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Abstract: Unsupervised anomaly detection in multivariate time series sensor data is a complex task
with diverse applications in different domains such as livestock farming and agriculture (LF&A),
the Internet of Things (IoT), and human activity recognition (HAR). Advanced machine learning
techniques are necessary to detect multi-sensor time series data anomalies. The primary focus of this
research is to develop state-of-the-art machine learning methods for detecting anomalies in multi-
sensor data. Time series sensors frequently produce multi-sensor data with anomalies, which makes
it difficult to establish standard patterns that can capture spatial and temporal correlations. Our
innovative approach enables the accurate identification of normal, abnormal, and noisy patterns, thus
minimizing the risk of misinterpreting models when dealing with mixed noisy data during training.
This can potentially result in the model deriving incorrect conclusions. To address these challenges,
we propose a novel approach called “TimeTector-Twin-Branch Shared LSTM Autoencoder” which
incorporates several Multi-Head Attention mechanisms. Additionally, our system now incorporates
the Twin-Branch method which facilitates the simultaneous execution of multiple tasks, such as data
reconstruction and prediction error, allowing for efficient multi-task learning. We also compare our
proposed model to several benchmark anomaly detection models using our dataset, and the results
show less error (MSE, MAE, and RMSE) in reconstruction and higher accuracy scores (precision,
recall, and F1) against the baseline models, demonstrating that our approach outperforms these
existing models.

Keywords: anomaly detection; unsupervised learning; time series sensor; LSTM autoencoder;
multi-head attention mechanism; DAE; reconstruction and prediction branch; livestock

1. Introduction

Anomaly detection has been a central focus in machine learning research for many
years. An anomaly in time series data is a deviation from the expected pattern or trend
within a given time frame, showing up as outliers, fluctuations, or changes in the data,
indicating unusual behavior [1]. Livestock anomalies refer to unexpected changes in trends
or patterns, such as irregularities in population dynamics, production metrics, or envi-
ronmental factors like temperature, humidity, and gases. It has widespread applications
across various domains, including livestock farming [2], cyber-intrusion detection, health-
care, sensor networks, and image anomaly detection. The expansion of livestock farms
and the number of animals necessitate advanced management techniques for optimizing
productivity with limited manpower. Failure to address the irregularities in livestock
data can lead to various consequences, including untreated illnesses, reduced productiv-
ity, and heightened mortality rates, posing significant risks to animal welfare and farm
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profitability [3]. Detection and management of these anomalies are crucial for ensuring
optimal farm management and animal well-being. Precision farming emerges as a solution,
propelling the transition toward automated livestock smart farms [4]. Central to this is
anomaly detection, which is crucial in sectors like finance and healthcare but pivotal in
livestock management. Farmers can gain valuable insights by detecting outliers in data
points that deviate significantly from typical patterns, which are frequently caused by
discrepancies and errors in the sensors. Organizations are exploring methods to enhance
pig productivity with minimal human involvement. Livestock health, well-being, and
productivity can be significantly improved by paying close attention to them and promptly
detecting anomalies. This can help in identifying potential health issues or environmental
inconsistencies in livestock settings, allowing for swift interventions to maintain animal
welfare and farm productivity. Studies have demonstrated that focusing on the livestock
sector can result in positive outcomes, as evidenced by a wealth of research [4,5]. Given the
increasing scale of livestock rearing, adopting intelligent agricultural solutions is essential
to ensuring optimal farm and livestock housing conditions, especially in pig farming,
where it is crucial. The seamless integration of different equipment within and around
barns is essential for creating and maintaining optimal growth conditions for livestock.
Gas sensors in pig barns ensure the safety and health of animals and workers. Conven-
tional outlier detection techniques lack efficacy when dealing with large, multi-dimensional
datasets. Autoencoders, representing a type of deep learning technique, have excelled
in detecting outliers due to their ability to identify complex patterns and relationships
in the data. Autoencoders have revolutionized anomaly detection and prediction [6].
Advanced analytical techniques have the capability to identify complex, nonlinear rela-
tionships within data. These techniques allow for the precise identification of anomalies
in offering predictive insights essential for improving the efficiency and productivity of
livestock management.

