 

Epsilon-greedy exploration strategy. 

In [73], the authors discuss a vision-based approach to robotic object grasping that 

utilizes DRL to enable robots to achieve a high success rate in grasping objects. The 

introduced technique combines computer vision and deep RL to facilitate the learning and 

improvement of the robots’ grasping capabilities. The YOLO algorithm is used to detect, 

localize, and recognize objects in images, reducing training time by providing object 

location as input to deep RL. Additionally, the Soft Actor-Critic deep RL algorithm, an off-

policy framework, enhances sample efficiency. This article trains the robot manipulator 

by using SAC to adopt object grasping via self-learning. The experiments were conducted 

in both simulation and real-world environments. The authors utilized the V-REP robot 

simulator to train SAC, and the results demonstrated a reduction in total training time 

and grasping a�empts when compared to the approach without it. Moreover, the authors 

successfully transferred the trained SAC to a real 6-DoF robot manipulator, which 

performed object grasping and pick-and-place actions effectively, even for previously 

unseen objects. 

In [74], the authors present a new approach to robotic grasping using dual-agent 

deep reinforcement learning called QMIX-PSA. This approach consists of two agent 

networks, a PA-Net and a SA-Net, which are utilized to anticipate grasp position and 

orientation. QMIX estimated the joint action value of these two networks in order to link 

them. Then, the authors extended their four-DoF into a six-DoF one and a�empted to 

eliminate disturbances using augmented rewards. This approach has several advantages 

that make it suitable for such a problem. An extensive experiment has been conducted 

using this approach and six of its peers across three different scenarios: single, sca�ered, 

and clu�ered objects. The results showed that QMIX-PSA outperforms its peers in terms 

of grasp success rate and quality, especially in clu�ered scenarios where existing SGL 

methods are less competent. 

In [75], the authors presented a method called G-PAYN for the iCub humanoid robot 

based on DRL, which uses automatically gathered offline demos. The research proceeds 

by proposing a modular pipeline for grasping an object with the iCub humanoid, 

consisting of two stages. The first stage involves grasp pose computation, which is 

performed by external algorithms, specifically superquadric models and the grasp pose 

generator VGN. The second stage involves the execution of the grasp. Both stages are 

utilized to start the movement. Therefore, a control policy was presented for these two 

steps to create an automated approach for acquiring grasping demos and then learning 

the policy using the SAC algorithm and previously obtained data. The experimental phase 

was conducted in a simulation environment using the MuJoCo simulator with five objects 

from the YCB video dataset. To evaluate the proposed approach, G-PAYN, was compared 

to four different baselines, namely Demonstrations Pipeline, SAC, OERLD, and AWAC. 

The results demonstrated that G-PAYN excels in half of the experiments, achieving a high 

success rate while delivering an equivalent performance in other circumstances. 

In [76], the authors introduce self-supervised deep reinforcement learning (DRL) for 

performing pick-and-place operations on objects of various shapes. In this framework, the 

agent learns how to perform a series of prehensile (grasping actions) and non-prehensile 

(left-right slides) robotic manipulations using a model-free and off-policy DRL, 

specifically Q-Learning. This learning process relies on trial and error. Notably, this 

approach facilitates bidirectional learning of sliding and pushing operations. The Deep Q-

Network (DQN) consists of three fully convolutional networks (FCN) that use DenseNet-

121′s memory-efficient architecture. Consequently, agents acquire knowledge and 

converge to optimal policies within an end-to-end memory-efficient framework utilizing 

pixel-wise parameterization. Actions with the highest Q-value are executed at the 3D 

location of a pixel expected to possess the maximum Q-value. The reward scheme is 

designed based on the successful outcomes of actions, including grasping, left and right 
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slides, or taking no action. Finally, the proposed approach has been evaluated and 

compared with various baseline approaches in terms of success rate and grasping success. 

