

Sensors 2024, 24, 2461. https://doi.org/10.3390/s24082461 www.mdpi.com/journal/sensors

Review

Reinforcement Learning Algorithms and Applications in

Healthcare and Robotics: A Comprehensive and

Systematic Review

Mokhaled N. A. Al-Hamadani 1,2,3,*, Mohammed A. Fadhel 4, Laith Alzubaidi 4,5,6 and Harangi Balazs 1

1 Department of Data Science and Visualization, Faculty of Informatics, University of Debrecen,

H-4032 Debrecen, Hungary; harangi.balazs@inf.unideb.hu
2 Doctoral School of Informatics, University of Debrecen, H-4032 Debrecen, Hungary
3 Department of Electronic Techniques, Technical Institute/Alhawija, Northern Technical University,

36001 Kirkuk, Iraq
4 Research and Development Department, Akunah Company, Brisbane, QLD 4120, Australia;

mohammed.a.fadhel@uoitc.edu.iq (M.A.F.); l.alzubaidi@qut.edu.au (L.A.)
5 School of Mechanical, Medical, and Process Engineering, Queensland University of Technology,

Brisbane, QLD 4000, Australia
6 Centre for Data Science, Queensland University of Technology, Brisbane, QLD 4000, Australia

* Correspondence: alhamadani.mokhaled@inf.unideb.hu

Abstract: Reinforcement learning (RL) has emerged as a dynamic and transformative paradigm in

artificial intelligence, offering the promise of intelligent decision-making in complex and dynamic

environments. This unique feature enables RL to address sequential decision-making problems with

simultaneous sampling, evaluation, and feedback. As a result, RL techniques have become suitable

candidates for developing powerful solutions in various domains. In this study, we present a

comprehensive and systematic review of RL algorithms and applications. This review commences

with an exploration of the foundations of RL and proceeds to examine each algorithm in detail,

concluding with a comparative analysis of RL algorithms based on several criteria. This review then

extends to two key applications of RL: robotics and healthcare. In robotics manipulation, RL

enhances precision and adaptability in tasks such as object grasping and autonomous learning. In

healthcare, this review turns its focus to the realm of cell growth problems, clarifying how RL has

provided a data-driven approach for optimizing the growth of cell cultures and the development of

therapeutic solutions. This review offers a comprehensive overview, shedding light on the evolving

landscape of RL and its potential in two diverse yet interconnected fields.

Keywords: reinforcement learning; dynamic programming; Monte Carlo; temporal difference; cell

growth; object grasping and manipulation

1. Introduction

Today, artificial intelligence (AI) is present in all areas of life and helps to operate in

an increasingly dynamic way in line with its evolving capabilities. In the pursuit of

creating machines that can think and learn autonomously, without human intervention,

we have reached the crossroads of artificial intelligence (AI) and reinforcement learning

(RL) [1,2]. As Alan Turing once said, “A machine that could learn from its own mistakes,

now there’s a thought” [3]. Therefore, this “thought” has evolved into reality when RL

illuminates the path to intelligent machines capable of autonomous decision-making and

complex problem-solving [4].

RL is one of the machine learning branches that has gained tremendous a�ention in

recent years [5]. RL’s goal is to allow machines to learn through trial and error, which

surpasses all the other methods. More precisely, RL agents learn to map the optimal

Citation: Al-Hamadani, M.N.A.;

Fadhel, M.A.; Alzubaidi, L.;

Balazs, H. Reinforcement Learning

Algorithms and Applications in

Healthcare and Robotics: A

Comprehensive and Systematic

Review. Sensors 2024, 24, 2461.

h�ps://doi.org/10.3390/s24082461

Academic Editors: Antonio

Fernández-Caballero and

Dominique Gruyer

Received: 1 March 2024

Revised: 4 April 2024

Accepted: 8 April 2024

Published: 11 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Swi�erland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

A�ribution (CC BY) license

(h�ps://creativecommons.org/license

s/by/4.0/).

Sensors 2024, 24, 2461 2 of 41

situations to actions and this is what is called optimal policy. These actions have to obtain

the highest reward. Although these actions may not affect the current reward, they may

affect the subsequent rewards. Therefore, the reinforcement learning problem features can

be distinguished by the actions and the subsequent outcomes of these actions which could

include the reward signals [6]. Moreover, RL tries to imitate the mechanism of human

learning, which is considered to be a step towards artificial intelligence [7].

In reinforcement learning problems, an agent engages in interactions with its

environment. The environment, in turn, provides rewards and new states based on the

actions of the agent. In reinforcement learning, the agent is not explicitly taught what to

do; instead, it is presented with rewards based on its actions. The primary aim of the agent

is to maximize its overall reward accumulation throughout time by executing actions that

yield positive rewards and refraining from actions that yield negative rewards.

Reinforcement learning differs from other categories of machine learning, namely

supervised, unsupervised, and semi-supervised learning. RL learns through a process of

trial and error that aims to maximize the cumulative reward of an action in any given

environment. Traditional machine learning branches can be specified as shown in Figure

1. Supervised learning: This method involves learning from a training dataset labeled with

desired results [8,9]. It is the most common learning approach in the machine learning

field. The objective is to generalize the model so that it can perform effectively on data not

present in the training set. Unsupervised learning: This method operates with unlabeled

data, unlike supervised learning. It is more challenging as it lacks actual labels for

comparison. The model a�empts to learn the characteristics of the data and then clusters

these data samples based on their similarities [10]. Semi-supervised learning: This type is

a combination of supervised and unsupervised learning. The dataset is partially labeled,

while the rest is unlabeled data [11]. The goal is to cluster a large amount of the unlabeled

data using unsupervised learning techniques and then label them based on supervised

techniques.

Figure 1. Machine learning branches.

Reinforcement learning presents several distinctive challenges that set it apart from

other machine learning approaches. These challenges involve aspects like managing the

trade-off between exploration and exploitation to maximize the cumulative reward and

addressing the broader issue of an agent interacting with an unfamiliar environment [6].

Before delving deeply into our review paper, it is essential to present recent survey

and review papers that are related to reinforcement learning in robotics manipulation and

healthcare (cell growth problems). Table 1 summarizes their contributions and highlights

the differences between their work and ours. In [12], a systematic review of deep

reinforcement learning (DRL)-based manipulation is provided. The study

comprehensively analyzes 286 articles, covering key topics such as grasping in clu�er,

sim-to-real, learning from demonstration, and other aspects related to object

Sensors 2024, 24, 2461 3 of 41

manipulation. The review explores strategies for data collection, the selection of models,

and their learning efficiency. Additionally, the authors discuss applications, limitations,

challenges, and future research directions in object grasping using DRL. While our work

in the robotics section broadly covers object manipulation using RL approaches, this study

specifically focuses on DRL, offering a nuanced examination of approaches and their

limitations. In [13], the authors conduct an extensive examination of deep reinforcement

learning algorithms applied to the field of robotic manipulation. This review offers a

foundational understanding of reinforcement learning and subsequently places a specific

focus on deep reinforcement learning (DRL) algorithms. It explores their application in

tackling the challenges associated with learning manipulation tasks, including grasping,

sim-to-real transitions, reward engineering, and both value-based and policy-based

techniques over the last seven years. The article also delves into prominent challenges in

this field, such as enhancing sample efficiency and achieving real-time control, among

others. Nevertheless, it is worth noting that this study does not offer a detailed analysis of

the results of these techniques, whether in simulation or real-world scenarios, as is

undertaken in the present review. In [14], the authors aim to provide an extensive survey

of RL applications to various decision-making problems in healthcare. The article

commences with a foundational overview of RL and its associated techniques. It then

delves into the utilization of these techniques in healthcare applications, encompassing

dynamic treatment regimes, automated medical diagnosis in structured and unstructured

data, and other healthcare domains, including health resource scheduling and allocation,

as well as drug discovery and development. The authors conclude their work by

emphasizing the most significant challenges and open research problems while indicating

potential directions for future work. Our work distinguishes itself from this study in terms

of its specific focus on RL techniques and healthcare applications, which take a particular

direction concerning cell growth problems. Finally, in [15], the authors discuss the impact

of RL in the healthcare sector. The study offers a comprehensive review of RL and its

algorithms used in healthcare applications. It highlights healthcare applications grouped

into seven categories, starting with precision medicine and concluding with health

management systems, showcasing recent studies in these areas. Moreover, the authors

employ a statistical analysis of the articles used to illustrate the distribution of articles

concerning various terms, including category and approach. Lastly, the study explores the

strengths and challenges associated with the application of RL approaches in the

healthcare field.

Table 1. Comparisons with existing reviews.

Ref. Type of Paper Year Coverage Databases Used

Taxono

my-

Based

Integrated Using RL

Algorithms and Applications

(Robotics and Healthcare)

[12] Review paper 2016 to 2020
WoS, SD, IEEEXplore, and

arXiv
 ×

[13] Survey 2015 to 2022
Google Scholar, IEEE

Xplore, or ArXiv
 ×

[14] Survey 1970 to 2020 N/A × ×

[15] Survey 1957 to 2019 N/A ×

Our

review

paper

A comprehensive

and systematic

review

2021 to 2023
(SD), (IEEE), (WoS), Scopus,

and others

Therefore, this study distinguishes itself from the above review/survey papers by

employing a combination of comprehensive and systematic reviews. It emphasizes the

following key aspects:

Sensors 2024, 24, 2461 4 of 41

 This study offers a fundamental overview of reinforcement learning and its

algorithms.

 It conducts a comparative analysis of RL algorithms based on various criteria.

 The applications covered in this review encompass both the robotics and healthcare

sectors, with specific topics selected for each application. In the realm of robotics,

object manipulation and grasping have garnered considerable a�ention due to their

pivotal roles in a wide range of fields, from industrial automation to healthcare.

Conversely, for healthcare, cell growth problems were chosen as a focus area. This

topic is of increasing interest due to its significance in optimizing cell culture

conditions, advancing drug discovery, and enhancing our understanding of cellular

behavior, among other potential benefits.

The remainder of this paper is organized as follows: Section 2 outlines the

methodology employed in this study. Section 3 illustrates the comprehensive science

mapping analysis for all the references used in this review. Section 4 introduces RL and

its algorithms. Section 5 reviews recent articles on two RL applications, elucidating their

challenges and limitations. Finally, Section 6 contains the conclusion and future directions

of this review.

2. Methodology

This review paper is structured into two distinct sections, as illustrated in Figure 2.

The first part is a comprehensive review, which is a traditional literature review with the

objective of offering a broad overview of the existing literature on a specific topic or subject

[16]. This type of review, also known as a literature review or narrative review, can

encompass various sources, including peer-reviewed original research, systematic

reviews, meta-analyses, books, PhD dissertations, and non-peer-reviewed articles [17].

Comprehensive literature reviews (CLRs) have several advantages. They are generally

easier to conduct than systematic literature reviews (SLRs) as they rely on the authors’

intuition and experience, allowing for some subjectivity. Additionally, CLRs are shaped

by the authors’ assumptions and biases, which they can openly acknowledge and discuss

[18]. Consequently, the initial part of this review offers a highly comprehensive

introduction to reinforcement learning and its components. Subsequently, this review

delves into the specifics of RL algorithms, highlighting their differences based on various

criteria.

Figure 2. Structure layout of our review paper.

The second part of this paper is a systematic literature review (SLR), which follows a

rigorous and structured approach to provide answers to specific research questions or

address particular problems [19]. Systematic reviews are commonly employed to confirm

Sensors 2024, 24, 2461 5 of 41

or refute whether current practices are grounded in relevant evidence and to assess the

quality of that evidence on a specific topic [20] An SLR is an evaluation of the existing

literature that adheres to a methodical, clear, and replicable approach during the search

process [17]. This methodology involves a well-defined research question, predefined

inclusion and exclusion criteria, and a comprehensive search of relevant databases, often

restricted to peer-reviewed research articles meeting specific quality and relevance criteria

[21]. What sets SLRs apart from CLRs is their structured, replicable, and transparent

process, guided by a predefined protocol. Consequently, the remainder of the paper,

focusing exclusively on RL applications, including those in robotics and healthcare,

adheres to the systematic review process. This approach involves concentrating on

specific topics and analyzing articles to generate evidence and answers for those specific

questions or topics.

This study has collected articles following the systematic review procedures outlined

in Figure 3 [22,23]. The PRISMA statement, which is known as Preferred Reporting Items

for Systematic Reviews and Meta-Analysis, was adopted to carry out a systematic review

of the literature. The review process in this study involved queries from multiple

reputable databases, including Science Direct (SD), IEEE Xplore digital library (IEEE),

Web of Science (WoS), and Scopus. Additionally, other papers, PhD dissertations, and

books were selected from ArXiv, PubMed, ProQuest, and MIT Press, respectively. The

search for publications encompassed all scientific productions up to December 2023.

Figure 3. An outline of the approach of selecting studies, search query, and inclusion criteria.

Sensors 2024, 24, 2461 6 of 41

2.1. Search Strategy

A comprehensive review was performed of the articles in the mentioned databases

above. This article employed a Boolean query (conclude OR, AND) to establish a

connection between the keywords for each part of the review. The search strategy for this

comprehensive review includes this query (“Reinforcement Learning” OR “RL”) AND

(“RL algorithms”) AND (“RL algorithms applications”). The search strategy for this

systematic review incorporates the following query: (“RL” OR “DRL” OR “DQRL”) AND

(“Robotics Grasping” OR “Robotics Manipulation”). The other query is identical, with the

only difference being the replacement of (“Robotics” with “Cell Growth” OR “Cell

Movements” OR “Yeast Cells”). The collected articles for this systematic review from

databases were published from 2022 to December 2023.

2.2. Inclusion and Exclusion Criteria

The inclusion criteria for this study encompass articles wri�en in the English

language and presented to reputable journals and conferences. The primary focus of this

study involves reinforcement learning (RL) and RL algorithms, with specific a�ention to

applications in robotics and healthcare. In healthcare, we concentrate on issues related to

cell growth in yeast and mammalian cells. Conversely, the exclusion criteria encompass

articles not composed in the English language and those lacking clear descriptions of

methods, strategies, tools, and approaches for utilizing RL in these applications.

2.3. Study Selection

The selection process has been conducted based on the PRISMA statement for

conducting a systematic review of the literature [22,23]. The articles were collected using

Mendeley software (v2.92.0) to scan titles and abstracts. Research articles meeting the

inclusion criteria mentioned in Section 2.2 were fully read by the authors.

In the initial search, a total of 710 studies were obtained, comprising 485 from SD, 120

from Scopus, 35 from IEEE, 42 from WoS, and 28 from other sources. The included articles

in this study were disseminated starting from the initiation of scientific production until

December 2023. Approximately 130 duplicate articles were eliminated from the databases,

reducing the total number of articles to 580 contributions. During the screening phase of

the titles and abstracts, 502 articles were excluded. In the full-text phase, 50 studies were

deemed irrelevant, and the remaining 28 articles were selected according to the inclusion

criteria. The following section explores the utilization of various bibliometric methods for

analyzing the selected studies.