Having accurate data is essential for making informed decisions. Several factors can
cause variations in data quality, including measurement errors, inaccurate data entries,
sensor failures, or deliberate sabotage. These challenges can be complex to manage using
sophisticated methodologies. Analyzing spatial interconnections within multi-sensor
datasets is crucial for making informed decisions in the current era. The complexity lies
in differentiating between noise, typical, and atypical data. Therefore, there is a need for
a dependable mechanism that enables precise identification and interpretation of such
data. Several approaches for analyzing spatial dependencies in multiple sensors have been
studied [7,8]. To deal with such challenges, researchers have developed various methods,
e.g., data-driven anomaly detection [9] and maximum mean discrepancy (MMD) [10].
Deep learning approaches, especially those involving autoencoders, have surfaced as
potent solutions for outlier detection, although some may fall short in performance. Their
performance is often tied to their adeptness in unraveling intricate nonlinear relationships
within data [11,12]. Through learning intricate data patterns, these techniques facilitate
enhanced anomaly identification, fostering a more accurate and insightful analysis.

Pig house sensors collect real-time management data, ensuring optimal growth and
animal welfare. Equipment inside and outside the house maintains a suitable environment
and boosts productivity. Gas sensors monitor hazardous gases like carbon dioxide CO2
and ammonia NH3 which can accumulate due to animal respiration and waste. Integrating
gas sensors with ventilation systems helps control the indoor climate and maintain a
healthy environment for animals and workers. High carbon dioxide CO2 levels can pose
a suffocation risk [13,14]. Using mechanisms that capture spatial–temporal correlations
and dependencies among diverse data streams has proven highly effective. Traditional
models like RNNs, VAEs, or GANs may need to become more capable of addressing this
challenge with the same level of efficiency [15]. Using our proprietary dataset from the
pig farm, we show that pig diseases are the most critical factor affecting productivity.
Preventing infections is crucial for maintaining pig productivity. Proper maintenance of
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the pig house and equipment can create a healthier environment and decrease the chances
of infection [16,17].

Autoencoder-based models are effective in smart farming, especially in anomaly detec-
tion. A study found that they can detect anomalies in agricultural vehicles by identifying
obstructive objects in the field. The study also introduced a semi-supervised autoencoder
trained with a max-margin-inspired loss function that outperformed basic and denoising
autoencoders in the generation of anomaly maps using relative-perceptual–L1 loss [18].
According to the research, autoencoders are identified as a versatile tool for anomaly de-
tection. Autoencoders use an encoder and a decoder to minimize reconstruction errors
for normal data. Anomalies result in higher reconstruction errors and are identifiable as
outliers [19,20]

Several techniques have been proposed to overcome the limitations of outlier detection:
LSTM, LSTM-AE, ConvLSTM, and GRU. These standard techniques have limitations in
identifying the capacity to detect a wider range of subtle and complex anomalies, especially
in intricate, dynamic industrial environments [21,22]. One such technique is represented
by ensemble methods which combine the outputs of multiple models to improve accuracy
and robustness. Like in any technology, there is always a chance of malfunction, probably
leading to undetected hazardous conditions [23]. Advanced analytics and machine learning
improve the speed and accuracy of real-time data processing, enabling precise anomaly
detection and interpretation of complex data relationships in livestock farming. However,
the growing use of IoT devices in agriculture raises security and privacy concerns that must
be addressed. Current anomaly detection methods in agriculture, especially in livestock
farming and industrial settings, must handle real-time, multi-dimensional data. Traditional
autoencoder architectures struggle to adapt to the complexities of dynamic and noisy farm
environments. Unpredictable variables often affect data in this field, resulting in a higher
rate of false positives or negatives.

In our research, we present a new model called the “TimeTector (TT-TBAD)”, which
offers a revolutionary approach to detecting anomalies in agricultural environments. Our
innovative methodology is specifically designed to handle the complexities and nuances of
multi-sensor and real-time series data that are common in farming settings, thereby pro-
viding a robust and advanced autoencoder ensemble approach that addresses the unique
challenges of monitoring pig farm environments. It is capable of detecting outliers with
remarkable accuracy and can also make predictive inferences, which is a feature that is
often absent in traditional models. As a result, “TimeTector (TT-TBAD)” represents a signif-
icant advancement in the field, providing an effective and precise solution for detecting
anomalies in critical agricultural applications. Our innovative TT-TBAD methodology
is designed to detect anomalies in livestock sensor data using advanced techniques. It
utilizes a Twin-Branch Shared LSTM Autoencoder framework, incorporating a Denoising
Autoencoder (DAE) and several Multi-Head Attention mechanisms. This approach can
be used to effectively handle the noisy data commonly found in agricultural settings. The
model captures complex spatial–temporal correlations and hierarchical relationships while
minimizing reconstruction and prediction errors. Real-time performance insights are pro-
vided via a dynamic feedback loop. Optimized for multi-sensor time series data, TT-TBAD
enhances data quality by reducing noise and providing accurate forecasts, enabling proac-
tive farm management and improved productivity and animal welfare. In summary, this
study makes three key contributions:

• This model integrates advanced mechanisms, including Multi-Head Attention, Hier-
archical Multi-Head Attention, Cross Multi-Head Attention, and Feature-Enhanced
Multi-Head Attention. These features enable the analysis of hierarchical data, identifi-
cation of complex relationships, and interpretation of auxiliary features. Moreover,
the model’s dual-branch LSTM structure enhances spatial–temporal data analysis,
resulting in improved accuracy for anomaly detection in livestock farming, a capability
not adequately addressed by traditional models.
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• The integration of a Denoising Autoencoder (DAE) with Shared LSTM encoder
branches manages noisy agricultural sensor data during training, mitigating over-
fitting and enhancing adaptability. The development of a Twin-Branch structure for
multi-task learning enables simultaneous data reconstruction and future prediction,
distinguishing between normal operations, noisy data, and anomalies. This dual-task
learning approach generates precise, actionable insights in real time, a capability not
typically found in traditional models.

• The developed model uses a feedback loop based on reconstruction and prediction
errors to continuously monitor and adjust its performance, through a dynamic rather
than static threshold-based mechanism. This adaptive mechanism significantly im-
proves the detection accuracy and the model’s adaptability to evolving farm conditions
by boosting the accuracy and adaptability in anomaly detection, aiding decision-
making. Finally, evaluation results showed a lower construction on error (MSE, MAE,
and RMSE) and high accuracy (precision, recall, and F1) when evaluated against the
benchmark and baseline anomaly detection models.

The rest of the paper is organized as follows: Section 2 provides related work, exploring
state-of-the-art techniques for anomaly detection in sensor data. Sections 3 and 4 describe
our proposed methodology and detailed framework. The dataset explanation and analysis
are described in Section 5. Performance evaluation, results, and analysis of the experiment
follow in Section 6. Finally, Section 8 concludes the paper with directions for possible
future work.

2. Related Work

Several research studies have been performed on existing state-of-the-art techniques
for detecting anomalies in indoor and outdoor pig farm environment datasets and other
similar fields [24]. This detection process has been studied for decades in natural language
processing (NLP) and images and videos [25]. Various methods are available for anomaly
detection, including statistical, supervised machine learning-based, and unsupervised deep
learning-based approaches. These methods have been explored in detail through literature
reviews in similar studies; as such, our focus is on unsupervised learning due to the lack of
labels. Outlier detection in real-time series data has unique challenges that require efficient
processing and handling of data drift or concept drift [26]. Machine learning and deep
learning advancements in analyzing time series data from sensor networks show that
spatial information from sensor locations can be leveraged to improve predictions [27].

The use of techniques such as sliding windows, feature selection, and online learning
algorithms for handling real-time series data in outlier detection tasks has been explored
in previous research, where challenges specific to real-time series data in outlier detection
have been acknowledged [28]. These challenges include handling the data drift, where
the statistical properties of the data change over time, and the concept drift, where there
is the evolution of the underlying concepts being monitored. To address these challenges,
techniques like sliding windows, which limit the data window for analysis, and feature
selection, which focuses on the most relevant attributes, have been explored [29]. Addition-
ally, online learning and multilayer neurocontrol of high-order uncertain nonlinear systems
with active disturbance rejection algorithms, which adapt to changing data distributions
and solve real-world problems, have been investigated to improve the efficiency of outlier
detection in real-time scenarios [30,31].

Additionally, autoencoder-based anomaly detection has proven to be highly effective
in IoT-based smart farming systems, exhibiting exceptional performance in accurately
detecting anomalies in key variables such as soil moisture, air temperature, and air humidity.
The integration of this technology has shown superior performance, making it a valuable
tool for precision agriculture. This study proposes a new approach for anomaly detection
using autoencoder-based reconstructed inputs. The proposed method outperforms existing
techniques and facilitates the creation of supervised datasets for further research. The
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hourly forecasting models for soil moisture and air temperature demonstrate low numbers
of estimation errors, indicating the effectiveness of this method [32].