In [77], the authors introduce a novel pipeline that combines traditional control and 

reinforcement learning (RL) techniques for both simulated and real-world environments 

to validate RL methods across various scenarios, including reach, grasp, and pick-and-

place tasks. Two algorithms, Soft Actor-Critic (SAC) and Proximal Policy Optimization 

(PPO), are employed in this study. SAC, as the first method, is an off-policy RL algorithm 

that effectively balances the exploration–exploitation tradeoff and allows for ease of 

parallelization. Conversely, PPO is a policy gradient technique known for its ability to 

provide rapid policy updates. In the simulation environment, the authors selected the 

PyBullet Python-based environment for its adaptability and ease of modification. Given 

that hyperparameter tuning is often necessary for the chosen algorithms, Optuna is 

utilized as a hyperparameter optimization framework. Additionally, the authors 

employed two reward structures in this study: dense and sparse. For the real-world 

experiments, the Panda Research Robot was used. The utilization of the Franka control 

interface (FCI) in this robot enables the establishment of bidirectional communication 

between the agent and the workstation. This communication facilitates the exchange of 

positional readings and commands. In the Panda robot, Franka-ROS and MoveIt are the 

control packages employed to test connections between the simulated PyBullet agent and 

the real-world robot. The results obtained in the simulated environment indicate that PPO 

performed be�er in complex tasks, while SAC excelled in simpler tasks. However, in real-

world scenarios, there was a reduction in performance of approximately 10–20% across 

all tasks when compared to the simulation environment due to the geometry difference 

between the objects in both environments. Table 6 displays the outcomes and limitations 

of each article, providing a general overview of research conducted in the realm of robotic 

grasping and manipulation. 

Table 6. RL methods with their results and limitations. 

Ref.  Year RL-Method Metrics Results Limitations 

[68]  2022 

Graph-based Q-

learning model 

(DQN and Q-Net) 

1- SR (%) Success 

Rate 

2- MN (Motion 

Number) 

1- In the simulation experiment: 

exploration task using a dataset of 10 

different scenes, SR = 100% with an 

average of MN of less than 2); 

coordination task, SR = 91% with an 

average of MN = 3.2. 

2- In the simulation experiment, 

coordination task with dataset 

extended to 20 different coordination 

scenes, SR = 95% with an average of 

MN = 2. 

3- Real robot experiment: SR = 91% with 

an average of MN = 7.3. 

1- The model works on block shape 

objects only and has not 

generalized to all target objects. 

[69] 2022 
VAGS strategy 

based on DRL 

1- Grasp Success 

Rate (GSR) 

2- Scene Clearing 

Rate (SCR) 

3- Motion Number 

4- Mean Picks Per 

Hour 

1- In the simulation experiment of 1 to 10 

objects, the GSR = 83.50%, and the SCR 

= 95%.  

2- In the simulation experiment with 

application of DAES, the results, with 

and without VANet, showed an 

average grasp success rate 

improvement (w/o VANet = 76.38%, 

w/VANet = 86.87%) and SCR 

improvement (w/o VANet = 84%, 

w/VANet = 95%).  

3- In real-world experiments, the results 

showed a (GSR of 83.05%, an average 

grasping time of 8.5 s, a mean picks 

per hour of 348, and a motion number 

of 1.38). 

The use of high-degree-of-freedom 

(DOF) grasping scenarios is suggested 

as a future avenue for enhancing 

grasping stability by achieving six-DOF 

grasping. 
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[70] 2022 PPO and Soft SAC 1- Success Rate 

1- In the simulation experiment, the 

success rate was 100%. 

2- In the real-world experiment using the 

Franka Emika Panda robot, the success 

rate was 100%. 

1- It is important to highlight that 

the methodology is assessed on a 

grasping assignment that 

encompasses a Franka Emika 

Panda manipulator. Although the 

authors propose that the 

acquisition can be generalized to 

diverse geometric forms and 

dimensions, slight alterations in 

the object’s position, as well as 

different initial configurations of 

the robot, may impact the results. 

Therefore, additional 

investigation and 

experimentation are required to 

validate this assertion. 

2- Moreover, the suggested 

technique is assessed primarily by 

considering the success rate of 

grasping tasks, and its 

performance in other 

manipulation tasks remains 

unclear. 

3- Furthermore, the article lacks a 

comparison of the suggested 

strategy with other state-of-the-

art methods for robotic grasping. 

Therefore, this could provide 

further information about its 

strengths and weaknesses. 

[71] 2022 
DDPG-

Sparse+SLDR 
1- Success Rate (SR) 

The proposed approach has achieved a SR of 

100% over 13 tasks of increasing complexity. 