3. Comprehensive Science Mapping Analysis

The proliferation of contributions and the implementation of practical research made

the task of identifying crucial evidence from previous studies more arduous. Keeping up

with the literature became a considerable problem due to the extensive flow of practical

and theoretical contributions. A number of scholars have proposed using the PRISMA

methodology to restructure the results of prior research, condense issues, and pinpoint

promising areas for further investigation. Systematic reviews, on the other hand, have the

objective of broadening the knowledge base, improving the study design, and

consolidating the findings of the literature. Nevertheless, systematic reviews encounter

challenges regarding their credibility and impartiality since they depend on the authors’

perspective to rearrange the conclusions of prior investigations. In order to enhance the

clarity in summarizing the findings of prior research, a number of studies have proposed

techniques for carrying out a more thorough scientific mapping analysis using R-tool and

VOSviewer [24]. The bibliometric technique yields definitive outcomes, investigates areas

of study that have not been addressed, and presents the findings of the existing literature

with a high degree of dependability and clarity. Moreover, the tools given in this context

do not need significant expertise and are regarded as open source. Consequently, this

Sensors 2024, 24, 2461 7 of 41

research has used the bibliometric technique, which will be thoroughly explained in the

subsequent subsections. The science mapping analysis demonstrates notable pa�erns of

expansion in the field of reinforcement learning. The annual publication tally increased

consistently, albeit with fluctuations, from one in 1950 to thirteen in 2023. Reputable

publications such as Proceedings of the National Academy of Sciences received numerous

citations. The literature is predominantly characterized by the prevalence of usual terms

like “reinforcement learning” and “machine learning”. The word cloud emphasizes

critical concepts such as ‘control’ and ‘algorithms’. Through the identification of clusters

of related terms, co-occurrence network analysis reveals both fundamental and

specialized concepts. In general, the analysis offers significant insights into the dynamic

field of reinforcement learning investigation.

3.1. Annual Scientific Production

The discipline of reinforcement learning has observed significant advancements in

the last decade. Figure 4 displays the yearly scientific output, measured by the number of

papers, in a specific study domain spanning from 1950 to 2024. The data may be analyzed

and examined using the following methods:

General trajectory: The general trajectory shows a consistent increase, as the annual

publication count has risen from 1 in 1950 to 13 in 2023. Nevertheless, the data show

significant variations, with some years seeing a decline in output.

Early years: During the first time of the table’s existence (1950–1970), there was a

minimal amount of scholarly output, with a mere four publications published in total.

Indications point to the fact that the scientific area was in its nascent phase of advancement

during this period.

Growth era: The period spanning from 1971 to 1995 had a substantial surge in

scientific output, with a total of six publications produced throughout this timeframe. This

indicates that the study area was starting to acquire momentum and receive more

a�ention from scientists.

In the years spanning from 1996 to 2024, there has been a notable increase in scientific

productivity, resulting in the publication of 54 publications within this time frame. These

findings indicate that the research area has reached a state of maturity and is flourishing.

Figure 4. Annual Scientific Production.

Sensors 2024, 24, 2461 8 of 41

A three-field plot is a graphical representation used to exhibit data involving three

variables. In this specific instance, the left field corresponds to keywords (DE), the center

field corresponds to sources (SO), and the right field corresponds to Title (TI_TM). The

plot is often used for the analysis of the interrelationships among the three parameters

(refer to Figure 3). The analysis, identified in the middle sector (SO) of Figure 5, reveals

that the Proceedings of the National Academy of Sciences, IEEE Transactions on Neural

Networks and Learning Systems, and Computers and Chemical Engineering have

received the highest number of citations from the sources (TI_TM) situated on the left side.

The Proceedings of the National Academy of Sciences is the preeminent source that

specifically addresses the subject of reinforcement learning. In addition, it is

acknowledged in the field of DE that the most frequently used keywords across all

categories are ‘reinforcement learning’, ‘machine learning’, ‘optimal control’, ‘healthcare’,

‘deep learning’, and ‘artificial intelligence’. These keywords are also commonly found in

the journals listed in the middle field (SO).

Figure 5. Three-field plot: left (SO), middle (CR_SO), and right (DE).

3.2. Word Cloud

The use of word cloud has facilitated the identification of the most recurrent and

crucial terms in previous research. Figure 6 compiles the essential keywords extracted

from previous research results to provide a comprehensive overview and restructure the

existing knowledge.

The word cloud visually displays the predominant phrases used in a scientific work

pertaining to reinforcement learning (RL). The dominant words include reinforcement,

learning, algorithms, methods, control, data, decision, deep, environment, and model.

This study primarily emphasizes the advancement and utilization of RL algorithms and

methodologies for managing robots and other systems in intricate contexts.

This study also examines the use of reinforcement learning (RL) in the domains of

decision-making and task planning. Indicatively, this article pertains to a broad spectrum

of applications, including robotics and healthcare.

Based on the word cloud and table, it can be inferred that this article provides a

thorough examination of the current advancements in RL. This publication is expected to

captivate scholars and practitioners in the area of RL, as well as anyone intrigued by the

capacity of RL to address practical issues.

Sensors 2024, 24, 2461 9 of 41

Figure 6. World cloud.

3.3. Co-Occurrence

A co-occurrence network is another method used in bibliometric analysis. Previous

research studies have identified common terms and analyzed them using a semantic

network. This network offers valuable insights to professionals, policymakers, and

scholars on the conceptual framework of a certain area. Figure 7 specifically presents data

on a co-occurrence network that is constructed using the names of reinforcement learning

methods and applications.

Figure 7. Co-occurrence network.

The co-occurrence network Table 2 displays the associations among the most

prevalent phrases in a scholarly publication on reinforcement learning (RL). The nodes in

the table correspond to the terms, while the edges reflect the connections between the

terms. The words are categorized into clusters according to their interconnections. The

most prominent cluster shown in Figure 7 comprises the phrases reinforcement learning,

learning, algorithms, methods, and control. This cluster embodies the fundamental

principles of reinforcement learning. The phrases data, decision, applications, techniques,

and review are intricately interconnected with these fundamental principles. The

additional clusters shown in Figure 6 correspond to more specialized facets of

Sensors 2024, 24, 2461 10 of 41

reinforcement learning. For instance, the cluster including the phrases grasping,

manipulation, and robotic signifies the use of reinforcement learning (RL) in the context

of robotics applications. The cluster including the phrases deep learning, policy, and

reward signifies the use of RL for deep reinforcement learning. In general, the co-

occurrence network table offers a comprehensive summary of the main ideas and

connections in the scientific article on RL. Table 2 serves the purpose of discerning the

important words in the document, together with the interconnections among these

phrases. The co-occurrence network table serves as a tool to detect novel research

prospects in the field of reinforcement learning (RL) and to pinpoint regions that need

further investigation.

Table 2. Statistical representation of edge weights.

Node1 Node2 Edge Weight

reinforcement learning learning High

learning algorithms High

learning methods High

algorithms methods High

grasping manipulation High

manipulation robotic High

deep learning policy High

policy reward High

reinforcement learning algorithms Moderate

reinforcement learning methods Moderate

reinforcement learning control Moderate

learning control Moderate

algorithms control Moderate

methods control Moderate

grasping robotic Moderate

deep learning reward Moderate

4. Reinforcement Learning (RL)

Reinforcement learning has emerged from two essential fields: psychology, inspiring

trial-and-error search; and optimal control, using value functions and dynamic

programming [6,25]. The first field has been derived from the animal psychology of trial-

and-error learning. The concept of this learning started with Edward Thorndike [26].

Thorndike referred to this principle as the law of effect, describing how reinforcing events

influence the trajectory of selected actions. In other words, it implies that the agent should

take actions that yield the best rewards instead of facing punishment because the objective

of RL is to maximize the cumulative reward through the concept of trial and error. In the

second field, the ‘optimal control’ problem was proposed to devise a controller that

minimizes a measure of a dynamical system over a duration of time [27]. The optimal

control problem was introduced in the late 1950s for the same reasons mentioned earlier.

Richard Bellman developed one of the techniques for this problem, creating an equation

that utilizes the state of a dynamic system and a value function, widely recognized as the

Bellman equation, which serves to define a functional equation [28]. The Bellman equation

represents the long-term reward for executing a specific action corresponding to a

particular state of the environment. This equation will be subjected to an elaborate

analysis in Section 4.2.1. Furthermore, in 1957, Richard Bellman extended the work of

Hamilton and Jacobi to solve optimal control problems using the Bellman equation, giving

rise to what is known as dynamic programming [29]. Later in the same year, Bellman

introduced Markov Decision Processes (MDPs), a discrete stochastic version of the

optimal control problem. In 1960, Ronald Howard established policy iteration for Markov

Sensors 2024, 24, 2461 11 of 41

Decision Processes. Consequently, these two fields played a pivotal role in the

development of the modern field of reinforcement learning. For more details about the

history of RL, please refer to [6].

4.1. Reinforcement Learning Components

As previously stated, reinforcement learning is a subfield of machine learning that

teaches an agent to take an action in an unknown environment that maximizes the reward

over time. In other words, the purpose of RL is to determine how an agent should take an

actions in an environment to maximize the cumulative reward. Accordingly, we noticed

that RL has some essential components such as an agent, the program or algorithm that

one trains, or what is called a learner or decision maker in RL, which aims to achieve a

specific goal; an environment, which refers to the real-world problems or simulated

environment in which an agent takes an action or interacts; action(�), the move that an

agent makes in the environment which causes a change in the status; and a reward(ℛ),

which refers to the evaluation of the agent by taking an action that could give a positive

or negative reward. Moreover, it has some other important components such as state (�),

the place that an agent is located in in the environment; episode, the whole training process

phase; step (�), as each operation in an episode is a step time; and value (�), which refers

to the value of the action that agent takes from state to another. Furthermore, there are

three major agent components, as mentioned in [30] which are policy, value function, and

the model. Policy (�) refers to the agent behavior in the environment and which strategy is

used to reach the goal, whether it is stochastic or deterministic policy. The value function

(�) refers to the value of each state that has been reached by the agent to maximize the

reward and to evaluate the effectiveness of the states. Finally, the model refers to the

prediction algorithm or techniques that a�empt to predict the next state based on the next

immediate reward. To ensure consistency throughout the review paper, we primarily

follow the notation established by [6]. The following subsection thoroughly explores RL

and its algorithm categories, as shown in Figure 8. RL algorithms have been divided into

two categories, model-based and model-free algorithms, which will be explained in detail

in Section 4.3.1. Model-free algorithms are also divided into two parts, value-based and

policy-based algorithms, which will be clarified in Section 4.3.2. Additionally, value-based

algorithms are divided into two phases, on-policy and off-policy algorithms, as

demonstrated in Section 4.3.3. Moreover, a comprehensive review of RL algorithms

mentioned in Figure 8 is conducted in Section 4.4.

Figure 8. Taxonomy of reinforcement learning algorithms.

Sensors 2024, 24, 2461 12 of 41

4.2. Markov Decision Process (MDP)

The MDP is recognized by various names, including “sequential stochastic

optimization, discrete-time stochastic control, and stochastic dynamical programming”

[31]. For the purpose of reinforcement learning, the MDP represents a discrete-time

stochastic control mechanism that can be utilized to make decisions without the

requirement of prior knowledge of the problem’s history, as in Markov Property [6,32].

Consequently, most reinforcement learning problems can be formalized as an MDP and

can be solved with discrete actions. In other words, the MDP is a mathematical framework

for modeling decision-making situations in which the outcome of a decision is uncertain.

The MDP is similar to the Markov Reward Process but involves making decisions or

taking actions [33]. The formal definition of the MDP is a five-tuple of (�, �, �, ℛ, �) [34],

where:

� is a set of finite states that includes the environment.

� is the set of finite actions that an agent takes to go through all the states.

�(�, �, ��) is the transition probability matrix; it represents the trajectory of the agent

ending up in state �� after taking an action �.

ℛ(�, �, ��) is the reward function, which calculates the immediate reward after a

transition from state � to ��.

� and ℛ are slightly different with respect to actions, as shown in Equations (1) and

(2).

 ����
� = ℙ [���� = ��| �� = �, �� = �] (1)

ℛ�
� = � [����|�� = �, �� = �] (2)

� is the discount factor, determining the significance of both of the immediate and

future returns, where a discount factor � ∈ [0, 1].

At each step (�), the learning agent observes a state � from � , selects an action �

from � based on a policy � with parameters �, and with probability. �(��|�, �), moves

to the next state ��, receiving a reward �(�, �) from the environment.

In essence, the MDP operates as follows: the agent takes an action � from the current

state �, transitioning to another state ��, guided by the transition probability matrix �.

This iterative process persists until the agent reaches the final state with the highest

possible reward, as depicted in Figure 8. These procedures are contingent on the value

function of the state and the action, respectively. Through the value function, a policy

function is derived to guide the agent in selecting the best action that maximizes the

cumulative reward in the long run (Figure 9).

Figure 9. The MDP framework for modeling the interaction between an agent and its environment

[6].

Sensors 2024, 24, 2461 13 of 41

There are three different versions of Markov Decision Processes, which are used to

model decision-making situations with different characteristics. These versions include

fully observable MDPs (FOMDPs), partially observable MDPs (POMDPs), and semi-

observable MDPs (SOMDPs) [25,35]. Fully observable MDPs (FOMDPs) refer to MDPs in

which the agent possesses complete knowledge of the current state of the environment.

Conversely, partially observable MDPs (POMDPs) involve scenarios where the agent

lacks complete knowledge of the current state. In other words, the agent can only observe

a portion of the environment’s state at each time step and must use this limited

information for decision-making. Semi-observable MDPs (SOMDPs) are a variation of

POMDPs in which the agent has some knowledge of the environment’s state, but this

knowledge is incomplete and may be uncertain. In the following subsubsections, we will

cover all the materials related to solving MDPs.

4.2.1. Value and Policy Functions

Value functions are pivotal in all reinforcement learning algorithms as they estimate

the future reward that can be expected from a given state and action [36,37]. Specifically,

they measure the effectiveness of being in a specific state and taking a specific action, in

terms of expected future reward, also known as expected return. To be�er understand the

types of value and policy functions, it is essential to define the concept of return (denoted

as ��).

The return �� represents the cumulative reward that the agent receives through its

interactions with the environment, as depicted in Equation (3) [38]. It is calculated as the

sum of discounted rewards from time step �. The use of a discount factor is crucial to

prevent the reward from becoming infinite in tasks that are continuous in nature. The

agent’s objective is to maximize the expected discounted return, which balances the

importance of immediate rewards versus future rewards, as determined by the discount

factor.

�� = ���� + ����� + ������ + ⋯ = � ��������

�

���

(3)

Interacting with the environment requires updating the agent’s value function (�(�))

or action-value function (�(�, �)) under a specific policy [39]. The policy, represented as

�(�) → � , is a mapping between states and actions that guides the agent’s decisions

towards achieving the maximum long-term reward [38]. The policy determines the

behavior of the agent and can be stationary, meaning that it remains constant over time.

Mathematically, a policy can be defined in Equation (4) as follows:

�(�|�) = �[�� = �|�� = �] (4)

In reinforcement learning, the policy may manifest as deterministic or stochastic. A

deterministic policy always maps a state to a specific action, utilizing the exploitation

strategy. In contrast, a stochastic policy assigns different probabilities to different actions

for a given state, promoting the exploration strategy.

According to aforementioned the policy above, the value function can be partitioned

into two parts: the state-value function (�) and the action-value function (�) [40]. The state-

value function �� (�) represents the expected return for an agent starting in state � and

then acting according to policy � . �� (�) is determined by summing the expected

rewards at future time steps, with a given discount factor applied to each reward. This

function helps the agent evaluate the potential value of being in a particular state as shown

in Equation (5).

�� = �� [��|�� = �] = �� �� ��������|�� = �

�

���

� , for all � ∈ � (5)

Sensors 2024, 24, 2461 14 of 41

The action-value function �� (�, �) or Q-function represents the expected return for

an agent starting in state � and taking action �, then operating based on policy � [40].

�� (�, �) is determined by summing the expected rewards for each state action pair as

shown in Equation (6).