In order to improve the accuracy of intrusion detection on the Internet of Things
(IoT), intrusion labels are integrated into the decoding layers of the model. However,
this approach may not effectively handle the data and concept drift challenges frequently
encountered in real-time anomaly detection. Additionally, multi-sensor technology IoT
devices can be used in both cloud and edge computing infrastructure to provide remote
control of watering and fertilization, real-time monitoring of farm conditions, and solutions
for more sustainable practices. However, these improvements in efficiency and ease of
use come with increased risks to security and privacy. Combining vulnerable IoT devices
with the critical infrastructure of the agriculture domain broadens the attack surface for
adversaries, making it easier for them to launch cyber-attacks [33]. An end-to-end deep
learning framework for extracting fault-sensitive features from multi-sensor time series
data showcases data-driven methods to handle spatiotemporal cases [34].

Anomaly detection involves a comprehensive survey of deep learning techniques
for anomaly detection, covering various methods and their applications across different
domains. However, the survey might not delve deep into real-time series data anomaly
detection [35]. A survey on anomaly detection that focused on time series using deep learn-
ing and covered a range of applications, including healthcare and manufacturing, provided
specific insights into livestock health monitoring or multi-task learning [36]. Knowledge
distillation for compressing an unsupervised anomaly detection model and addressing
the challenge of deploying models on resource-constrained devices are examples of the
challenges associated with real-time data processing and multi-task learning in anomaly
detection [37]. One learning-based study introduced a simple yet effective method for
anomaly detection by learning small perturbations to perturb normal data and subse-
quently classifying the normal and perturbed data into two different classes using deep
neural networks. The focus on perturbation learning might not align with the Multi-Head
Attention and memory-driven multi-task learning approaches in our work [38].

3. Preliminaries
3.1. LSTM Network

Hochreiter and Schmid Huber introduced LSTM in 1997. It is an advanced RNN that
addresses the vanishing gradient problem and models long-term dependencies; Figure 1.
LSTM is popular in commercial applications for its memory cells controlled by gate
units [39], including input, forget, and output gates, to selectively store information over
time as given in Equation (1). A detailed explanation is given in Section 4.

LSTMStructure =



ft = σ(W f × [ht−1, xt] + b f )

it = σ(Wi × [ht−1, xt] + bi)

c̃t = tanh(Wc × [ht−1, xt] + bc)

ct = ft × ct−1 + it × c̃t

ot = σ(Wo × [ht−1, xt] + bo)

ht = ot × tanh(ct)

(1)

3.2. Encoder–Decoder

Autoencoders use an encoder to compress input data into a “latent space” and a de-
coder to reconstruct original data as shown in Figure 2. Minimizing the reconstruction error
during training allows for effective feature extraction and data reconstruction, presented
by Equation (2) [21,33,34].

Output = ∥x − g( f (x))∥2 (2)
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Figure 1. Long short-term memory (LSTM) cell with an input gate, an output gate, and a forget
gate [39].

Figure 2. Image illustrates an encoder –decoder neural network model. The encoder compresses the
input ‘X’ into a condensed representation ’Z’, which the decoder then uses to reconstruct the output
‘X prime.’ Arrows indicate process flow and blue dots represent distinct layers [21].

3.3. Multi-Head Attention Mechanism

Multi-Head Attention is a powerful mechanism that enables the model to concentrate
on different parts of the input data at the same time. It is like having several sets of “eyes”
focusing on various features or aspects of the data, allowing for the model to capture
diverse relationships simultaneously. Recently, the attention mechanism has helped solve
many research problems [40]. This mechanism is a core part of the transformer architecture
introduced by Vaswani et al., 2017 [41]. Multi-Head Attention is essential because, in
simple self-attention, the model learns only one set of attention weights, which can be
limiting. For example, a sentence may have a grammatical relationship with one word and
a semantic relationship with another. With multiple heads, the model can simultaneously
capture these various relationships, leading to better results in natural language processing
tasks. In our case, the Multi-Head Attention mechanism is a key component, allowing
for the extraction of complex features from sequence data. By utilizing multiple heads,
the mechanism can focus on a range of spatial–temporal dependencies within the data,
effectively capturing both long- and short-range dependencies. Using our approach, even
the slightest patterns in data can be detected, significantly increasing system performance
and accuracy.