1- The first limitation arises when 

the simulated locomotion 

demonstrations (SLDs) are less 

effective when the ideal object 

locomotion becomes increasingly 

dependent on the actions 

performed by the robot. 

2- The second limitation is the 

prerequisite for a simulated 

environment to apply the 

proposed methodology 

effectively. 

3- The third potential limitation of 

using simulated locomotion as 

auxiliary rewards is that it may 

not apply to certain tasks. In tasks 

involving the manipulation of a 

pen using Shadow’s hand, a 

challenge arises when attempting 

to replicate a specific pen 

movement without dropping it. 

Despite the pen’s ability to rotate 

and translate itself to facilitate 

locomotion tasks, this 

predicament has the potential to 

undermine the effectiveness of 

the manipulation strategy, 

regardless of the acquisition of an 

optimal locomotion policy. 

[72] 2022 

Dueling Deep Q-

learning 

Network(DDQN) 

N/A 

The proposed model has exhibited superior 

results when the batch size is set to 16, 

particularly in terms of immediate reward 

values. 

There are several limitations to the 

proposed model: 

1- The model exclusively addresses 

the grasping of solid and rigid 
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objects, without considering 

variations in object types. 

2- Throughout the evaluation 

process, the location and shape of 

the target objects remained 

constant, implying that the 

proposed model was tested under 

unchanging conditions. 

3- The proposed model has only 

been employed within a 

simulation environment. 

[73] 2023 
YOLO algorithm 

and SAC algorithm 

1- Training time 

2- Number of 

grasping 

attempts 

3- Rate of successful 

grasping 

1- In a simulation environment, the 

suggested technique (transfer learning 

+ YOLO + SAC) effectively reduced the 

training time to 6443 s, while without 

using the approach was 15.9 times 

longer. At the same time, the number 

of grasping was 1323 attempts using 

the proposed approach, while without 

it was 28.8 times larger. 

2- In a real-world environment, the 

proposed approach demonstrated a 

successful grasping rate for various 

objects: 19 out of 20 for building 

blocks, 6 out of 10 for apples, 6 out of 

10 for bananas, 8 out of 10 for oranges, 

and 9 out of 10 for cups. It is worth 

noting that apples and oranges were 

not part of the training set. 

One limitation of this approach is its 

dependence on smooth object surfaces 

for successful grasping using the 

suction nozzle. As a result, the 

noticeable variations between the 

simulated and the real-world 

environment experimental setup lead to 

a lower success rate when attempting to 

grasp bananas due to surface variations 

between the two environments. 

[74] 2023  QMIX-PSA 

1- The grasp 

success rate 

(GSR) 

2- The average 

grasp quality 

(AGQ) 

The experiment was conducted in a real-

world environment using a UR3 robot. The 

study employed twenty metal workpieces 

and sixteen daily items with various 

complex shapes were used in the study. The 

proposed method was tested in three distinct 

scenarios: single objects, scattered objects, 

and cluttered objects. The results are as 

follows: 

1- When comparing 6DGL with its six 

peers across these three scenarios, the 

results show that 6DGL outperforms 

most of its counterparts. Notably, in 

the cluttered scenario, 6DGL achieved 

a 0.82 and 0.83 Grasping Success Rate 

(GSR) when grasping metal 

workpieces and daily items, 

respectively. 

2- The results for 6DGL show an Average 

Grasp Quality (AGQ) of 0.67 for metal 

workpieces and 0.75 for daily items, 

indicating a certain level of robustness. 

3- When presented with 16 unseen 

objects in a cluttered environment, 

6DGL achieved a GSR of 0.77 and an 

AGQ of 0.68, outperforming most 

competitors. 

There are a few limitations to this study, 

including: 

1. It is important to note that the 

experiments were conducted in a 

controlled environment, and it 

remains uncertain how well the 

approach would perform in more 

complex and dynamic real-world 

scenarios. 

2. Furthermore, the proposed 

approach relies on high-

dimensional RGB-D data as input, 

which may not be available or 

feasible in all robotic grasping 

applications. 

[75] 2023 
G-PAYN with SAC 

algorithm 

1- Success Rate (SR) 

2- Execution Time 

(ET) 

In a simulation environment, the proposed 

method G-PAYN has outperformed more 

than half of the experiments in terms of 

success rate by a significant margin (0.3 and 

0.15 gap) and achieved equivalent results in 

virtually all of the remaining cases. 