��(�, �) = ��[��| �� = �, �� = �] = �� �� ��������

�

���

� �� = �, �� = �� (6)

By defining the principles of MDP for a specific environment, we may apply the

Bellman equations to identify the optimal policy, as exemplified in Equation (7). These

equations, developed by Richard Bellman in the 1950s, are utilized in dynamic

programming and decision-making problems. The Bellman equation and its

generalization, the Bellman expectation equation, are utilized to solve optimization

problems where the la�er accommodates for probabilistic transitions between states.

�(�) = �[���� + ��(����)|�� = �] (7)

The state-value function can be decomposed into the immediate reward (����) at

time � + 1 and the discounted value of the successor state at time � + 1 (�(����))

multiplied by the discount factor (�). This can be wri�en as shown in Equation (8):

��(�) = ��[���� + ���(����)|�� = �] (8)

Similarly, the action-value function can be decomposed into the immediate reward

(����) at time � + 1 on performing a certain action in the state (�) and the discounted

value of the successor state at time � + 1 (�(����)) multiplied by the discount factor (�).

This can be wri�en as shown in Equation (9):

��(�, �) = ��[���� + ���(����, ����)|�� = �, �� = �] (9)

After the decomposition of the state-value function and action-value function as

described above, the optimal value functions can be obtained by finding the values that

maximize the expected return. This can be carried out through iterative methods such as

value iteration or policy iteration, which use the Bellman equations to update the value

functions until convergence to the optimal values. Therefore, for a finite MDP, there is

always one deterministic policy known as the optimal policy that surpasses or is

equivalent to all other policies. The optimal policy leads to the optimal state-value

function or the optimal action-value function. The optimal state value function is

calculated as the highest value function �(�) across all stationary policies as shown in

Equation (10):

�∗(�) = max
�

��(�) (10)

Likewise, the optimal action-value function is determined as the highest action-value

function �(�, �) overall policies, as shown in Equation (11):

�∗(�, �) = max
�

��(�, �) (11)

4.2.2. Episodic versus Continuing Tasks in RL

Reinforcement learning can be divided into two types of tasks: episodic and

continuing. Episodic tasks are decomposed into separate episodes that have a defined

endpoint or terminal state [41,42]. Each episode consists of a sequence of time steps

starting from an initial state and ending at the terminal state, and a new episode begins.

The objective of an episodic task is to maximize the total rewards obtained over a single

episode.

In contrast, continuing tasks have no endpoint or terminal state, and the agent

interacts with the environment continuously without any resets [41,42]. The continuing

Sensors 2024, 24, 2461 15 of 41

task aims to maximize the expected cumulative reward gained over an infinite time

horizon.

4.3. Types of RL Models

 This subsection introduces the differences between reinforcement learning models.

Therefore, to delve deeper into reinforcement learning algorithms and their applications,

it is important to understand the two categories they are divided into: model-free and

model-based reinforcement learning algorithms. Additionally, there are two primary

approaches in reinforcement learning for problem-solving, which are value-based and

policy-based, both of which can be categorized under model-free methods [43]. Lastly,

reinforcement learning algorithms can be categorized into two main types: on-policy and

off-policy learning [6].

4.3.1. Model-Based versus Model-Free RL Algorithms

Model-based reinforcement learning methods, also known as “Planning Model”, aim

to learn an explicit model of the environment in which a complete and accurate

understanding of how the environment works (a complete MDP), including the rules that

govern the state transitions and the reward structure [36]. This understanding is typically

represented as a mathematical model that describes the state transitions, the rewards, and

the probabilities associated with each action. In other words, model-based reinforcement

learning methods encompass the computation of action values through the simulation of

action outcomes using a mental map or model of the environment that includes the

environment’s various states, transition probabilities, and rewards [44,45]. The agent has

the capability to acquire a model of the environment through experiential learning,

enabling it to explore various trajectories of the map in order to choose the optimal action.

The benefit of model-based learning is the ease with which the map can be modified to

adapt to changes in the environment. However, this method is computationally expensive

and time requirements, which may not be ideal for time-sensitive decisions. This model

has several common algorithms, including model-based Monte Carlo and Monte Carlo

Tree Search.

In contrast, model-free methods directly learn the optimal policy without explicitly

modeling the environment’s dynamics, including the transition probabilities and the

reward function [36]. In other words, model-free reinforcement learning is a decision-

making approach where the value of various actions is learned through the process of

trial-and-error interaction with the black box environment, without a world model [44,45].

Additionally, decisions are made based on cached values learned through the process of

trial-and-error interactions with the environment. During each trial, the agent perceives

the present state, takes an action relying on estimated values, and observes the resulting

outcome and state transition. Subsequently, the agent calculates a reward prediction error,

denoted as the disparity between the obtained outcome and the expected reward. This

approach is more data-driven and is not contingent upon prior knowledge about the

environment. The estimated values are used to guide action selection, and the values are

updated trial-by-trial through a process of computing prediction errors. Once learning

converges, action selection using model-free reinforcement learning is optimal. However,

since the values rely on accumulated past experience, the method is less flexible in

adapting to sudden changes in the environment, and it requires a significant amount of

trial-and-error experience to become accurate. This model has several common algorithms

including Q-learning, SARSA, and TD-learning that will be covered in the next section.

4.3.2. Value-Based versus Policy-Based

A value-based method estimates the value of being in a specific state or action [46].

This method aims to find the optimal state-value function or action-value function from

which the policy can be derived. For this reason, it is known as the indirect approach [47].

Sensors 2024, 24, 2461 16 of 41

Value-based methods generally use an exploration strategy, such as ε-greedy or softmax,

in order to guarantee an adequate exploration of the environment by the agent. Instances

of value-based approaches encompass Q-learning and SARSA, which will be extensively

discussed in the next section.

On the other hand, in a policy-based approach, the agent updates and optimizes the

policy directly according to the feedback received from the environment, without the need

for intermediate value functions [46]. This makes policy-based RL a conceptually simpler

algorithm compared to value-based methods, as it avoids the computational complexities

and approximations involved in estimating value functions [47]. Policy-based methods

have demonstrated their effectiveness in learning stochastic policies that can operate in

high-dimensional or continuous action spaces. This property makes them more practical

than their deterministic counterparts, thereby widening their scope of application in real-

world scenarios.

4.3.3. On-Policy versus Off-Policy

An on-policy algorithm is based on a single policy, denoted as π, which is utilized by

an agent to take actions in a given state s, aiming to obtain a reward [48]. In contrast, off-

policy algorithms involve the use of two policies, the target policy and the behavior policy,

denoted as π and µ, respectively [49,50]. The target policy is the one that the agent seeks

to learn and optimize, while the behavior policy generates the observations that are used

for learning. To ascertain the optimal policy, the agent uses the data generated by the

behavior policy to estimate the value function for the target policy. Off-policy learning is

a generalization of on-policy learning, as any off-policy algorithm can be converted into

an on-policy algorithm by se�ing the target policy equal to the behavior policy.

4.4. RL Algorithms

This subsection presents the reinforcement learning algorithms along with their

details. It focuses on three main algorithms: dynamic programming, Monte Carlo, and

ends with temporal difference. The temporal difference algorithm is further divided into

two methods: SARSA and Q-Learning.

4.4.1. Dynamic Programming (DP)

Dynamic programming (DP) is a well-known model-based algorithm. DP consists of

a collection of algorithms capable of determining the best policies if a complete model of

the problem is available as MDP with its five-tuple of (�, �, �, ℛ, �) [6,25]. Additionally,

DP is a general approach to solving optimization problems that involves breaking down

a complex problem into smaller sub problems and solving them recursively. Dynamic

programming represents a key concept that relies on value functions as a means to

structure and organize the quest for optimal policies. Despite their ability to find optimal

solutions, DP algorithms are not frequently used due to the significant computational cost

involved in solving non-trivial problems [51]. Policy iteration and value iteration are two

of the most commonly used DP methods. The optimal policies can be easily obtained

through DP algorithms once the optimal value functions (�∗ or �∗) have been found,

which satisfy the Bellman optimality equations as shown in Equations (12) and (13),

respectively:

�∗(�) = max
�

� [���� + ��∗(����)| �� = �, �� = �] (12)

�∗(�, �) = � ����� + � max
��

�∗(����, ��)� �� = �, �� = �� (13)

Policy iteration is an algorithm in reinforcement learning that aims to find the

optimal policy by iteratively improving a candidate policy through alternating between

two steps: policy evaluation and policy improvement [52]. The goal of policy iteration is

to maximize the cumulative returns, achieved by repeatedly updating the policy until the

Sensors 2024, 24, 2461 17 of 41

optimal policy is found. The process is called policy iteration because it iteratively

improves the policy until convergence to an optimal solution is reached. The algorithm

consists of two main parts: policy evaluation and policy improvement.

Policy evaluation is the process of estimating the state-value function �� for a given

policy � [52]. This is often referred to as a prediction problem because it involves

predicting the expected cumulative reward from a given state by following the policy �.

The value function for all states is initialized to 0, and the Bellman expectation equation is

applied to iteratively update the value function until convergence. This rule is utilized in

Equation (14):

����(�) = �[���� + ���(����)|�� = �]

= � �(�|�) � �(��, �|�, �)

��,��

[� + ���(��)]
(14)

The policy evaluation update rule involves �, which represents the ��� update step,

and �� + 1 represents the predicted value function under policy � after � + 1 update

steps, where �� = ��. This update, known as the Bellman backup, is depicted in Figure

10, illustrating the relationship between the value of the current state and the value of its

successor states. In the diagram, open circles denote states, while solid circles represent

state–action pairs. Through this diagram, the value information from successor states is

transferred back to the current states. The Bellman backup involves iteratively updating

the value function estimates for every state in the state space based on the Bellman

equation until convergence is achieved for the given policy. This process is called iterative

policy evaluation, and under certain conditions, it is assured to converge to the true value

function �� as the number of iterations approaches infinity.

Figure 10. Backup diagram for �� [6].

After computing the value function, the subsequent step is to enhance the policy by

utilizing the value function. This step is known as policy improvement, and it is a

fundamental stage in the policy iteration algorithm.

Policy improvement is a process in RL that aims to construct a new policy, which

enhances the performance of an original policy, by making it greedy with respect to the

value function of the original policy [52,53]. Policy improvement step seeks to improve

the current policy by selecting the actions that lead to higher values �� (�, �) by

considering the new greedy policy ��, given by Equation (15).

��(�) = argmax
�

��(�, �) (15)

More precisely, during the policy improvement step, for each state in the state space,

the action is selected that maximizes the expected value of the next state based on the

provided value function. The resulting policy is guaranteed to possess a minimum level

Sensors 2024, 24, 2461 18 of 41

of quality equivalent to that of the original policy �� ≥ � and may surpass it if the value

function is accurate.

���(�) ≥ ��(�) (16)

After improving a policy π using �� to generate a be�er policy ��, the next step is to

compute ��� and use it to further improve the policy to ���. This process can be repeated

to acquire a sequence of policies and value functions that improve monotonically, denoted

as ��, ���
, ��, ���

, ��, ���
, ……., �∗, �∗ as shown in Equation (17),

��

 �
→ ���

 �
→ ��

 �
→ ���

 �
→ ��

 �
→ …

 �
→ �∗

 �
→ �∗ (17)

until convergence to the optimal policy and optimal value function is achieved, where

��∗(�) ≥ �� � �∗(�) for all � � � is found. For greater clarity on the policy iteration

algorithm, Figure 11 illustrates the two components of this algorithm.

Figure 11. Illustrating the policy evaluation and improvement based on [6].

Value iteration commences by employing an initial arbitrary value function,

subsequently proceeding to iteratively update its estimate to obtain an improved state

value or action value function, ultimately resulting in the computation of the optimal

policy and its corresponding value [6,25,37]. It is important that value iteration is a special

case of policy evaluation in which the evaluation process terminates after one iteration.

Furthermore, this algorithm can be derived by transforming the Bellman optimality

equation into an update rule as shown below in Equations (18) and (19), respectively.

����(�) = max
�

� [���� + ���(����)|�� = �, �� = �] (18)

����(�, �) = � ����� + � max
����

�� (����, ����)� �� = �, �� = �� (19)

As illustrated above, value iteration update involves taking the maximum over all

actions, distinguishing it from policy evaluation. An alternative method to illustrate the

interrelation of these algorithms is through the backup operation diagram, as shown in

Figure 7, which is used to calculate ��, �∗. After obtaining the value functions, the optimal

policy can be derived by selecting the actions with the highest values while traversing

through all states. Similar to policy evaluation, this algorithm necessitates an infinite

number of iterations to converge to �∗ . It is important to note that these algorithms

achieve convergence towards an optimal policy for a discounted finite MDP. Both policy

and value iteration use bootstrapping, which involves using the estimated value of a

future state or action to update the value of the current state ��(����) or action ��(����)

Sensors 2024, 24, 2461 19 of 41

during the iterative process. Bootstrapping offers the advantage of improving data

efficiency and enabling updates that explicitly account for long-term trajectory

information. However, a potential disadvantage is that the method is biased towards the

starting values of �(��, ��) or �(��).

4.4.2. Monte Carlo (MC)

Unlike dynamic programming, where the model is completely known and used to

solve MDP problems, Monte Carlo, also known as a model free algorithm, works with an

unknown model of the environment, where the transition probabilities are unknown [6].

In MC, to gain experience, the agent must interact with the environment, which is then

utilized to estimate the action value function. MC methods do not require prior

knowledge of the environment’s dynamics to obtain optimal behavior; instead, they

obtain experience–sample sequences of states, actions, and rewards [54]. Therefore, MC

methods are utilized to find solutions to reinforcement learning problems based on

average sample returns, which are updated after each trajectory. To ensure that returns

are obtainable, MC methods exclusively utilize episodic tasks. In these tasks, the agent

interacts with the environment for a fixed number of time steps; the episode terminates

after a specific goal is achieved or a terminal state is reached. Moreover, only complete

episodes can estimate the values and change the policies, which means that they are

incremental in an episode-by-episode sense.

In MC methods, the return of an action in one state is estimated by sampling and

averaging returns for each state–action pair [55]. However, since the action selections are

learned and updated in each episode, the problem is considered nonstationary, as the

return of an action in one state is determined by the actions taken in subsequent states

within the same episode. To overcome this nonstationary situation, a General Policy

Iteration (GPI) approach is used. In GPI, value functions are learned from sample returns

using MC methods rather than computing them from knowledge of the MDP as in

dynamic programming.

To determine ��, the general idea of MC methods is to estimate it from experience

by averaging the returns observed after visiting each state. The more returns observed,

the closer we can become to the expected value. There are various approaches to estimate

��(�) , which is the value of a state s under a prescribed policy π. This estimation is

achieved by using a collection of episodes obtained by following π and traversing through

s. In each episode, the state s may be visited more than once. Therefore, there are different

approaches for estimating and updating ��(�), which are as follows:

1. First-Visit MC Method

This method has been extensively studied since the 1940s [6]. This approach considers

only the first visit of each state in each episode when computing the average return

for that state [54]. The First-Visit MC Method can provide an estimate of the true state-

value function by averaging the returns acquired on each first visit. As the number of

first visits to states approaches infinity, this method converges to the optimal state-

value function.