4. The Proposed TT-TBAD Method

Time series anomaly detection is the process of analyzing sets of observations in a
multivariable time series X = {x1, x2, . . . , xN}, with xN ∈ RO to identify any anomalies.
The goal is to develop a scoring function that assigns a higher score to anomalous observa-
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tions than normal ones (xj). The input format includes N observations, each of O variables
represented by real numbers. The scoring function Φ assigns a higher score to anomalous
observations, which helps detect any unusual behavior xi. We have Φ(xi) > Φ(xj).

4.1. Denoising Autoencoder (DAE)

Denoising autoencoders reconstruct the original input from a corrupted version to
teach the hidden layer more resilient features. We integrate it into our proposed TT-
TBAD to help the model learn the underlying structure of the data and ignore the noise
in the training data as shown in Figure 3. The corrupted version is created by adding
noise and passed through the encoder to acquire latent representation h, as presented by
Equations (3) and (4). Latent representation h is then passed through the decoder to obtain
the reconstructed version x’ and loss L is computed by taking the difference between the
original input x and the reconstructed version x’, as presented by Equations (5) and (6).

x̃ = x + noise (3)

h = f (x̃) (4)

x′ = g( f (x̃)) (5)

L(x, x′) =
1
n

n

∑
i=1

(xi − x′i)
2 (6)

where x is the original data, x̃ is the data after the noise is added, x’ is the reconstructed
data, and n is the dimensionality of the input.

Figure 3. The denoising autoencoder architecture shows the addition of noise to the data passing
through the encoder–decoder and subsequently through the shared LSTM.

4.2. Shared LSTM Encoder with Attention

We designed a shared encoder with LSTM and attention mechanisms. This encoder
can process input sequences and generate a context-aware representation that is passed to
the model’s numerous Multi-Head Attention mechanisms. For input X, the LSTM updates
its cell state C and hidden state h at each timestep t. After processing the sequence, we have
a series of hidden states ht. In our case, we are passing these hidden states on to the next
phase as presented in Equation (7).

H = [h1, h2, . . . , hT ] (7)

4.3. Attention Mechanism Phase

Attention mechanisms empower models to dynamically allocate significance to dif-
ferent portions of the input sequence, where each sequence is then transformed into Q,
K, and V using a “Feature Linear Project”. With the help of these four diverse attention
mechanisms, i.e., “Multi-Head Attention”, “Hierarchical Multi-Head Attention”, “Cross-
Multi-Head Attention”, and “Feature-Enhanced Multi-Head Attention”, the job is to refine
the LSTM−derived hidden states as shown in Equation (8), each offering a unique perspec-
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tive on data attention [42]. The detailed representation of model architecture is shown in
the figure in Section 4.8.

Q = H × WQ, K = H × WK, V = H × WV , (8)

where WQ, WK, and WV are learned weight matrices for queries, keys, and values, respec-
tively. The learned weight matrices by each of these layers have dimensions dmodel × dmodel ,
whereas dmodel is the dimension of each attention. After the transformation, q, k, and v are
split into multiple attention heads, as given in Equation (9). In our case, with dmodel = 64 and
numheads = 8, each head processes a different subspace of the model dimensions, specifically
handling dmodel/numheads dimensions, which is 64/8 = 8.

4.4. Multi-Head Attention

As previously stated, the transformer architecture employs a mechanism that processes
a group of input sequences by projecting them into various subspaces and performing
independent attention in each subspace. The Multi-Head Attention algorithm takes in the
input sequences in the form of matrices Q(queries), K(keys), and V(values) and operates
by conducting the following steps as shown in Figure 4 (left).

Figure 4. Structure of the Multi-Head Attention module: (left) the multi-head adaptive feature
combination attention module with N parallel heads; (right) the basic scaled-dot product attention in
each head separately.

Weight matrices multiply input sequences to generate new sequences for each attention
head. The attention weights are obtained using a scaled-dot product and passed through
So f tmax. The final output is the concatenation of all attention head outputs, as presented
by Equation (9).