Additionally, G-PAYN has a faster execution 

time than the other DRL baselines 

1- The presented method relies on 

automatically gathered demos 

and an initial grasp stance created 

by an external algorithm, which 

may not be the suitable and most 

effective way to learn the task. 

2- The training was conducted 

solely in a simulation 
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environment, and it may not 

perform as effectively in a real-

world scenario, despite the 

assertion that their policies can be 

implemented on an actual robot 

without necessitating any 

modifications to the action and 

state spaces. 

[76] 2023 DQN 

1- Success Rate (SR) 

2- Grasping Success 

(GS) 

In a simulation environment using a V-REP 

simulator, the proposed approach, known as 

C&S (Grasping and Sliding), has been 

evaluated for its performance by comparing 

it with a deep learning baseline framework 

as follows: 

1- Comparing the C&S approach with a 

deep-learning-only-based supervised 

binary classification approach. The 

C&S achieved a success rate of 

approximately 84%, while the binary 

classification approach attained a 

success rate of around 57%. 

2- Comparing the C&S approach with 

another C&S approach that utilized 

the ResNet-101 architecture pre-

trained on ImageNet. The original 

C&S approach outperformed the 

ResNet-based approach by a margin of 

approximately 13%. 

3- Comparing the C&S approach with 

another C&S approach in which the 

reward allocation for non-prehensile 

manipulations was discontinued. 

Removing this component led to a 

performance degradation of around 

22% in terms of SR. 

4- Comparing the C&S approach with 

another C&S approach that omitted 

the use of depth channels. The results 

indicated that the SR dropped by 

approximately 51% over a period of 

3000 episodes. 

5- Finally, evaluating the performance of 

the original C&S approach under 

unseen circumstances, categorized into 

four scenarios: In minimum clutter, 

C&S achieved a success rate of 84% 

and a grasping success of 96%. In 

medium clutter, the success rate was 

82%, with a grasping success of 95%. 

In maximum clutter, C&S achieved a 

success rate of 74% and a grasping 

success of 82%. In complicated 

scenarios, the success rate reached 

65%, with a grasping success of 73%. 

The article acknowledges several 

limitations of the proposed approach 

which are: 

1- The agent underwent training 

using a restricted set of 3D block 

shapes, but its potential could be 

augmented and expanded to 

encompass items frequently 

encountered in daily life, such as 

bottles, cups, and balls. 

2- The concatenation factor of the 

feature map in DenseNet-121 

could potentially be considered a 

limitation. 

3- The approach involves only a 

sequential combination of robotic 

manipulations, and it could 

benefit from an increased number 

of actions and the introduction of 

parallel robotic manipulation 

combinations, including novel 

techniques like stacking, rolling, 

and rotating.  

4- As the system scales, issues 

related to the overestimation of 

future rewards could potentially 

arise. 

[77] 2023 SAC and PPO Success Rate (SR) 

The simulation environment has been 

divided into three parts: 

1. “Panda reach and Panda grasp with 

dense rewards”: 

 Both PPO and SAC achieved a 100% 

SR on the reach task. 

 For the grasp task, PPO achieved an 

89% success rate, while SAC achieved 

a 92% success rate. 

There are several limitations to the 

proposed model: 

1- Differences in geometry between 

the simulation and real-world 

environments could necessitate 

modifications to the target objects 

to achieve a better match. 

2- Not implementing a more 

effective sim-to-real transfer 

method resulted in high 
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2. “Panda reach and Panda grasp with 

sparse rewards”: 

 • Both PPO and SAC achieved a 100% 

SR on the reach task. 

 • For the grasp task, PPO achieved a 

90% success rate, while SAC achieved 

a 95% success rate. 

3. “Panda pick-and-place with dense 

rewards”: 

 PPO achieved an 85% success rate, 

while SAC achieved a 71% success 

rate. 

In the real-world environment, which has 

been divided into two parts: 

1. “Panda reach and Panda grasp with 

dense rewards”: 

 • Both PPO and SAC achieved a 90% 

SR on the reach task. 