2. Every-Visit MC Method

The Every-Visit MC approach exhibits dissimilarities when compared to the First-

Visit MC method in that it averages the returns received after every visit to a state

across all episodes, rather than just the first visit [56]. The value function estimate for

a state is updated after every visit to the state in an episode, regardless of whether it

has been visited before. Similar to the First-Visit Method, the Every-Visit Method

converges to the optimal state-value function as the number of visits to each state

approaches infinity

Similar to dynamic programming, the Monte Carlo algorithm employs a backup

diagram, as shown in Figure 12; however, it differs from the one used in DP. In the MC

diagram for estimating vπ, a state node is located at the root, representing the initial state

Sensors 2024, 24, 2461 20 of 41

of the episode. The diagram demonstrates the sequence of transitions that take place

during a single episode and ends at the terminal state, marking the conclusion of the

episode. The MC diagram extends to the end of the episode since Monte Carlo methods

necessitate complete episodes to estimate values and update policies based on average

returns.

Figure 12. Monte Carlo Backup Diagram [6].

In cases where the environment is unknown, Monte Carlo methods offer a suitable

approach for estimating the value of state–action pairs, as opposed to state values. This is

due to the fact that state–action pair estimation provides more informative measures for

determining the policy [57]. The policy evaluation problem is utilized for the action-value

��(�, �) to estimate �∗ in Monte Carlo, which represents the expected return when

starting from state s, taking action a, and then following policy π. There are two

approaches for estimating state–action values in MC: First-Visit and Every-Visit

approaches. The First-Visit MC Method computes the average of returns following the

initial visit to each state and the action pair within an episode. Conversely, the Every-Visit

MC Method estimates the value of a state–action pair by averaging the returns from all

the visits to it. These two approaches converge as the number of visits to a state–action

pair approaches infinity.

The main problem with MC methods is that numerous state–action pairs may remain

unvisited if the policy is deterministic. To address this issue, the exploring starts

assumption is utilized. This assumption dictates that episodes begin from a state–action

pair, with each pair having a non-zero probability of being chosen as the starting point.

This ensures that every state–action pair will be visited an indefinite number of times as

the number of episodes’ approaches infinity.

The MC control algorithm uses the same concept of Generalized Policy Iteration as

in DP. To obtain an optimal policy, classical policy iteration is performed by starting with

an arbitrary policy π_0 and iteratively conducting policy evaluation and improvement

until convergence, as shown below.

��

 �
→ ���

 �
→ ��

 �
→ ���

 �
→ ��

 �
→ …

 �
→ �∗

 �
→ �∗ (20)

where
�
→ means a complete policy evaluation and

�
→ means a complete policy

improvement. Policy evaluation is conducted using the same method as in DP. Policy

improvement is achieved by adopting a policy that follows a greedy approach concerning

the current value function. The optimal policy can be extracted by selecting the action that

maximizes the action-value function.

�(�) = argmax
�

��(�, �) (21)

In Monte Carlo policy iteration, it is customary to alternate between policy evaluation

and policy improvement on an episode-by-episode basis. Once an episode is completed,

the observed returns are utilized to evaluate the policy. Subsequently, the policy is

Sensors 2024, 24, 2461 21 of 41

enhanced with every state visited during the episode. For a detailed description of on-

policy and off-policy MC algorithms, refer to [6].

There are several key differences between Monte Carlo (MC) and dynamic

programming (DP). For example, MC estimates are based on independent samples from

each state, while DP estimates rely on estimating values for all states simultaneously,

taking into account their interdependencies. Another key difference is that MC is not

subject to the bootstrapping problem because it uses complete episodes to estimate values.

In contrast, DP estimates rely on one-step transitions. Furthermore, MC estimates state–

action values by averaging the returns obtained from following a policy until the end of

an episode, whereas DP focuses on one-step transitions. Finally, MC learns from

experience that can be obtained from actual or simulated episodes. These differences

between DP and MC show that the temporal difference (TD) learning algorithm was

developed to overcome the limitations of both DP and MC techniques by combining ideas

from both approaches. Its main goal is to provide a more efficient and effective approach

to reinforcement learning which will be discussed in the next section.

4.4.3. Temporal Difference (TD)

Temporal difference learning is a model-free RL model and it is widely regarded as

a fundamental and pioneering idea in reinforcement learning [6,56]. As mentioned in the

previous section, temporal difference learning is a combination of the ideas of both Monte

Carlo and dynamic programming. Therefore, the TD algorithm learns from experience

where there is an unknown model or no model of the environment’s dynamic, similar to

MC [58]. On the other way, TD, like DP algorithms, updates estimates depending on the

other learned estimates without waiting for a whole episode to be finished. Therefore, the

TD method bootstraps like DP too. There are two problems to discuss with this algorithm:

prediction and control problems [54]. The prediction problem regards estimating the

value function �� for a given policy � . For the control problem, TD, like MC and DP

methods, uses the idea of General Policy Iteration (GPI) to find the optimal policy.

TD methods update their value function at each time-step � + 1 by incorporating the

observed reward ���� and the estimated value �(����) . The value and action-value

function updates for TD methods can be expressed using the following equation:

�(��) ⟵ �(��) + � [���� + ��(����) − �(��)] (22)

Here, ← refers to the update operator, � is a constant step-size parameter, and � is

the discount factor. This particular method is known as TD (0) or one-step TD. The backup

diagram for TD (0) shows that the value estimates for the state node positioned at the

summit of the diagram are updated based on one sample transition from the current state

to the subsequent state, as shown in Figure 13.

Figure 13. TD Backup Diagram [6].

TD (0) update can be understood as an error that quantifies the disparity between the

estimated value of �� and the be�er estimate ���� + ��(����). This error is known as the

TD error and is represented by the following equation:

�� = ���� + ��(����) − �(��) (23)

Sensors 2024, 24, 2461 22 of 41

where �� represents the TD error at time t. As the agent traverses through each state–

action pair multiple times, the estimated values converge to the true values, and the

optimal policy can be extracted using Equation (21).

�(�) = argmax
�

��(�, �) (24)

SARSA

SARSA is an on-policy TD control algorithm where the behavior policy is exactly the

same as its target policy [59]. This method must estimate ��(�, �) for the current behavior

policy � and for all the states � and actions � by using the same TD method as

previously explained and shown in Figure 14.

Figure 14. SARSA algorithm [6].

Therefore, this algorithm considers transitions from a state–action pair to a state–

action pair, learning the values of the state–action pair. As SARSA is an on-policy

approach, the update of the action-value functions is performed using the equation below.

�(��, ��) ← �(��, ��) + � [���� + ��(����, ����) − �(��, ��)] (25)

The update is performed after each transition from a non-terminal state ��; when the

���� is terminal, the value of �(����, ����) is set to 0. This algorithm uses all the elements

of the quintuple (��, ��, ����, ����,����) that takes a transition from one state–action pair

to another, leading to the naming of the algorithm as SARSA, which stands for state–

action–reward–state–action. The estimation of �� continues for the behavior policy � ,

and the policy changes to the optimality with respect to �� . The SARSA algorithm

converges to an optimal policy and action-value function by using �-greedy or �-soft with

the probability of 1, under the condition that all state–action pairs are visited infinitely.

Q-Learning

Q-learning is a widely recognized off-policy algorithm in reinforcement learning

(RL). The key feature of Q-learning is that it estimates the action-value function Q which

leads to directly approximating �∗ (the optimal action-value function), regardless of the

policy being executed [58,59]. This technique is defined in Equation (24) as follows:

�(��, ��) ← �(��, ��) + � ����� + � max
�

� (����, �) − �(��, ��)� (26)

where the Q-learning updates use only the four elements (��, ��, ����, ����) while

assuming ���� is a decision variable to optimize the action-value function. This approach

guarantees that the agents can determine the optimal policy based on the assumption that

each state–action pair is visited an infinite number of times. It has been demonstrated that

Q converges to a particular value with probability 1 to �∗.

4.5. Comparison between DP, MC, and TD

A brief comparison between the DP and MC algorithms has been mentioned at the

end of the MC algorithm subsection. However, a comprehensive comparison of dynamic

programming (DP), Monte Carlo (MC), and temporal difference (TD) reinforcement

learning (RL) algorithms is presented in Table 3. Table 3 summarizes the characteristics of

each algorithm, including their requirement for a model of the environment to learn value

Sensors 2024, 24, 2461 23 of 41

functions, which is only necessary for DP. Both MC and TD algorithms learn value

functions from sampled experience sequences of states, actions, and rewards. MC does

not suffer from the bootstrapping problem because it uses complete episodes to estimate

value functions, whereas DP and TD use bootstrapping to estimate value functions

because they rely on the previously estimated value functions. This leads to unwanted

bias in the estimates. In contrast, MC algorithm estimates are based on independent

samples from each state, which avoids the estimation bias. However, this method

introduces high variance because the estimate of a value function is proportional to the

variance of the returns. Since the returns from different episodes can have high variance

because of the stochastic nature of the environment and the policy, the estimate of the

value function can have high variance as well. In terms of on-policy or off-policy, DP and

MC algorithms are on-policy methods, whereas TD is on-policy and off-policy method. In

terms of computational cost, DP requires simultaneous updates of all value functions,

making it computationally expensive. MC methods update value functions at the end of

each episode, whereas TD updates them after a one-time step. Generally, model-based

algorithms like DP converge faster than model-free algorithms like MC and TD. However,

among model-free algorithms, TD converges faster than MC as it does not wait for only

one time step to update value functions.

Table 3. Comparison of DP, MC, and TD algorithms.

Algorithm
Model-

Based/Model-Free

Requires

Model
Bias Variance On/Off-Policy

Computational

Cost
Convergence

DP Model-Based Yes High Low On-Policy High
Faster than MC

and TD

MC Model-Free No Low High On-Policy Medium
Slower than DP

and TD

TD Model-Free No High Low On/Off-Policy Low Faster then MC

4.6. Function Approximation Methods

Since we have discussed traditional RL algorithms and their role in solving MDP

problems, it is important to note that MDPs typically involve discrete tasks where states

and actions can be represented as arrays or tables, manageable by value functions. In

fundamental RL algorithms, value iteration assigns values to states, facilitating the

discovery of optimal value functions and policies. However, in complex environments

with large state spaces, this approach becomes impractical due to high computational

costs.

To address this challenge, the adoption of function approximation methods becomes

imperative. These methods generalize value functions through parameterized functional

structures instead of relying on tables [6,25]. Rather than storing values for each state

separately, function approximation methods represent states using features and weights.

A common form of approximate value function is expressed as follows:

�� (�, �) ≈ ��(�) (27)

where �� (�, �) represents the approximated value function for state � , and � ∈ ℝ�

denotes the weight vector parameter. ��(�) denotes the true value function under policy

� for state �. The parameters � undergo adjustments throughout the training process in

order to reduce the difference between the approximated and true value functions. These

adjustments can be carried out by utilizing methods such as gradient descent (SG) or

stochastic gradient descent (SGD). The benefits of function approximation include

scalability, generalization, and sample efficiency. There are various types of function

approximation, such as linear functions, Fourier basis functions, and non-linear neural

network function approximation. To delve deeper into function approximation and its

Sensors 2024, 24, 2461 24 of 41

types, readers are encouraged to consult references [6,25]. In the next subsection, we will

explain the rise of deep reinforcement learning.

The Combination of (Deep Learning and Reinforcement Learning)

Deep learning and reinforcement learning are two powerful techniques in AI [6,23].

Deep learning employs a layered architecture that enables automated feature extraction,

eliminating the need for manual feature engineering processes. Additionally, deep

learning techniques excel in handling high-dimensional data due to their capability of

automating feature extraction. Therefore, the combination of deep learning and

reinforcement learning leads to deep reinforcement learning (DRL), where DRL addresses

problems in which MDP states are high-dimensional and cannot be effectively solved by

traditional RL algorithms. In DRL, deep neural networks are implemented for function

approximation in Q-learning [25]. Table 4 illustrates the emergence of deep reinforcement

learning algorithms.

Table 4. Emergence of deep reinforcement learning algorithms.

Year Algorithm’s Title Description Ref.

2013
Deep Q Learning

Network (DQN)

DQN is one of the pioneering deep reinforcement learning (DRL)

algorithms that utilizes Q-learning and convolutional neural networks

(CNNs) to learn control policies by processing vast amounts of high-

dimensional data. This algorithm was implemented in the context of seven

Atari 2600 games, demonstrating superior performance compared to the

existing methods and even surpassing human proficiency in half of the

games. Additionally, this algorithm can handle continuous states and

discrete actions.

For more detailed

information, we refer

to [60].

2014
Deterministic Policy

Gradient (DPG)

DPG is considered the first algorithm in RL designed to handle continuous

action spaces. The estimation of the gradient of the action-value function is

conducted deterministically, leading to enhanced computational efficiency

compared to stochastic policy gradients.

For more detailed

information, we refer

to [61].

2015
Deep Deterministic

Policy Gradient (DDPG)

DDPG is an actor-critic algorithm designed to tackle challenges pertaining

to continuous control problems in RL. This algorithm was based on DPG

and has successfully addressed various simulated physics tasks. Both DQN

and DPG have suffered from high bias and high variance, but this

technique has combined previous techniques, leading to reduced bias and

variance.

For more detailed

information, we refer

to [62].

2015
Trust Region Policy

Optimization (TRPO)

TRPO stands as an additional deep reinforcement learning (DRL)

algorithm designed to optimize policies by ensuring a monotonic

enhancement and showcasing sturdy performance across a range of tasks.

This algorithm proves to be a potent technique in addressing high-

dimensional continuous control predicaments.

For more detailed

information, we refer

to [63].

2017
Proximal Policy

Optimization (PPO)

PPO is a DRL algorithm that is categorized within the realm of policy

gradient techniques. In contrast to TRPO, PPO is noted for its ease of

implementation, broader applicability, and superior performance in terms

of sample efficiency.

For more detailed

information, we refer

to [64].

5. RL Application

This section presents a literature review of the most influential research papers on

the application of reinforcement learning (RL) in both robotics and healthcare systems. A

comparative analysis is provided between the articles, including the techniques employed

and their corresponding outcomes. In the context of robotics, the focus is primarily on the

use of RL algorithms for object grasping and manipulation, a rapidly developing research

area with promising potential. Additionally, for healthcare applications, the emphasis is

on the use of RL methods for addressing cell growth problems, an area of increasing

Sensors 2024, 24, 2461 25 of 41

interest due to its significance in optimizing cell culture conditions, drug discovery, and

enhancing understanding of cellular behavior, among other potential benefits.

5.1. Robotics

Humans have a direct sensorimotor connection to the environment, enabling them

to see and observe objects and determine how to pick them up. However, robots have

lagged far behind in possessing these capabilities [65]. Even tasks that are considered

trivial for humans can pose significant challenges for robots. Robotic grasping and

manipulating objects in unstructured and dynamic environments remain critical and

challenging problems due to the variability and complexity of the real world. Traditional

machine learning (ML) approaches often struggle to handle the diversity of objects in

terms of size, weight, texture, transparency, and fragility [12]. Moreover, dealing with

clu�ered scenes and managing uncertainties in perception and control proves even more

challenging for ML. Consequently, reinforcement learning (RL) has emerged as a solution,

allowing robots to learn through trial and error and adapt to various situations [66]. RL

has gained significant traction in robotics, particularly in the field of grasping and

manipulation [67]. In this section, we review some of the most recent influential papers

on RL-based robotics applications for grasping and manipulation as shown in Tables 5

and 6, respectively. We analyze the methods and results of these studies and discuss the

challenges and limitations they have encountered in this field. For clearer and higher-

resolution framework figures used in Table 5, please refer to Supplementary Materials.

Table 5. RL methods with their actions, framework, and codes.