MultiHead(Q, K, V) = Attention(QWQ, KWK, VWV) (9)

4.5. Hierarchical Multi-Head Attention

Different mechanisms are used in the literature to emphasize the special characteristics
of the input data. Hierarchical Multi-Head Attention also exhibits the same characteristics.
The model employs multiple layers of attention in a hierarchical structure. The output
of one layer serves as the query for the next layer, allowing for the model to capture
more complex relationships and dependencies between different parts of the sequence, as
shown in Figure 5 (right) for hierarchical attention layer L, which consists of initial and
subsequent layers.
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For the first layer, the original Q, K, and V matrices are used. In subsequent layers, the
previous layer outputl−1 is used as the query for the current layer, while K and V remain
the same as shown in Equation (10).

Ql = Outputl−1, Kl = K, Vl = V (10)

where output L1 is the output of the hierarchical layer’s L1th.

Figure 5. Structure of the Cross-Multi-Head Attention module (left), Feature-Enhanced Multi-Head
Attention module (center), and Hierarchical Multi-Head Attention module (right).

4.6. Cross-Multi-Head Attention

The attention mechanism combines standard self-attention with cross-attention, which
enhances the queries, keys, and values by projecting additional features. This provides
context awareness to the attention mechanism, enabling the model to more effectively
learn the dependencies between the different parts of the sequence given in Equation (11).
The original and external keys and values are split into multiple heads, enabling paral-
lel processing and capturing different types of relationships in the data. Moreover, the
representation of cross-multi-head attention is visualized in Figure 5 (left). An external
source from the LSTM layer provides Vexternal and Kexternal shown in the above equation.
The final output may consist of a combination of both standard and cross-attention outputs
in Equations (12) and (13).

CrossAttention(Q, Kexternal, Vexternal) (11)

Scores = Q · KT
external (12)

CrossAttention(Q, Kexternal, Vexternal) = softmax(Q · KT
external) · Vexternal (13)

The output is a matrix where each element is a weighted sum of the elements in the
external Vexternal , with the weights determined by the compatibility of the queries with the
keys.

4.7. Feature-Enhanced Multi-Head Attention

This mechanism is designed to improve the functionality of queries, keys, and values
by adding additional features. These additional features can be in the form of metadata
or other relevant data that can be used to provide more context to the data being queried.
Doing so makes it easier to retrieve the relevant data and perform more complex opera-
tions. Upon instantiation, it creates an additional feature-dense layer designed to project
additional features F’ into the same dimension as the queries, keys, and values. Feature
matrix F’ is projected via a weight matrix WF to obtain F’, which is then added to Q, K, and
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V to compute the enhanced attention, as shown in Figure 5 (center). We consider feature
matrix F in Equation (14) and the weight matrix for feature projection in Equation (15).

F′ = FWF (14)

Q′ = Q + F′, K′ = K + F′, V′ = V + F′ (15)

where WF is a weight matrix for feature projection and the Q, K, and V are the keys that
are utilized to compute the attention.

By combining the output of different mechanisms, a comprehensive and nuanced
representation of the input data is generated, allowing for more effective analysis and
processing in further model layers.

4.8. Attention Score Calculation (ASC)

To compute attention scores, each query is compared with all keys. The attention
score for each subspace is independently executed using the adaptive feature combination
attention approach between query qt and key kt, which is calculated for each head and
shows the result in Figure 4 (right), determined through specific Equation (16).

This computation results in a matrix of attention scores, denoted as st,j, which has a
size of T × T, whereas T denotes a transpose operation. The value of st,j represents the score
of attending from position t to position j. qt and kt are query and key vectors at positions t
and j (17) [43]. A higher score indicates stronger relevance, causing the model to prioritize
the corresponding value. Before using the softmax function, the attention score st,j is
substituted by the root of each head (dk) to stabilize the gradients, and finally, after passing
the result through a So f tmax function, the weights are as shown in Equation (18) [43]:

ASC st,j = qT
t k j (16)

So f tmax
( st,j√

dk

)
(17)

Attention(Qi, Ki, Vi) = So f tmax

(
QiW

Q
i√

Dk

)
Vi (18)

where Dk = dmodel / numheads is the depth of each head. When computing attentive rep-
resentation and concatenation for each timestep t, the weighted sum of all values is pre-
sented in Equation (19). In this way, we obtain a sequence of attentive representations
R = [r1, r2, r3, r4, . . . , rn], as presented in Equation (20). The above process is repeated N
times (for Nheads) with different weight matrices Wn