• For the grasp task, PPO achieved a 

70% success rate, while SAC achieved 

an 80% success rate. 

2. “Panda pick-and-place with dense 

rewards”: 

 • PPO achieved a 70% success rate, 

while SAC achieved a 60% success 

rate. 

computational costs and reduced 

environmental accuracy. 

3- The absence of positional sensing 

in real-world target blocks to 

ensure alignment with their 

simulated counterparts during 

training tasks. 

4- The authors did not compare the 

use of these algorithms to other 

RL algorithms or traditional 

control strategies. 

5- The approach employed a single 

robot arm for reach, grasp, and 

pick-and-place tasks. While the 

results are promising, it remains 

unclear how well the approach 

would generalize to other types of 

robots or tasks. 

5.2. Healthcare 

In recent years, healthcare applications have garnered considerable a�ention, owing 

to the substantial integration of artificial intelligence (AI) techniques, notably 

reinforcement learning (RL) [14,78]. As previously mentioned, RL is a subfield of machine 

learning that revolves around decision-making and control in dynamic environments. The 

growing interest in RL can be a�ributed to its capacity to optimize intricate processes and 

adapt to changing conditions within the healthcare sector. Consequently, RL has proven 

to be effective in addressing a variety of healthcare challenges [15,79–82]. Among the most 

recent and promising areas in healthcare is the resolution of cell growth problems, which 

hold critical significance in diverse healthcare applications like tissue engineering, 

regenerative medicine, and cancer treatment [79,83]. This review, therefore, concentrates 

on the topic of cell growth problems and explores the application of RL by scientists to 

solve such challenges. 

As may be known, all living organisms are composed of one or more cells, which 

serve as the building blocks of life [84]. Cells are the basic units of life that can perform all 

vital functions of an organism, such as metabolism, growth, and reproduction. They come 

in various shapes and sizes and can be single-celled or found in multicellular organisms. 

For the purposes of this review, two different types of cells were utilized. Yeast cells and 

mammalian cells are two distinct types of cells. Yeast cells are single-celled, eukaryotic 

organisms that are commonly used in fermentation processes such as brewing beer, 

baking, and biofuel production. On the other hand, mammalian cells are multicellular 

eukaryotic cells that form the tissues and organs of mammals. There are indeed several 

problems related to yeast cells and mammalian cells in terms of biotechnology, such as 

controlling the gene expression of the cells and the tolerance of yeast cells to different 

environmental conditions such as high temperature, as well as optimizing the conditions 

of culture for mammalian cells, such as nutrient concentrations, temperature, and other 

factors to achieve optimal growth rate. Therefore, this literature review will explore the 

current understanding and research on cells, with an emphasis on using machine learning 

approaches to identify and solve problems related to different types of cells. The topics 

covered will include the structure and function of cells, as well as recent advancements 

and discoveries in the field of biotechnology. This review will also examine challenges 
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and questions that remain to be addressed in the field of biotechnology, specifically 

related to the application of machine learning to cells. 

The authors of [85] describe a new approach for collecting accurate data on cells. The 

authors present an optimization of cell cycle measurement through the development of a 

multicell time-lapse imaging system. The system includes an integrated, motorized 

inverse microscope that is housed within a CO2 incubator to maintain optimal growth 

conditions. It also features CCD cameras for imaging, specialized illumination, steering 

electronics, a computer, and a control system. This protocol is distinct from previous 

methods in that it does not impose a time limit on cell growth, enabling uninterrupted 

observation and collection of data. The goal of this protocol is to measure the length of the 

cell cycle of individual HaCat cells using long-term scanning microscopy. The length of 

the prokaryotic cell cycle varies depending on the complexity of the organism. To 

understand the processes involved in the mammalian cell cycle, the authors provide a 

detailed description of cell cycle division and its subphases. This includes the division of 

the nucleus (mitosis) and the separation of the two daughter cells (cytokinesis). Mitosis is 

the first part of cell cycle division, in which the cell divides into two new nuclei with 

replicated chromosomes, while cytokinesis is the process of physically dividing the cell 

into two daughter cells. Additionally, the first cell cycle includes the phases G1, S, G2, 

where G1 and G2 are the variables of the division and S and M are the constants of the 

cycle. Understanding the duration of the cell cycle has implications for mass protein 

production in the food industry, reducing cell growth to aid in cancer treatment, and 

determining the cell cycle length. In this protocol, the authors aim to determine the cell 

cycle length of HaCat cells using a long-term scanning microscopy. They used two HaCat 

cell cultures from a frozen cell stock under similar conditions, starting the experiment at 