Ref. Year RL-Method Action Framework Code

[68] 2022
Graph-based Q-learning

model (DQN and Q-Net)

Grasping

Pushing

h�ps://github.com/�ongjiay

uan/the-dataset-of-

grasping-occluded-objects

(accessed on 5 July 2022)

[69] 2022

Viewpoint Adjusting and

Grasping Synergy

(VAGS) strategy based on

deep reinforcement

learning (DRL)

Viewpoint

Adjusting

Grasping

N/A

[70] 2022

Proximal Policy

Optimization (PPO) and

Soft Actor-Critic (SAC)

Grasping

Lifting

h�ps://github.com/Asad-

Shahid/Intelligent-Task-

Learning

(accessed on 13 April 2022)

[71] 2022 DDPG-Sparse + SLDR Pick and Place

1- Source code

(h�ps://github.com/W

MGDataScience/sldr)

(accessed on 30

October 2019)

2- Environments Code

(h�ps://github.com/W

MGDataScience/gym_

wmgds)

(accessed on 30

October 2019)

[72] 2022
Dueling Deep Q-learning

Network (DDQN)
Grasping

N/A

Sensors 2024, 24, 2461 26 of 41

[73] 2023

You Only Look Once

(YOLO) algorithm and

Soft Actor-Critic (SAC)

algorithm

Grasping/Pick

and Place

N/A

[74] 2023

Q Mixing Network with

Planar and Spherical

Affordances (QMIX-PSA)

Grasping

N/A

[75] 2023

Grasp Pose is All You

Need (G-PAYN) with the

Soft Actor-Critic (SAC)

algorithm

Grasping

h�ps://github.com/hsp-

iit/rl-icub-dexterous-

manipulation

(accessed on 25 January

2022)

[76] 2023 deep Q-network (DQN)

Pick-and-Place

Prehensile

(grasping) and

non-prehensile

(left-slide and

right-slide)

N/A

[77] 2023

Soft Actor-Critic (SAC)

and Proximal Policy

Optimization (PPO)

Reach, Grasp,

and Pick-and-

Place

N/A

In [68], the authors introduce a graph-based Q-learning model for grasping/pushing

occluded objects. This model consists of an encoder, a graph reasoning module, and a

decoder. In the encoder phase, state features are merged to facilitate the incorporation of

the features of one region to contain features from other regions, leading to improved

feature learning. Next, graph reasoning is used to integrate the features of adjacent

regions. Finally, in the decoder phase, the updated features are mapped to specific

features. The authors employ DQN as the underlying algorithm and design a graph Q-

Net to predict the Q-value. The experiment consists of two tasks: exploration and

coordination. In the exploration phase, the robot only employs push actions, while in the

coordination phase, the robot requires both grasping and pushing actions for cooperation.

The experiment was conducted in two environments using a simulation with a UR5 robot

arm and an RG2 gripper in the V-REP simulation environment, as well as with a real robot.

To evaluate this model, two metrics were used: the rate of success (RS) and the motion

number (MN). The results of the proposed model, using a dataset of 10 scenes with block

shapes, achieved an RS of 100% and an average MN of less than 2 in the exploration task.

In the coordination task, the model achieved an RS of 91% with an average MN of 3.2.

When the dataset was extended to include 20 different scenes, in coordination tasks, the

model achieved an SR of 95% with an average MN of 2. On the other hand, the experiment

with a real robot achieved an SR of 91% with an average MN of 7.3. These results surpass

the state-of-the-art results of previous methods.

In [69], the authors introduce a VAGS strategy based on DRL that aims to empower

the robot to independently adjust the camera viewpoint in achieving swift and precise

grasping in clu�ered scenes. Through experiments, the authors demonstrate that the

VAGS method improves the grasping success rate (GSR), scene clearing rate (SCR), and

grasping efficiency (GE) in both simulation and real-world scenarios. Simultaneously,

Sensors 2024, 24, 2461 27 of 41

they suggest a DAES method based on ε-greedy to expedite the training of VAGS and

introduce a reward function to tackle the issue of sparse reward in RL. The model’s

generalization ability is enhanced by randomly generating variations in color, shape,

quantity, and posture of objects throughout the training phase. In the simulation

experiment, when applying VAGS to scenes with 1 to 10 objects, the GSR was 83.50%, and

the SCR was 95%. Subsequently, DAES was applied to VAGS to enhance training

efficiency. The results, with and without VANet (viewpoint adjusting), showed an average

GSR improvement (w/o VANet = 76.38%, w/VANet = 86.87%) and SCR improvement (w/o

VANet = 84%, w/VANet = 95%). In real-world experiments, the results showed a GSR of

83.05%, an average grasping time of 8.5 s, a mean picks per hour of 348, and a motion

number of 1.38. The aforementioned findings suggest that the suggested framework

surpasses prior frameworks.

In [70], this article introduces a learning-based method that employs simulation data

to instruct a robot in object manipulation. It employs two model-free RL algorithms. The

first algorithm relies on the on-policy RL algorithm known as Proximal Policy

Optimization (PPO) to train the controller of the robot. Additionally, the learning process

incorporates an off-policy algorithm called Soft Actor-Critic (SAC) to assess learning

performance. Furthermore, the article proposes a fine-tuning procedure that initializes the

policy for the target task with the acquired policy for the base task, diminishing the

necessary count of episodes and accelerating training. The objectives of this model

encompass successful grasping and lifting of target objects, effective management of the

robot’s redundancy to prevent exceeding joint constraints, evading obstacles to avoid

collisions, and the refinement of control actions to facilitate the application of the acquired

controller on an actual robot. The design of the reward function aims to guide the learning

concerning task success/failure, the level of performance, and the consideration of safety.

Consequently, experiments conducted in both simulation and real-world scenarios, using

the Franka Emika Panda robot, have achieved a 100% success rate. This promising

outcome suggests the potential applicability of the proposed approach in real-world

se�ings.

In [71], the authors introduce an approach to robotic manipulation, employing

Simulated Locomotion Demonstrations (SLDs) in conjunction with reinforcement

learning (RL). This method is distinctive in that it does not necessitate human

demonstrations, instead capitalizing on the notion that any robotic manipulation task can

be interpreted as a form of locomotion task when viewed from the object’s perspective.

By employing a practical physics simulator, an object locomotion policy is derived, which

is subsequently utilized to produce supplementary rewards termed Simulated

Locomotion Demonstration Rewards (SLDRs). The primary method used in this study is

Deep Deterministic Policy Gradient (DDPG) in conjunction with sparse rewards.

Additionally, the authors have incorporated the following algorithms as baselines

alongside DDPG-Sparse, namely, HER-Sparse and HER-Dense. DDPG-Sparse + SLDR

and HER-Sparse + SLDR denote the proposed approach, integrating SLDR with distinct

methods for policy learning. The approach has been assessed across 13 tasks, achieving a

commendable 100% success rate. The outcomes demonstrate its competitiveness with

state-of-the-art approaches that depend on human demonstrations.

In [72], the authors discuss the application of Dueling Deep Q-Learning (DDGN) to

acquire a grasping policy. The authors employ a five-DoF robotic arm to address the

challenge of grasping a target object. This study not only explores the advantages of

utilizing reinforcement learning algorithms for this purpose but also substantiates this

strategy with continuous visual feedback. The DDGN algorithm is trained using a reward

function specifically designed for it, utilizing visual data obtained from a Kinect camera

through a simulation environment called the Webats Simulator. The presented approach

represents an enhanced deep reinforcement learning algorithm structured for end-to-end

learning, primarily reliant on vision-based robotic grasping. This architecture, with the

assistance of a custom-designed CNN model, enables the agent to execute appropriate

Sensors 2024, 24, 2461 28 of 41

grasping actions. The results indicate that a minibatch size of 16 yields superior results in

terms of immediate reward value when compared to a minibatch size of 32, utilizing an

Epsilon-greedy exploration strategy.

In [73], the authors discuss a vision-based approach to robotic object grasping that

utilizes DRL to enable robots to achieve a high success rate in grasping objects. The

introduced technique combines computer vision and deep RL to facilitate the learning and

improvement of the robots’ grasping capabilities. The YOLO algorithm is used to detect,

localize, and recognize objects in images, reducing training time by providing object

location as input to deep RL. Additionally, the Soft Actor-Critic deep RL algorithm, an off-

policy framework, enhances sample efficiency. This article trains the robot manipulator

by using SAC to adopt object grasping via self-learning. The experiments were conducted

in both simulation and real-world environments. The authors utilized the V-REP robot

simulator to train SAC, and the results demonstrated a reduction in total training time

and grasping a�empts when compared to the approach without it. Moreover, the authors

successfully transferred the trained SAC to a real 6-DoF robot manipulator, which

performed object grasping and pick-and-place actions effectively, even for previously

unseen objects.

In [74], the authors present a new approach to robotic grasping using dual-agent

deep reinforcement learning called QMIX-PSA. This approach consists of two agent

networks, a PA-Net and a SA-Net, which are utilized to anticipate grasp position and

orientation. QMIX estimated the joint action value of these two networks in order to link

them. Then, the authors extended their four-DoF into a six-DoF one and a�empted to

eliminate disturbances using augmented rewards. This approach has several advantages

that make it suitable for such a problem. An extensive experiment has been conducted

using this approach and six of its peers across three different scenarios: single, sca�ered,

and clu�ered objects. The results showed that QMIX-PSA outperforms its peers in terms

of grasp success rate and quality, especially in clu�ered scenarios where existing SGL

methods are less competent.

In [75], the authors presented a method called G-PAYN for the iCub humanoid robot

based on DRL, which uses automatically gathered offline demos. The research proceeds

by proposing a modular pipeline for grasping an object with the iCub humanoid,

consisting of two stages. The first stage involves grasp pose computation, which is

performed by external algorithms, specifically superquadric models and the grasp pose

generator VGN. The second stage involves the execution of the grasp. Both stages are

utilized to start the movement. Therefore, a control policy was presented for these two

steps to create an automated approach for acquiring grasping demos and then learning

the policy using the SAC algorithm and previously obtained data. The experimental phase

was conducted in a simulation environment using the MuJoCo simulator with five objects

from the YCB video dataset. To evaluate the proposed approach, G-PAYN, was compared

to four different baselines, namely Demonstrations Pipeline, SAC, OERLD, and AWAC.

The results demonstrated that G-PAYN excels in half of the experiments, achieving a high

success rate while delivering an equivalent performance in other circumstances.

In [76], the authors introduce self-supervised deep reinforcement learning (DRL) for

performing pick-and-place operations on objects of various shapes. In this framework, the

agent learns how to perform a series of prehensile (grasping actions) and non-prehensile

(left-right slides) robotic manipulations using a model-free and off-policy DRL,

specifically Q-Learning. This learning process relies on trial and error. Notably, this

approach facilitates bidirectional learning of sliding and pushing operations. The Deep Q-

Network (DQN) consists of three fully convolutional networks (FCN) that use DenseNet-

121′s memory-efficient architecture. Consequently, agents acquire knowledge and

converge to optimal policies within an end-to-end memory-efficient framework utilizing

pixel-wise parameterization. Actions with the highest Q-value are executed at the 3D

location of a pixel expected to possess the maximum Q-value. The reward scheme is

designed based on the successful outcomes of actions, including grasping, left and right

Sensors 2024, 24, 2461 29 of 41

slides, or taking no action. Finally, the proposed approach has been evaluated and

compared with various baseline approaches in terms of success rate and grasping success.

In [77], the authors introduce a novel pipeline that combines traditional control and

reinforcement learning (RL) techniques for both simulated and real-world environments

to validate RL methods across various scenarios, including reach, grasp, and pick-and-

place tasks. Two algorithms, Soft Actor-Critic (SAC) and Proximal Policy Optimization

(PPO), are employed in this study. SAC, as the first method, is an off-policy RL algorithm

that effectively balances the exploration–exploitation tradeoff and allows for ease of

parallelization. Conversely, PPO is a policy gradient technique known for its ability to

provide rapid policy updates. In the simulation environment, the authors selected the

PyBullet Python-based environment for its adaptability and ease of modification. Given

that hyperparameter tuning is often necessary for the chosen algorithms, Optuna is

utilized as a hyperparameter optimization framework. Additionally, the authors

employed two reward structures in this study: dense and sparse. For the real-world

experiments, the Panda Research Robot was used. The utilization of the Franka control

interface (FCI) in this robot enables the establishment of bidirectional communication

between the agent and the workstation. This communication facilitates the exchange of

positional readings and commands. In the Panda robot, Franka-ROS and MoveIt are the

control packages employed to test connections between the simulated PyBullet agent and

the real-world robot. The results obtained in the simulated environment indicate that PPO

performed be�er in complex tasks, while SAC excelled in simpler tasks. However, in real-

world scenarios, there was a reduction in performance of approximately 10–20% across

all tasks when compared to the simulation environment due to the geometry difference

between the objects in both environments. Table 6 displays the outcomes and limitations

of each article, providing a general overview of research conducted in the realm of robotic

grasping and manipulation.

Table 6. RL methods with their results and limitations.

Ref. Year RL-Method Metrics Results Limitations

[68] 2022

Graph-based Q-

learning model

(DQN and Q-Net)

1- SR (%) Success

Rate

2- MN (Motion

Number)

1- In the simulation experiment:

exploration task using a dataset of 10

different scenes, SR = 100% with an

average of MN of less than 2);

coordination task, SR = 91% with an

average of MN = 3.2.

2- In the simulation experiment,

coordination task with dataset

extended to 20 different coordination

scenes, SR = 95% with an average of

MN = 2.

3- Real robot experiment: SR = 91% with

an average of MN = 7.3.

1- The model works on block shape

objects only and has not

generalized to all target objects.

[69] 2022
VAGS strategy

based on DRL

1- Grasp Success

Rate (GSR)

2- Scene Clearing

Rate (SCR)

3- Motion Number

4- Mean Picks Per

Hour

1- In the simulation experiment of 1 to 10

objects, the GSR = 83.50%, and the SCR

= 95%.

2- In the simulation experiment with

application of DAES, the results, with

and without VANet, showed an

average grasp success rate

improvement (w/o VANet = 76.38%,

w/VANet = 86.87%) and SCR

improvement (w/o VANet = 84%,

w/VANet = 95%).

3- In real-world experiments, the results

showed a (GSR of 83.05%, an average

grasping time of 8.5 s, a mean picks

per hour of 348, and a motion number

of 1.38).

The use of high-degree-of-freedom

(DOF) grasping scenarios is suggested

as a future avenue for enhancing

grasping stability by achieving six-DOF

grasping.

Sensors 2024, 24, 2461 30 of 41

[70] 2022 PPO and Soft SAC 1- Success Rate

1- In the simulation experiment, the

success rate was 100%.

2- In the real-world experiment using the

Franka Emika Panda robot, the success

rate was 100%.

1- It is important to highlight that

the methodology is assessed on a

grasping assignment that

encompasses a Franka Emika

Panda manipulator. Although the

authors propose that the

acquisition can be generalized to

diverse geometric forms and

dimensions, slight alterations in

the object’s position, as well as

different initial configurations of

the robot, may impact the results.

Therefore, additional

investigation and

experimentation are required to

validate this assertion.

2- Moreover, the suggested

technique is assessed primarily by

considering the success rate of

grasping tasks, and its

performance in other

manipulation tasks remains

unclear.

3- Furthermore, the article lacks a

comparison of the suggested

strategy with other state-of-the-

art methods for robotic grasping.

Therefore, this could provide

further information about its

strengths and weaknesses.

[71] 2022
DDPG-

Sparse+SLDR
1- Success Rate (SR)

The proposed approach has achieved a SR of

100% over 13 tasks of increasing complexity.

1- The first limitation arises when

the simulated locomotion

demonstrations (SLDs) are less

effective when the ideal object

locomotion becomes increasingly

dependent on the actions

performed by the robot.