4 pm in the afternoon. They a�empted to measure the phase of the cell cycle length during 

the first cell cycle growth, with a duration of 17 h. They then used time-lapse microscopy, 

which can extend to 2 days and last for 2 weeks, based on cell division. They set up four 

congruent imaging systems inside a CO2 incubator, one for control and the others for cell 

treatments. They also installed suitable software to divide the computer screen into two 

parts to visualize both cell cultures, turned on autofocus for high-quality images, and 

adjusted image acquisition parameters for maximal gray-scale dynamic range resolution. 

Finally, they converted the images taken every minute into a video file by speeding up the 

exposures from 1 s to 30 s. 

The authors of [86] introduce a new long-term scanning-perfusion platform that 

addresses the limitations of current methods in cell culture. The platform includes features 

such as replacing an old medium with a fresh medium, avoiding physical contact with the 

cells, providing uninterrupted imaging of single cells, and maintaining near-physiological 

conditions for several weeks. The system was validated using serum starvation and 

chemical induction of cell cycle arrest in HaCaT cells. The perfusion operation used in this 

platform aims to improve cell productivity in bioreactors, reduce waste of nutrients, and 

eliminate the side effects of high flow rate without removing cells from the bioreactors. 

The system includes time-lapse video microscopy, electronic steering, and a computer 

system. The perfusion subsystem is used to protect the cells during experiments and 

observe them for several generations without physical contact. The TL microscopy 

subsystem includes an inverse microscope, a high-sensitivity camera, specialized 

illumination, and a control unit. The system is controlled by the open-source software Fiji, 

which is used for quantitative image analysis. 

The previous two articles introduced a new system for collecting data on cellular 

processes using time-lapse microscopy. However, this method can be quite labor-

intensive, as the segmentation of the acquired data necessitates a considerable investment 

of time and laborious manual work. Therefore, [87] presents a new approach for 

automatically identifying and tracking individual yeast cells in time-lapse microscopy. 

The authors developed a software tool that generates synthetic images of budding yeast 

cells, which can be employed to train a convolutional neural network (Mask R-CNN) for 
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instance segmentation. The synthetic images are designed to mimic brightfield images of 

yeast cells and are used to bypass the laborious process of manually annotating large 

datasets. The authors additionally employed a DBSCAN algorithm to monitor the 

segmented cells throughout the various frames of the microscopy movie. The combination 

of Mask R-CNN with DBSCAN yielded outcomes equivalent to the current state-of-the-

art instrument in the domain, YeaZ. The utilization of artificial data in the advancement 

of CNN-based instruments for the observation of budding yeast can result in the 

generation of more potent, broadly applicable, and user-friendly image-processing 

instruments for this particular microorganism. 

Having discussed the use of real and synthetic cell data in different machine learning 

methods, it is important to further explore the issues related to cell movement, division, 

aging, and migration, among others. The authors of [88] present a method that combines 

DRL with an agent-based modeling (ABM) framework to model cell movement in the 

early stage of C. elegans embryogenesis. The ABM framework is used to depict basic cell 

behaviors, including cell fate, division, and migration in wild-type C. elegans. The study 

focuses on modeling single cell movement, and the authors employ the phrases 

“migration cell” and “environment cell” to differentiate the cell that acquires knowledge 

of its migratory route from those cells that rely on the dataset of observations to navigate. 

The authors also use a DQN algorithm to acquire knowledge of the best path for cell 

migration under certain regulatory processes. The objective of the investigation is to 

furnish a novel instrument for investigating extensive datasets produced by real-time 

imaging and to acquire a more comprehensive comprehension of cellular processes and 

behavior. 

To continue discussing the cell movement problems, the article in [89] presents a new 

method for understanding cell–cell interactions and collective cell behaviors in tissue 

development using 3D time-lapse images. This method utilizes HDRL, a technique known 

for its ability to learn at multiple scales and handle large amounts of data, to analyze cell 

movements and infer underlying biological mechanisms. The HDRL is divided into two 

levels, a lower level where a CNN extracts features from the environment of the migrating 

cell to examine the images, and a higher level where the extracted features are used to 

form a policy network that guides the migration cell. This method is implemented in the 

study of C. elegans embryogenesis, where it elucidates a multiphase and modular 

structure of cellular locomotion, which is confirmed by additional cellular markers. The 

approach generates a transferable framework that effectively distinguishes sequential 

migration based on rose�es from alternative methods. HDRL is verified to be an effective 

tool for creating models of dynamic cellular activity that can be learned from minimal 

input data and rules. It can also be used to uncover new characteristics of cells and tissues 

without prior knowledge. 

As seen above, cell biology, microbiology, and artificial intelligence are 

interdisciplinary fields that can be combined to offer valuable assistance in experiments 

and studies involving cell cultures. The objectives of this study focus on the development 

of a methodology for a hybrid system that can be used in a number of areas of cellular 

and microbiological research. Such areas could be related to crop production, food 

industry, pharmaceutical research or patient care. Experiments on cell or tissue cultures 

are frequently conducted, and they can be automated by using AI technology. An AI agent 

can perform interventions on the cell culture under investigation through a microscope 

coupled to a robotic perfusion system. 

6. Challenges, Conclusions, and Future Directions 

This paper explores the significance of reinforcement learning (RL) in the realms of 

robotics and healthcare, considering various criteria. The discussion commences with a 

fundamental RL overview, elucidating the Markov Decision Process and 

comprehensively covering RL aspects, distinguishing between model-based and model-

free, value-based and policy-based, and on-policy and off-policy approaches. This study 
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delves deeply into RL algorithms, presenting a comprehensive overview of dynamic 

programming (DP), Monte Carlo (MC), and temporal difference (TD), including its two 

approaches, SARSA and Q-learning. Furthermore, a thorough comparison of RL 

algorithms is provided, summarizing their characteristics and delineating differences 

based on criteria such as bias, variance, computational cost, and convergence. 

This systematic review then turns to RL applications in both robotics and healthcare 

fields. In robotics, the focus is on object grasping and manipulation, crucial across various 

domains, from industrial automation to healthcare. In contrast, the healthcare sector 

tackles cell growth and culture issues, which have garnered increasing a�ention in recent 

years, significantly contributing to modern life science research. These applications are 

indispensable for investigating new drug candidates, toxicological characterization of 

compounds, and studying a broad spectrum of biological interactions through laboratory-

cultured cells. For both applications, this review analyzes the most recent influential 

papers, assessing their methods and results, and discussing the challenges and limitations 

encountered. This comprehensive and systematic review of reinforcement learning in the 

fields of robotics and healthcare serves as a valuable resource for researchers and 

practitioners, expediting the formulation of essential guidelines. 

Besides what has been mentioned above about RL and its algorithms and 

applications, RL still faces several technical challenges in both applications discussed in 

Section 4. These challenges hinder the development of algorithms that could properly 

target the actual goal. Therefore, the challenges are divided into two parts based on each 

application. Robotic grasping and manipulation have many key challenges, including 

dexterity and control, sample efficiency, sparse rewards, and sim-to-real transfer policies 

[12,13,90–92]. 

The dexterity and control challenge in RL grasping tasks consists of how to address 

the complexity of enabling a robotic system to manipulate with finesse, precision, and 

adaptability [93–95]. The ability to alter the placement and alignment of an item, moving 

it from its original location to a different one, can be described as dexterity manipulation 

[93]. Therefore, this challenge includes several components, such as fine motor skills that 

enable the control of the robotic fingers or gripper with high precision. This capability is 

a real challenge for performing delicate movements to grasp objects of varying shapes and 

sizes [96]. This leads to adaptability to the variations in an object’s shape, size, weight, and 

material properties; therefore, the robot needs to adapt its grasping strategy to handle this 

diversity [68]. Moreover, the robotics system control has to balance between trajectory 

control and force control, where each type has its properties and goals. For more detail in 

this part, we refer to [93]. 