2- The second limitation is the

prerequisite for a simulated

environment to apply the

proposed methodology

effectively.

3- The third potential limitation of

using simulated locomotion as

auxiliary rewards is that it may

not apply to certain tasks. In tasks

involving the manipulation of a

pen using Shadow’s hand, a

challenge arises when attempting

to replicate a specific pen

movement without dropping it.

Despite the pen’s ability to rotate

and translate itself to facilitate

locomotion tasks, this

predicament has the potential to

undermine the effectiveness of

the manipulation strategy,

regardless of the acquisition of an

optimal locomotion policy.

[72] 2022

Dueling Deep Q-

learning

Network(DDQN)

N/A

The proposed model has exhibited superior

results when the batch size is set to 16,

particularly in terms of immediate reward

values.

There are several limitations to the

proposed model:

1- The model exclusively addresses

the grasping of solid and rigid

Sensors 2024, 24, 2461 31 of 41

objects, without considering

variations in object types.

2- Throughout the evaluation

process, the location and shape of

the target objects remained

constant, implying that the

proposed model was tested under

unchanging conditions.

3- The proposed model has only

been employed within a

simulation environment.

[73] 2023
YOLO algorithm

and SAC algorithm

1- Training time

2- Number of

grasping

attempts

3- Rate of successful

grasping

1- In a simulation environment, the

suggested technique (transfer learning

+ YOLO + SAC) effectively reduced the

training time to 6443 s, while without

using the approach was 15.9 times

longer. At the same time, the number

of grasping was 1323 attempts using

the proposed approach, while without

it was 28.8 times larger.

2- In a real-world environment, the

proposed approach demonstrated a

successful grasping rate for various

objects: 19 out of 20 for building

blocks, 6 out of 10 for apples, 6 out of

10 for bananas, 8 out of 10 for oranges,

and 9 out of 10 for cups. It is worth

noting that apples and oranges were

not part of the training set.

One limitation of this approach is its

dependence on smooth object surfaces

for successful grasping using the

suction nozzle. As a result, the

noticeable variations between the

simulated and the real-world

environment experimental setup lead to

a lower success rate when attempting to

grasp bananas due to surface variations

between the two environments.

[74] 2023 QMIX-PSA

1- The grasp

success rate

(GSR)

2- The average

grasp quality

(AGQ)

The experiment was conducted in a real-

world environment using a UR3 robot. The

study employed twenty metal workpieces

and sixteen daily items with various

complex shapes were used in the study. The

proposed method was tested in three distinct

scenarios: single objects, scattered objects,

and cluttered objects. The results are as

follows:

1- When comparing 6DGL with its six

peers across these three scenarios, the

results show that 6DGL outperforms

most of its counterparts. Notably, in

the cluttered scenario, 6DGL achieved

a 0.82 and 0.83 Grasping Success Rate

(GSR) when grasping metal

workpieces and daily items,

respectively.

2- The results for 6DGL show an Average

Grasp Quality (AGQ) of 0.67 for metal

workpieces and 0.75 for daily items,

indicating a certain level of robustness.

3- When presented with 16 unseen

objects in a cluttered environment,

6DGL achieved a GSR of 0.77 and an

AGQ of 0.68, outperforming most

competitors.

There are a few limitations to this study,

including:

1. It is important to note that the

experiments were conducted in a

controlled environment, and it

remains uncertain how well the

approach would perform in more

complex and dynamic real-world

scenarios.

2. Furthermore, the proposed

approach relies on high-

dimensional RGB-D data as input,

which may not be available or

feasible in all robotic grasping

applications.

[75] 2023
G-PAYN with SAC

algorithm

1- Success Rate (SR)

2- Execution Time

(ET)

In a simulation environment, the proposed

method G-PAYN has outperformed more

than half of the experiments in terms of

success rate by a significant margin (0.3 and

0.15 gap) and achieved equivalent results in

virtually all of the remaining cases.

Additionally, G-PAYN has a faster execution

time than the other DRL baselines

1- The presented method relies on

automatically gathered demos

and an initial grasp stance created

by an external algorithm, which

may not be the suitable and most

effective way to learn the task.

2- The training was conducted

solely in a simulation

Sensors 2024, 24, 2461 32 of 41

environment, and it may not

perform as effectively in a real-

world scenario, despite the

assertion that their policies can be

implemented on an actual robot

without necessitating any

modifications to the action and

state spaces.

[76] 2023 DQN

1- Success Rate (SR)

2- Grasping Success

(GS)

In a simulation environment using a V-REP

simulator, the proposed approach, known as

C&S (Grasping and Sliding), has been

evaluated for its performance by comparing

it with a deep learning baseline framework

as follows:

1- Comparing the C&S approach with a

deep-learning-only-based supervised

binary classification approach. The

C&S achieved a success rate of

approximately 84%, while the binary

classification approach attained a

success rate of around 57%.

2- Comparing the C&S approach with

another C&S approach that utilized

the ResNet-101 architecture pre-

trained on ImageNet. The original

C&S approach outperformed the

ResNet-based approach by a margin of

approximately 13%.

3- Comparing the C&S approach with

another C&S approach in which the

reward allocation for non-prehensile

manipulations was discontinued.

Removing this component led to a

performance degradation of around

22% in terms of SR.

4- Comparing the C&S approach with

another C&S approach that omitted

the use of depth channels. The results

indicated that the SR dropped by

approximately 51% over a period of

3000 episodes.

5- Finally, evaluating the performance of

the original C&S approach under

unseen circumstances, categorized into

four scenarios: In minimum clutter,

C&S achieved a success rate of 84%

and a grasping success of 96%. In

medium clutter, the success rate was

82%, with a grasping success of 95%.

In maximum clutter, C&S achieved a

success rate of 74% and a grasping

success of 82%. In complicated

scenarios, the success rate reached

65%, with a grasping success of 73%.

The article acknowledges several

limitations of the proposed approach

which are:

1- The agent underwent training

using a restricted set of 3D block

shapes, but its potential could be

augmented and expanded to

encompass items frequently

encountered in daily life, such as

bottles, cups, and balls.

2- The concatenation factor of the

feature map in DenseNet-121

could potentially be considered a

limitation.

3- The approach involves only a

sequential combination of robotic

manipulations, and it could

benefit from an increased number

of actions and the introduction of

parallel robotic manipulation

combinations, including novel

techniques like stacking, rolling,

and rotating.

4- As the system scales, issues

related to the overestimation of

future rewards could potentially

arise.

[77] 2023 SAC and PPO Success Rate (SR)

The simulation environment has been

divided into three parts:

1. “Panda reach and Panda grasp with

dense rewards”:

 Both PPO and SAC achieved a 100%

SR on the reach task.

 For the grasp task, PPO achieved an

89% success rate, while SAC achieved

a 92% success rate.

There are several limitations to the

proposed model:

1- Differences in geometry between

the simulation and real-world

environments could necessitate

modifications to the target objects

to achieve a better match.

2- Not implementing a more

effective sim-to-real transfer

method resulted in high

Sensors 2024, 24, 2461 33 of 41

2. “Panda reach and Panda grasp with

sparse rewards”:

 • Both PPO and SAC achieved a 100%

SR on the reach task.

 • For the grasp task, PPO achieved a

90% success rate, while SAC achieved

a 95% success rate.

3. “Panda pick-and-place with dense

rewards”:

 PPO achieved an 85% success rate,

while SAC achieved a 71% success

rate.

In the real-world environment, which has

been divided into two parts:

1. “Panda reach and Panda grasp with

dense rewards”:

 • Both PPO and SAC achieved a 90%

SR on the reach task.

• For the grasp task, PPO achieved a

70% success rate, while SAC achieved

an 80% success rate.

2. “Panda pick-and-place with dense

rewards”:

 • PPO achieved a 70% success rate,

while SAC achieved a 60% success

rate.

computational costs and reduced

environmental accuracy.

3- The absence of positional sensing

in real-world target blocks to

ensure alignment with their

simulated counterparts during

training tasks.

4- The authors did not compare the

use of these algorithms to other

RL algorithms or traditional

control strategies.

5- The approach employed a single

robot arm for reach, grasp, and

pick-and-place tasks. While the

results are promising, it remains

unclear how well the approach

would generalize to other types of

robots or tasks.

5.2. Healthcare

In recent years, healthcare applications have garnered considerable a�ention, owing

to the substantial integration of artificial intelligence (AI) techniques, notably

reinforcement learning (RL) [14,78]. As previously mentioned, RL is a subfield of machine

learning that revolves around decision-making and control in dynamic environments. The

growing interest in RL can be a�ributed to its capacity to optimize intricate processes and

adapt to changing conditions within the healthcare sector. Consequently, RL has proven

to be effective in addressing a variety of healthcare challenges [15,79–82]. Among the most

recent and promising areas in healthcare is the resolution of cell growth problems, which

hold critical significance in diverse healthcare applications like tissue engineering,

regenerative medicine, and cancer treatment [79,83]. This review, therefore, concentrates

on the topic of cell growth problems and explores the application of RL by scientists to

solve such challenges.

As may be known, all living organisms are composed of one or more cells, which

serve as the building blocks of life [84]. Cells are the basic units of life that can perform all

vital functions of an organism, such as metabolism, growth, and reproduction. They come

in various shapes and sizes and can be single-celled or found in multicellular organisms.

For the purposes of this review, two different types of cells were utilized. Yeast cells and

mammalian cells are two distinct types of cells. Yeast cells are single-celled, eukaryotic

organisms that are commonly used in fermentation processes such as brewing beer,

baking, and biofuel production. On the other hand, mammalian cells are multicellular

eukaryotic cells that form the tissues and organs of mammals. There are indeed several

problems related to yeast cells and mammalian cells in terms of biotechnology, such as

controlling the gene expression of the cells and the tolerance of yeast cells to different

environmental conditions such as high temperature, as well as optimizing the conditions

of culture for mammalian cells, such as nutrient concentrations, temperature, and other

factors to achieve optimal growth rate. Therefore, this literature review will explore the

current understanding and research on cells, with an emphasis on using machine learning

approaches to identify and solve problems related to different types of cells. The topics

covered will include the structure and function of cells, as well as recent advancements

and discoveries in the field of biotechnology. This review will also examine challenges

Sensors 2024, 24, 2461 34 of 41

and questions that remain to be addressed in the field of biotechnology, specifically

related to the application of machine learning to cells.

The authors of [85] describe a new approach for collecting accurate data on cells. The

authors present an optimization of cell cycle measurement through the development of a

multicell time-lapse imaging system. The system includes an integrated, motorized

inverse microscope that is housed within a CO2 incubator to maintain optimal growth

conditions. It also features CCD cameras for imaging, specialized illumination, steering

electronics, a computer, and a control system. This protocol is distinct from previous

methods in that it does not impose a time limit on cell growth, enabling uninterrupted

observation and collection of data. The goal of this protocol is to measure the length of the

cell cycle of individual HaCat cells using long-term scanning microscopy. The length of

the prokaryotic cell cycle varies depending on the complexity of the organism. To

understand the processes involved in the mammalian cell cycle, the authors provide a

detailed description of cell cycle division and its subphases. This includes the division of

the nucleus (mitosis) and the separation of the two daughter cells (cytokinesis). Mitosis is

the first part of cell cycle division, in which the cell divides into two new nuclei with

replicated chromosomes, while cytokinesis is the process of physically dividing the cell

into two daughter cells. Additionally, the first cell cycle includes the phases G1, S, G2,

where G1 and G2 are the variables of the division and S and M are the constants of the

cycle. Understanding the duration of the cell cycle has implications for mass protein

production in the food industry, reducing cell growth to aid in cancer treatment, and

determining the cell cycle length. In this protocol, the authors aim to determine the cell

cycle length of HaCat cells using a long-term scanning microscopy. They used two HaCat

cell cultures from a frozen cell stock under similar conditions, starting the experiment at

4 pm in the afternoon. They a�empted to measure the phase of the cell cycle length during

the first cell cycle growth, with a duration of 17 h. They then used time-lapse microscopy,

which can extend to 2 days and last for 2 weeks, based on cell division. They set up four

congruent imaging systems inside a CO2 incubator, one for control and the others for cell

treatments. They also installed suitable software to divide the computer screen into two

parts to visualize both cell cultures, turned on autofocus for high-quality images, and

adjusted image acquisition parameters for maximal gray-scale dynamic range resolution.

Finally, they converted the images taken every minute into a video file by speeding up the

exposures from 1 s to 30 s.

The authors of [86] introduce a new long-term scanning-perfusion platform that

addresses the limitations of current methods in cell culture. The platform includes features

such as replacing an old medium with a fresh medium, avoiding physical contact with the

cells, providing uninterrupted imaging of single cells, and maintaining near-physiological

conditions for several weeks. The system was validated using serum starvation and

chemical induction of cell cycle arrest in HaCaT cells. The perfusion operation used in this

platform aims to improve cell productivity in bioreactors, reduce waste of nutrients, and

eliminate the side effects of high flow rate without removing cells from the bioreactors.

The system includes time-lapse video microscopy, electronic steering, and a computer

system. The perfusion subsystem is used to protect the cells during experiments and

observe them for several generations without physical contact. The TL microscopy

subsystem includes an inverse microscope, a high-sensitivity camera, specialized

illumination, and a control unit. The system is controlled by the open-source software Fiji,

which is used for quantitative image analysis.

The previous two articles introduced a new system for collecting data on cellular

processes using time-lapse microscopy. However, this method can be quite labor-

intensive, as the segmentation of the acquired data necessitates a considerable investment

of time and laborious manual work. Therefore, [87] presents a new approach for

automatically identifying and tracking individual yeast cells in time-lapse microscopy.

The authors developed a software tool that generates synthetic images of budding yeast

cells, which can be employed to train a convolutional neural network (Mask R-CNN) for

Sensors 2024, 24, 2461 35 of 41

instance segmentation. The synthetic images are designed to mimic brightfield images of

yeast cells and are used to bypass the laborious process of manually annotating large

datasets. The authors additionally employed a DBSCAN algorithm to monitor the

segmented cells throughout the various frames of the microscopy movie. The combination

of Mask R-CNN with DBSCAN yielded outcomes equivalent to the current state-of-the-

art instrument in the domain, YeaZ. The utilization of artificial data in the advancement

of CNN-based instruments for the observation of budding yeast can result in the

generation of more potent, broadly applicable, and user-friendly image-processing

instruments for this particular microorganism.

Having discussed the use of real and synthetic cell data in different machine learning

methods, it is important to further explore the issues related to cell movement, division,

aging, and migration, among others. The authors of [88] present a method that combines

DRL with an agent-based modeling (ABM) framework to model cell movement in the

early stage of C. elegans embryogenesis. The ABM framework is used to depict basic cell

behaviors, including cell fate, division, and migration in wild-type C. elegans. The study

focuses on modeling single cell movement, and the authors employ the phrases

“migration cell” and “environment cell” to differentiate the cell that acquires knowledge

of its migratory route from those cells that rely on the dataset of observations to navigate.

The authors also use a DQN algorithm to acquire knowledge of the best path for cell

migration under certain regulatory processes. The objective of the investigation is to

furnish a novel instrument for investigating extensive datasets produced by real-time

imaging and to acquire a more comprehensive comprehension of cellular processes and

behavior.