Another challenge is sample efficiency, considered a critical step toward learning 

effective grasping strategies. In other words, sample efficiency represents the ability of RL 

algorithms to acquire a good policy with as few samples as possible [90]. However, 

collecting these samples can be resource-intensive and time-consuming, even though it 

improves the success rate [12]. Sample efficiency encompasses several factors in achieving 

it in grasping tasks, such as high-dimensional state and action spaces [97], safety concerns 

[90], cost of exploration [98], and the simulation and real-world environment gap [99]. 

High-dimensional state and action spaces refer to the state spaces in the robot’s joint 

angles, object positions, and other environmental variables. Simultaneously, the action 

space refers to the actions that the robot takes and the exploration step that could lead to 

inefficiency in sample usage, which is itself considered a complex task. For safety 

concerns, which could involve objects or the robot itself, avoiding damages is crucial, 

limiting the number of samples that can be collected. Moreover, the disparity between the 

simulation and the real-world environment remains a challenge, and most recent studies 

have faced this issue [75–77]. The samples used in the simulation environment could lead 

to a good policy that may not transfer well to the real world due to variations in the 

samples, necessitating the collection of more samples for fine-tuning. 



Sensors 2024, 24, 2461 37 of 41 
 

 

As mentioned in Section 4.2, the reward function constitutes a fundamental 

component of the reinforcement learning formulation, which evaluates the agent’s actions 

and can provide positive or negative rewards. Therefore, reward design is a crucial 

challenge for robotic grasping tasks, guiding the learning agent in acquiring effective 

grasping policies [12,90,97]. Rewards can be issued at the end of each time step (called a 

dense reward) [100,101], or at the end of each episode (called a sparse reward) [102,103]. 

Usually, grasping tasks involve sparse rewards, posing a challenge in determining which 

actions contribute to successful grasps. Simultaneously, the reward function must balance 

between exploration and exploitation, as the agent needs to explore novel actions while 

considering actions proven to be effective. Moreover, the reward function must consider 

safety issues by avoiding actions that may lead to collisions and discouraging actions that 

could damage the robot or objects. Therefore, all these reasons may lead to slow learning 

and facing many difficulties in generalizing grasping strategies among different objects. 

For more information, please refer to [90,97]. 

Last but not least, the sim-to-real transfer challenge in RL for robotics grasping tasks 

refers to the complexity of effectively applying policies learned in simulation 

environments to real-world environments [12,99,104]. Even though the simulation 

environment facilitates the acceleration of the training process, the real challenge is 

ensuring that the policies learned can generalize and perform well when deployed on real 

robotic systems [105]. Several key challenges are associated with sim-to-real transfer 

policies in RL with robotics grasping, including the reality gap, sample efficiency, and 

sensor mismatch [99]. Concerning the reality gap, differences between the simulation and 

real-world environments, such as variations in object shapes, sizes, and textures, may lead 

to a reality gap between the simulation and the real-world environment. Sample efficiency 

has been discussed above. Furthermore, sensor mismatch refers to the ability of simulated 

sensors to imitate the noise and characteristics of real-world sensors, which may lead to 

difficulties in adapting the policy obtained in a simulation environment to be transferred 

into a real-world environment. For more information, we refer to [99]. 

On the other hand, cell growth and culture issues face similar challenges as discussed 

above in terms of dexterity and control, sample efficiency, sparse rewards, and sim-to-real 

transfer policies. Regarding the limitations in the recent studies that focused on this topic, 

as we mentioned in Section 5.2, these challenges remain unsolved and need further 

investigations, particularly in collecting the data and sim-to-real transfer. 

Finally, most crucially, and based on the findings of this study, there are various 

future research recommendations for both applications. First, the enhancement of sample 

efficiency is paramount due to the fact that most of the reinforcement learning algorithms 

necessitate more samples to acquire a specific task. Therefore, one of the main future 

directions is to develop algorithms that work with fewer samples. Second, the issue of 

real-time control arises as a major concern since most reinforcement learning algorithms 

reveal a noticeable lag for real-time controls [13]. Therefore, working towards enhancing 

the acceleration of these algorithms will enable their seamless utilization in both 

applications easily. Third, more than one algorithm or strategies of reinforcement learning 

need to be integrated to handle varying levels of uncertainty and noise in sensory data. 

This may lead to a robust algorithm that could overcome these problems by using 

hierarchical reward shaping, adaptive learning, and transfer learning problems. 
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