To continue discussing the cell movement problems, the article in [89] presents a new

method for understanding cell–cell interactions and collective cell behaviors in tissue

development using 3D time-lapse images. This method utilizes HDRL, a technique known

for its ability to learn at multiple scales and handle large amounts of data, to analyze cell

movements and infer underlying biological mechanisms. The HDRL is divided into two

levels, a lower level where a CNN extracts features from the environment of the migrating

cell to examine the images, and a higher level where the extracted features are used to

form a policy network that guides the migration cell. This method is implemented in the

study of C. elegans embryogenesis, where it elucidates a multiphase and modular

structure of cellular locomotion, which is confirmed by additional cellular markers. The

approach generates a transferable framework that effectively distinguishes sequential

migration based on rose�es from alternative methods. HDRL is verified to be an effective

tool for creating models of dynamic cellular activity that can be learned from minimal

input data and rules. It can also be used to uncover new characteristics of cells and tissues

without prior knowledge.

As seen above, cell biology, microbiology, and artificial intelligence are

interdisciplinary fields that can be combined to offer valuable assistance in experiments

and studies involving cell cultures. The objectives of this study focus on the development

of a methodology for a hybrid system that can be used in a number of areas of cellular

and microbiological research. Such areas could be related to crop production, food

industry, pharmaceutical research or patient care. Experiments on cell or tissue cultures

are frequently conducted, and they can be automated by using AI technology. An AI agent

can perform interventions on the cell culture under investigation through a microscope

coupled to a robotic perfusion system.

6. Challenges, Conclusions, and Future Directions

This paper explores the significance of reinforcement learning (RL) in the realms of

robotics and healthcare, considering various criteria. The discussion commences with a

fundamental RL overview, elucidating the Markov Decision Process and

comprehensively covering RL aspects, distinguishing between model-based and model-

free, value-based and policy-based, and on-policy and off-policy approaches. This study

Sensors 2024, 24, 2461 36 of 41

delves deeply into RL algorithms, presenting a comprehensive overview of dynamic

programming (DP), Monte Carlo (MC), and temporal difference (TD), including its two

approaches, SARSA and Q-learning. Furthermore, a thorough comparison of RL

algorithms is provided, summarizing their characteristics and delineating differences

based on criteria such as bias, variance, computational cost, and convergence.

This systematic review then turns to RL applications in both robotics and healthcare

fields. In robotics, the focus is on object grasping and manipulation, crucial across various

domains, from industrial automation to healthcare. In contrast, the healthcare sector

tackles cell growth and culture issues, which have garnered increasing a�ention in recent

years, significantly contributing to modern life science research. These applications are

indispensable for investigating new drug candidates, toxicological characterization of

compounds, and studying a broad spectrum of biological interactions through laboratory-

cultured cells. For both applications, this review analyzes the most recent influential

papers, assessing their methods and results, and discussing the challenges and limitations

encountered. This comprehensive and systematic review of reinforcement learning in the

fields of robotics and healthcare serves as a valuable resource for researchers and

practitioners, expediting the formulation of essential guidelines.

Besides what has been mentioned above about RL and its algorithms and

applications, RL still faces several technical challenges in both applications discussed in

Section 4. These challenges hinder the development of algorithms that could properly

target the actual goal. Therefore, the challenges are divided into two parts based on each

application. Robotic grasping and manipulation have many key challenges, including

dexterity and control, sample efficiency, sparse rewards, and sim-to-real transfer policies

[12,13,90–92].

The dexterity and control challenge in RL grasping tasks consists of how to address

the complexity of enabling a robotic system to manipulate with finesse, precision, and

adaptability [93–95]. The ability to alter the placement and alignment of an item, moving

it from its original location to a different one, can be described as dexterity manipulation

[93]. Therefore, this challenge includes several components, such as fine motor skills that

enable the control of the robotic fingers or gripper with high precision. This capability is

a real challenge for performing delicate movements to grasp objects of varying shapes and

sizes [96]. This leads to adaptability to the variations in an object’s shape, size, weight, and

material properties; therefore, the robot needs to adapt its grasping strategy to handle this

diversity [68]. Moreover, the robotics system control has to balance between trajectory

control and force control, where each type has its properties and goals. For more detail in

this part, we refer to [93].

Another challenge is sample efficiency, considered a critical step toward learning

effective grasping strategies. In other words, sample efficiency represents the ability of RL

algorithms to acquire a good policy with as few samples as possible [90]. However,

collecting these samples can be resource-intensive and time-consuming, even though it

improves the success rate [12]. Sample efficiency encompasses several factors in achieving

it in grasping tasks, such as high-dimensional state and action spaces [97], safety concerns

[90], cost of exploration [98], and the simulation and real-world environment gap [99].

High-dimensional state and action spaces refer to the state spaces in the robot’s joint

angles, object positions, and other environmental variables. Simultaneously, the action

space refers to the actions that the robot takes and the exploration step that could lead to

inefficiency in sample usage, which is itself considered a complex task. For safety

concerns, which could involve objects or the robot itself, avoiding damages is crucial,

limiting the number of samples that can be collected. Moreover, the disparity between the

simulation and the real-world environment remains a challenge, and most recent studies

have faced this issue [75–77]. The samples used in the simulation environment could lead

to a good policy that may not transfer well to the real world due to variations in the

samples, necessitating the collection of more samples for fine-tuning.

Sensors 2024, 24, 2461 37 of 41

As mentioned in Section 4.2, the reward function constitutes a fundamental

component of the reinforcement learning formulation, which evaluates the agent’s actions

and can provide positive or negative rewards. Therefore, reward design is a crucial

challenge for robotic grasping tasks, guiding the learning agent in acquiring effective

grasping policies [12,90,97]. Rewards can be issued at the end of each time step (called a

dense reward) [100,101], or at the end of each episode (called a sparse reward) [102,103].

Usually, grasping tasks involve sparse rewards, posing a challenge in determining which

actions contribute to successful grasps. Simultaneously, the reward function must balance

between exploration and exploitation, as the agent needs to explore novel actions while

considering actions proven to be effective. Moreover, the reward function must consider

safety issues by avoiding actions that may lead to collisions and discouraging actions that

could damage the robot or objects. Therefore, all these reasons may lead to slow learning

and facing many difficulties in generalizing grasping strategies among different objects.

For more information, please refer to [90,97].

Last but not least, the sim-to-real transfer challenge in RL for robotics grasping tasks

refers to the complexity of effectively applying policies learned in simulation

environments to real-world environments [12,99,104]. Even though the simulation

environment facilitates the acceleration of the training process, the real challenge is

ensuring that the policies learned can generalize and perform well when deployed on real

robotic systems [105]. Several key challenges are associated with sim-to-real transfer

policies in RL with robotics grasping, including the reality gap, sample efficiency, and

sensor mismatch [99]. Concerning the reality gap, differences between the simulation and

real-world environments, such as variations in object shapes, sizes, and textures, may lead

to a reality gap between the simulation and the real-world environment. Sample efficiency

has been discussed above. Furthermore, sensor mismatch refers to the ability of simulated

sensors to imitate the noise and characteristics of real-world sensors, which may lead to

difficulties in adapting the policy obtained in a simulation environment to be transferred

into a real-world environment. For more information, we refer to [99].

On the other hand, cell growth and culture issues face similar challenges as discussed

above in terms of dexterity and control, sample efficiency, sparse rewards, and sim-to-real

transfer policies. Regarding the limitations in the recent studies that focused on this topic,

as we mentioned in Section 5.2, these challenges remain unsolved and need further

investigations, particularly in collecting the data and sim-to-real transfer.

Finally, most crucially, and based on the findings of this study, there are various

future research recommendations for both applications. First, the enhancement of sample

efficiency is paramount due to the fact that most of the reinforcement learning algorithms

necessitate more samples to acquire a specific task. Therefore, one of the main future

directions is to develop algorithms that work with fewer samples. Second, the issue of

real-time control arises as a major concern since most reinforcement learning algorithms

reveal a noticeable lag for real-time controls [13]. Therefore, working towards enhancing

the acceleration of these algorithms will enable their seamless utilization in both

applications easily. Third, more than one algorithm or strategies of reinforcement learning

need to be integrated to handle varying levels of uncertainty and noise in sensory data.

This may lead to a robust algorithm that could overcome these problems by using

hierarchical reward shaping, adaptive learning, and transfer learning problems.

Supplementary Materials: The following supporting information can be downloaded at:

h�ps://www.mdpi.com/article/10.3390/s24082461/s1.

Author Contributions: Conceptualization, M.N.A.A.-H. and H.B.; methodology, M.N.A.A.-H., H.B.,

M.A.F. and L.A.; software, M.N.A.A.-H.; validation, M.N.A.A.-H., H.B. and L.A.; formal analysis,

M.N.A.A.-H., H.B., M.A.F. and L.A.; investigation, M.N.A.A.-H. and H.B; resources, M.N.A.A.-H.;

writing—original draft, M.N.A.A.-H. and H.B.; writing—review and editing, M.N.A.A.-H., H.B.

and M.A.F.; supervision, H.B.; funding acquisition, H.B. All authors have read and agreed to the

published version of the manuscript.

Sensors 2024, 24, 2461 38 of 41

Funding: This work was supported by the project TKP2021-NKTA-34, implemented with the

support provided by the National Research, Development, and Innovation Fund of Hungary under

the TKP2021-NKTA funding scheme. Australian Research Council (ARC) Industrial Transformation

Training Centre (ITTC) for Joint Biomechanics under Grant IC190100020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interests. The company was not involved

in the study design, collection, analysis, interpretation of data, the writing of this article or the

decision to submit it for publication.

References

1. Matsuo, Y.; LeCun, Y.; Sahani, M.; Precup, D.; Silver, D.; Sugiyama, M.; Uchibe, E.; Morimoto, J. Deep learning, reinforcement

learning, and world models. Neural Netw. 2022, 152, 267–275.

2. Wells, L.; Bednarz, T. Explainable AI and Reinforcement Learning—A Systematic Review of Current Approaches and Trends.

Front. Artif. Intell. 2021, 4, 550030.

3. Turing, A.M. I. Computing machinery and intelligence. Mind 1950, LIX, 433–460.

4. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Driessche, G.V.D.; Schri�wieser, J.; Antonoglou, I.; Panneershelvam,

V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489.

5. AlMahamid, F.; Grolinger, K. Reinforcement Learning Algorithms: An Overview and Classification. In Proceedings of the

Canadian Conference on Electrical and Computer Engineering (CCECE), Canada, Virtual, 12–17 September 2021.

6. Su�on, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; The MIT Press: London, UK, 2018.

7. Jia, J.; Wang, W. Review of reinforcement learning research. In Proceedings of the 35th Youth Academic Annual Conference of

Chinese Association of Automation (YAC), Zhanjiang, China, 16–18 October 2020.

8. Al-Hamadani, M.N.A. Evaluation of the Performance of Deep Learning Techniques over Tampered Dataset; ProQuest Dissertations

Publishing: Greensboro, NC, USA, 2015.

9. Ahmed, A.H.; Al-Hamadani, M.N.A.; Satam, I.A. Prediction of COVID-19 disease severity using machine learning techniques.

Bull. Electr. Eng. Inform. 2022, 11, 1069–1074.

10. Sah, S. Machine Learning: A Review of Learning Types; Preprints; MDPI: Basel, Swi�erland, 2020.

11. Reddy, Y.C.A.P.; Viswanath, P.; Reddy, B.E. Semi supervised learning: A brief review. Int. J. Eng. Technol. 2018, 7, 81–85.

12. Mohammed, M.Q.; Chung, K.L.; Chyi, C.S. Review of Deep Reinforcement Learning-Based Object Grasping: Techniques, Open

Challenges, and Recommendations. IEEE Access 2020, 8, 178450–178481.

13. Han, D.; Mulyana, B.; Stankovic, V.; Cheng, S. A Survey on Deep Reinforcement Learning Algorithms for Robotic Manipulation.

Sensors 2023, 23, 3762.

14. Yu, C.; Liu, J.; Nemati, S.; Yin, G. Reinforcement Learning in Healthcare: A Survey. ACM Comput. Surv. 2021, 55, 1–36.

15. Coronato, A.; Naeem, M.; Pietro, G.D.; Paragliola, G. Reinforcement learning for intelligent healthcare applications: A survey.

Artif. Intell. Med. 2020, 109, 101964.

16. Sataloff, R.T.; Bush, M.L.; Chandra, R.; Chepeha, D.; Rotenberg, B.; Fisher, E.W.; Goldenberg, D.; Hanna, E.Y.; Kerschner, J.E.;

Kraus, D.H.; et al. Systematic and other reviews: Criteria and complexities. J. Otolaryngol.–Head Neck Surg. 2021, 50, 649–652.

17. Kraus, S.; Breier, M.; Dasí-Rodríguez, S. The art of crafting a systematic literature review in entrepreneurship research. Int.

Entrep. Manag. J. 2020, 16, 1023–1042.

18. Stra�on, S.J. Literature Reviews: Methods and Applications. Prehospital Disaster Med. 2019, 34, 347–349.

19. Munn, Z.; Peters, M.D.J.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic review or scoping review? Guidance

for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol. 2018, 18, 143.

20. Tawfik, G.M.; Dila, K.A.S.; Mohamed, M.Y.F.; Tam, D.N.H.; Kien, N.D.; Ahmed, A.M.; Huy, N.T. A step by step guide for

conducting a systematic review and meta-analysis with simulation data. Trop. Med. Health 2019, 47, 46.

21. U�ley, L.; Quintana, D.S.; Montgomery, P.; Carroll, C.; Page, M.J.; Falzon, L.; Su�on, A.; Moher, D. The problems with systematic

reviews: A living systematic review. J. Clin. Epidemiol. 2023, 156, 30–41.

22. Albahri, A.; Duhaim, A.M.; Fadhel, M.A.; Alnoor, A.; Baqer, N.S.; Alzubaidi, L.; Albahri, O.; Alamoodi, A.; Bai, J.; Salhi, A.; et

al. A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and

data fusion. Inf. Fusion 2023, 96, 156–191.

23. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;

Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021,

8, 53.

24. Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975.

25. Nian, R.; Liu, J.; Huang, B. A review on reinforcement learning: Introduction and applications in industrial process control.

Comput. Chem. Eng. 2020, 139, 106886.

Sensors 2024, 24, 2461 39 of 41

26. Thorndike, E.L. Animal Intelligence. Am. Psychol. 1998, 53, 1125–1127.

27. Rawlings, J.B.; Mayne, D.Q.; Diehl, M.M. Model Predictive Control: Theory, Computation, and Design; Nob Hill Publishing: London,

UK, 2017.

28. Bellman, R. On the Theory of Dynamic Programming. Proc. Natl. Acad. Sci. USA 1952, 38, 716–719.

29. Bellman, R. Dynamic Programming; Princeton University Press: Princeton, NJ, USA, 1957.

30. Silver, D. Lectures on Reinforcement Learning. London. 2015. Available online: h�ps://www.davidsilver.uk/teaching/ (accessed

on 15 May 2015).

31. Feinberg, E.A.; Shwar�, A. Handbook of Markov Decision Processes Methods and Applications; Springer: New York, NY, USA, 2002.

32. Puterman, M.L. Markov Decision Processes: Discrete Stochastic Dynamic Programming; John Wiley & Sons, Inc.: New York, NY,

USA, 1994.

33. Lee, D. AI³|Theory, Practice, Business. Available online: h�ps://medium.com/ai%C2%B3-theory-practice-

business/reinforcement-learning-part-3-the-markov-decision-process-9f5066e073a2 (accessed on 30 October 2019).

34. Lei, Y.; Ye, D.; Shen, S.; Sui, Y.; Zhu, T.; Zhou, W. New challenges in reinforcement learning: A survey of security and privacy.

Artif. Intell. Rev. 2022, 56, 7195–7236.

35. Dimitrakakis, C.; Ortner, R. Decision Making under Uncertainty and Reinforcement Learning; Springer: Cham, Swi�erland, 2022.

36. Qian, H.; Yu, Y. Derivative-free reinforcement learning: A review. Front. Comput. Sci. 2021, 15, 156336.

37. Mahmud, M.; Kaiser, M.S.; Hussain, A.; Vassanelli, S. Applications of Deep Learning and Reinforcement Learning to Biological

Data. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 2063–2079.

38. Khetarpal, K.; Riemer, M.; Rish, I.; Precup, D. Towards Continual Reinforcement Learning: A Review and Perspectives. J. Artif.

Intell. Res. 2022, 15, 1401–1476.

39. Oroojlooy, A.; Hajinezhad, D. A Review of Cooperative Multi-Agent Deep Reinforcement Learning. Appl. Intell. 2022, 53, 13677–

13722.

40. Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. A Brief Survey of Deep Reinforcement Learning. IEEE Signal

Process. Mag. 2017, 34, 26-38. h�ps://doi.org/10.1109/MSP.2017.2743240.

41. Kazemi, M.; Perez, M.; Somenzi, F.; Soudjani, S.; Trivedi, A.; Velasquez, A. Translating Omega-Regular Specifications to Average

Objectives for Model-Free Reinforcement Learning. In Proceedings of the 21st International Conference on Autonomous Agents

and Multiagent Systems, Auckland, New Zealand, 9–13 May 2022.

42. White, M. Unifying task specification in reinforcement learning. In Proceedings of the 34th International Conference on Machine

Learning, Sydney, Australia, 6–11 August 2017.

43. Drummond, N.; Niv, Y. Model-based decision making and model-free learning. Curr. Biol. 2020, 30, R860–R865.

44. Dayan, P.; Berridge, K.C. Model-Based and Model-Free Pavlovian Reward Learning: Revaluation, Revision and Revelation.

Cogn. Affect. Behav. Neurosci. 2014, 14, 473–492.

45. Nachum, O.; Norouzi, M.; Xu, K.; Schuurmans, D. Bridging the Gap Between Value and Policy Based Reinforcement Learning.

In Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017.

46. Yu, M.; Sun, S. Policy-based reinforcement learning for time series anomaly detection. Eng. Appl. Artif. Intell. 2020, 95, 103919.

47. Benne�, D.; Niv, Y.; Langdon, A.J. Value-free reinforcement learning: Policy optimization as a minimal model of operant

behavior. Curr. Opin. Behav. Sci. 2021, 41, 114–121.

48. Hutsebaut-Buysse, M.; Mets, K.; Latré, S. Hierarchical Reinforcement Learning: A Survey and Open Research Challenges. Mach.

Learn. Knowl. Extr. 2022, 4, 172–221.

49. Wang, J.; Gao, R.; Zha, H. Reliable off-policy evaluation for reinforcement learning. Oper. Res. 2022, 72, 699–716.

50. Jiang, H.; Dai, B.; Yang, M.; Zhao, T.; Wei, W. Towards Automatic Evaluation of Dialog Systems: A Model-Free Off-Policy

Evaluation Approach. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Punta

Cana, Dominican Republic, 7–11 November 2021.

51. Liu, D.; Xue, S.; Zhao, B.; Luo, B.; Wei, Q. Adaptive Dynamic Programming for Control: A Survey and Recent Advances. IEEE

Trans. Syst. Man Cybern. Syst. 2021, 51, 142–160.

52. Bertsekas, D.P.; Yu, H. Q-Learning and Enhanced Policy Iteration in Discounted Dynamic Programming. Math. Oper. Res. 2012,

37, 66–94.

53. Yang, Y.; Vamvoudakis, K.G.; Modares, H.; Yin, Y.; Wunsch, D.C. Hamiltonian-Driven Hybrid Adaptive Dynamic

Programming. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 6423–6434.

54. Kim, C. Deep Reinforcement Learning by Balancing Offline Monte Carlo and Online Temporal Difference Use Based on

Environment Experiences. Symmetry 2020, 12, 1685.

55. Fountas, Z.; Sajid, N.; Mediano, P.A.; Friston, K. Deep active inference agents using Monte-Carlo methods. In Proceedings of

the 34th Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 6–12 December 2020.

56. Han, I.; Oh, S.; Jung, H.; Chung, I.; Kim, K.-J. Monte Carlo and Temporal Difference Methods in Reinforcement Learning [AI-

eXplained]. IEEE Comput. Intell. Mag. 2023, 18, 64–65.

57. Yoo, H.; Kim, B.; Kim, J.W.; Lee, J.H. Reinforcement learning based optimal control of batch processes using Monte-Carlo deep

deterministic policy gradient with phase segmentation. Comput. Chem. Eng. 2021, 144, 107133.

58. Shakya, A.K.; Pillai, G.; Chakrabarty, S. Reinforcement learning algorithms: A brief survey. Expert Syst. Appl. 2023, 231, 120495.

59. Blakeman, S.; Mareschal, D. A complementary learning systems approach to temporal difference learning. Neural Netw. 2020,

122, 218–230.

Sensors 2024, 24, 2461 40 of 41

60. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep

Reinforcement Learning. arXiv 2013, arXiv:1312.5602.

61. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M.A. Deterministic Policy Gradient Algorithms. In

Proceedings of the International Conference on Machine Learning, Beijing, China, 21–26 June 2014.

62. Lillicrap, T.P.; Hunt, J.J.; Pri�el, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep

reinforcement learning. arXiv 2015, arXiv:1509.02971.

63. Schulman, J.; Levine, S.; Mori�, P.; Jordan, M.I.; Abbeel, P. Trust Region Policy Optimization. arXiv 2015, arXiv:1502.05477.

64. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017,

arXiv:1707.06347.

65. Kleeberger, K.; Bormann, R.; Kraus, W.; Huber, M.F. A Survey on Learning-Based Robotic Grasping. Curr. Robot. Rep. 2020, 1,

239–249.

66. Ibarz, J.; Tan, J.; Finn, C.; Kalakrishnan, M.; Pastor, P.; Levine, S. How to Train Your Robot with Deep Reinforcement Learning;

Lessons We’ve Learned. Int. J. Robot. Res. 2021, 40, 698–721.

67. Xie, Z.; Liang, X.; Roberto, C. Learning-based robotic grasping: A review. Front. Robot. AI 2023, 10, 1038658.

68. Zuo, G.; Tong, J.; Wang, Z.; Gong, D. A Graph-Based Deep Reinforcement Learning Approach to Grasping Fully Occluded

Objects. Cogn. Comput. 2022, 15, 36–49.

69. Liu, N.; Guo, C.; Liang, R.; Li, D. Collaborative Viewpoint Adjusting and Grasping via Deep Reinforcement Learning in Clu�er

Scenes. Machines 2022, 10, 1135.

70. Shahid, A.A.; Piga, D.; Braghin, F.; Roveda, L. Continuous control actions learning and adaptation for robotic manipulation

through reinforcement learning. Auton. Robot. 2022, 46, 483–498.

71. Kilinc, O.; Montana, G. Reinforcement learning for robotic manipulation using simulated locomotion demonstrations. Mach.

Learn. 2022, 111, 465–486.

72. Coskun, M.; Yildirim, O.; Demir, Y. Robotic Grasping in Simulation Using Deep Reinforcement Learning. In Proceedings of the

7th International Conference on Computer Science and Engineering (UBMK), Diyarbakir, Turkey, 14–16 September 2022.

73. Chen, Y.-L.; Cai, Y.-R.; Cheng, M.-Y. Vision-Based Robotic Object Grasping—A Deep Reinforcement Learning Approach.

Machines 2023, 11, 275.

74. Hou, Y.; Li, J. Learning 6-DoF grasping with dual-agent deep reinforcement learning. Robot. Auton. Syst. 2023, 166, 104451.

75. Ceola, F.; Maie�ini, E.; Rosasco, L.; Natale, L. A Grasp Pose is All You Need: Learning Multi-fingered Grasping with Deep

Reinforcement Learning from Vision and Touch. arXiv 2023, arXiv:2306.03484.

76. Imtiaz, M.B.; Qiao, Y.; Lee, B. Prehensile and Non-Prehensile Robotic Pick-and-Place of Objects in Clu�er Using Deep

Reinforcement Learning. Sensors 2023, 23, 1513.

77. Lobbezoo, A.; Kwon, H.-J. Simulated and Real Robotic Reach, Grasp, and Pick-and-Place Using Combined Reinforcement

Learning and Traditional Controls. Robotics 2023, 12, 12.

78. Eckardt, J.-N.; Wendt, K.; Bornhäuser, M.; Middeke, J.M. Reinforcement Learning for Precision Oncology. Cancers 2021, 13, 4624.

79. Smith, B.; Khojandi, A.; Vasudevan, R. Bias in Reinforcement Learning: A Review in Healthcare Applications. ACM Comput.

Surv. 2023, 56, 1–17.

80. Yazdjerdi, P.; Meskin, N.; Al-Naemi, M.; Moustafa, A.-E.A.; Kovács, L. Reinforcement learning-based control of tumor growth

under anti-angiogenic therapy. Comput. Methods Programs Biomed. 2019, 173, 15–26.

81. Naeem, M.; Paragliola, G.; Coronato, A. A reinforcement learning and deep learning based intelligent system for the support of

impaired patients in home treatment. Expert Syst. Appl. 2021, 168, 114285.

82. Padmanabhan, R.; Meskin, N.; Kha�ab, T.; Shraim, M.; Al-Hitmi, M. Reinforcement learning-based decision support system for

COVID-19. Biomed. Signal Process. Control 2021, 68, 102676.

83. Padmanabhan, R.; Meskin, N.; Haddad, W.M. Optimal adaptive control of drug dosing using integral reinforcement learning.

Math. Biosci. 2019, 309, 131–142.

84. Marth, J.D. A unified vision of the building blocks of life. Nat. Cell Biol. 2008, 10, 1015–1016.

85. Nagy, G.; Kiraly, G.; Banfalvi, G. Optimization of Cell Cycle Measurement by Time-Lapse Microscopy. Methods Cell Biol. 2012,

112, 143–161.

86. Nagy, G.; Tanczos, B.; Fidrus, E.; Talas, L.; Banfalvi, G. Chemically Induced Cell Cycle Arrest in Perfusion Cell Culture. Methods

Mol. Biol. 2016, 1524, 161–176.

87. Kruitbosch, H.T.; Mzayek, Y.; Omlor, S.; Guerra, P.; Milias-Argeitis, A. A convolutional neural network for segmentation of

yeast cells without manual training annotations. Bioinformatics 2022, 38, 1427–1433.

88. Wang, Z.; Wang, D.; Li, C.; Xu, Y.; Li, H.; Bao, Z. Deep reinforcement learning of cell movement in the early stage of C. elegans

embryogenesis. Bioinformatics 2018, 34, 3169–3177.

89. Wang, Z.; Xu, Y.; Wang, D.; Yang, J.; Bao, Z. Hierarchical deep reinforcement learning reveals a modular mechanism of cell

movement. Nat. Mach. Intell. 2022, 4, 73–83.

90. Elguea-Aguinaco, Í.; Serrano-Muñoz, A.; Chrysostomou, D.; Inziarte-Hidalgo, I.; Bøgh, S.; Arana-Arexolaleiba, N. A review on

reinforcement learning for contact-rich robotic manipulation tasks. Robot. Comput.-Integr. Manuf. 2023, 81, 102517.

91. Chen, Y.; Wu, T.; Wang, S.; Feng, X.; Jiang, J.; McAleer, S.M.; Geng, Y.; Dong, H.; Lu, Z.; Zhu, S.-C.; et al. Towards Human-Level

Bimanual Dexterous Manipulation with Reinforcement Learning. In Proceedings of the 36th Conference on Neural Information

Processing Systems, New Orleans, LA, USA, 28 November–9 December 2022.

Sensors 2024, 24, 2461 41 of 41

92. Mohammed, M.Q.; Kwek, L.C.; Chua, S.C.; Al-Dhaqm, A.; Nahavandi, S.; Eisa, T.A.E.; Miskon, M.F.; Al-Mhiqani, M.N.; Ali, A.;

Abaker, M.; et al. Review of Learning-Based Robotic Manipulation in Clu�ered Environments. Sensors 2022, 22, 7938.

93. Yu, C.; Wang, P. Dexterous Manipulation for Multi-Fingered Robotic Hands with Reinforcement Learning: A Review. Front.

Neurorobotics 2022, 16, 861825.

94. Andrychowicz, O.M.; Baker, B.; Chociej, M.; Jozefowicz, R.; McGrew, B.; Pachocki, J.; Petron, A.; Plappert, M.; Powell, G.; Ray,

A.; et al. Learning dexterous in-hand manipulation. Int. J. Robot. Res. 2019, 39, 3–20. h�ps://doi.org/10.1177/0278364919887447.

95. Rajeswaran, A.; Kumar, V.; Gupta, A.; Vezzani, G.; Schulman, J.; Todorov, E.; Levine, S. Learning Complex Dexterous

Manipulation with Deep Reinforcement Learning and Demonstrations. In Proceedings of the 14th Robotics: Science and

Systems, Pi�sburgh, PA, USA, 26–30 June 2018.

96. Li, R.; Qiao, H. A Survey of Methods and Strategies for High-Precision Robotic Grasping and Assembly Tasks—Some New

Trends. IEEE/ASME Trans. Mechatron. 2019, 24, 2718–2732.

97. Dulac-Arnold, G.; Levine, N.; Mankowi�, D.J.; Li, J.; Paduraru, C.; Gowal, S.; Hester, T. Challenges of real-world reinforcement

learning: Definitions, benchmarks and analysis. Mach. Learn. 2021, 110, 2419–2468.

98. Xu, D.; Zhu, F.; Liu, Q.; Zhao, P. Improving exploration efficiency of deep reinforcement learning through samples produced

by generative model. Expert Syst. Appl. 2021, 185, 115680.

99. Zhao, W.; Queralta, J.P.; Westerlund, T. Sim-to-Real Transfer in Deep Reinforcement Learning for Robotics: A Survey. In

Proceedings of the IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, ACT, Australia, 1–4 December

2020.

100. Apolinarska, A.A.; Pacher, M.; Li, H.; Cote, N.; Pastrana, R.; Gramazio, F.; Kohler, M. Robotic assembly of timber joints using

reinforcement learning. Autom. Constr. 2021, 125, 103569.

101. Wang, Y.; Beltran-Hernandez, C.C.; Wan, W.; Harada, K. Robotic Imitation of Human Assembly Skills Using Hybrid Trajectory

and Force Learning. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30

May–5 June 2021.

102. Beltran-Hernandez, C.C.; Petit, D.; Ramirez-Alpizar, I.G.; Harada, K. Variable Compliance Control for Robotic Peg-in-Hole

Assembly: A Deep-Reinforcement-Learning Approach. Appl. Sci. 2020, 10, 6923.

103. Schoe�ler, G.; Nair, A.; Ojea, J.A.; Levine, S.; Solowjow, E. Meta-Reinforcement Learning for Robotic Industrial Insertion Tasks.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29

October 2020.

104. Matas, J.; James, S.; Davison, A.J. Sim-to-Real Reinforcement Learning for Deformable Object Manipulation. arXiv 2018,

arXiv:1806.07851.

105. Liu, N.; Cai, Y.; Lu, T.; Wang, R.; Wang, S. Real–Sim–Real Transfer for Real-World Robot Control Policy Learning with Deep

Reinforcement Learning. Appl. Sci. 2020, 10, 1555.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury

to people or property resulting from any ideas, methods, instructions or products referred to in the content.