Q, Wn
K, Wn

V each time and produces
attentive representation sequence Rn differently as a final output, as given in Equation (21).
Here, we acquire the output of all attention mechanisms after concatenation for the con-
catenated output, as presented in Equation (22) which can be seen in the detailed model
architecture; Figure 6.

rt =
T

∑
j=1

at,jvj (19)

Concat = [r1, r2, r3, r4, . . . , rn] (20)

Ot = [R1
t , R2

t , R3
t , . . . , RN

t ]× WO (21)

Concat Output = Concat(MHA, H-MHA, C-MHA, FE-MHA) (22)

where in Equation (21) WO is another learned weight matrix, and Equation (22) denotes the
combination of outputs from multiple attention mechanisms into a single tensor. In this
case, the second shared encoder evaluates the merged output, capturing intricate temporal



Sensors 2024, 24, 2453 11 of 31

patterns, assimilating information from various attention outputs, and transmitting it to
the twin branch.

Figure 6. Architecture of the proposed TT-TBAD highlighting two shared LSTM encoders and an
attention branch portion leading to the Twin-Branch section.

4.9. Reconstruction and Prediction Based on Encoded Representation with Attention

The input sequence X is employed in condensed representation E by encoding function
fenc, which likely employs attention mechanisms to capture significant features of X.

Two mappings denote the twin branch (reconstruction branch, prediction branch); as
shown in the architecture of the proposed model Figure 6, the first one reconstructs X

from E and is represented as X = fRec(E). The second mapping predicts future X
values from E, denoted as P = fpred(E).

4.9.1. Reconstruction Branch

To measure the error in the reconstruction process, we use reconstruction error Lrec,
which calculates the discrepancy between X and its reconstructed version X̂, across all
timesteps using the Euclidean L2 norm. This essentially computes the geometric distance
between the corresponding elements of X and X̂ at each timestep t and adds up these
distances as shown in Equation (23). The LSTM encoder takes a noisy input sequence, Xnoisy
with t timesteps and F features and produces a hidden representation, HE, in Equation (24).
This encoded sequence HE is then repeated to match the original sequence length L as
follows in (25). The repeated encoded sequence Hrp is applied on the layer (decoder)
to generate a new hidden representation HD as given in Equation (26). Finally, hidden
representation HD is processed with a TimeDistributed Dense layer to reconstruct sequence
XRec as follows in Equation (27).

LRec =
t

∑
i=1

||Xi − X̂i||2 (23)

HE = LSTM(Xnoisy) (24)

Hrp = Repeat(HE, L) (25)

HD = LSTM(Hrp) (26)
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XRec = TimeDistributed(Dense)(HD) (27)

4.9.2. Prediction Branch

Similarly, to measure the error in the prediction process, we use prediction error Lpred
which measures the discrepancy between predicted future values P and actual future
values X f uture over a defined future timeframe as shown in (28). The geometric distance is
again used to quantify the discrepancy at each future timestep Tf , and these distances are
summed up. The representation by encoder HE undergoes processing via Dense layers to
predict future values. The intermediate representation is HpredDense, and the final predicted
values are Ypred as given in Equations (29) and (30).

Lpred =
future_timesteps

∑
i=1

||Xfuture,i − Pi||2 (28)

HpredDense = Denserelu(HE) (29)

Ypred = Dense(HpredDense) (30)

5. Dataset Analysis and Explanation

The datasets as shown in Figures 7 and 8 are composed of multiple time series pro-
duced by different sensors. These sensors help us maintain a comfortable environment
for the pigs. We installed several sensors inside our pig barn to monitor temperature (◦C),
humidity (%), carbon dioxide CO2 (ppm), ammonia NH3 (ppm), and hydrogen sulfide
H2S (ppm).

Figure 7. Fattening data collected indoors from a pig farm environment includes measurements of
temperature, humidity, CO2, NH3, and H2S.
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Figure 8. Outdoor data retrieved from the weather forecast station at the pig farm environment
includes temperature, humidity, solar energy, and accumulated solar energy per day.

We installed weather forecasting devices outside to obtain accurate weather readings.
These devices include temperature (◦C), humidity (%), carbon dioxide CO2 (ppm), ammonia
NH3 (ppm), and hydrogen sulfide H2S (ppm). By monitoring both the inside and outside
environment, we can make informed decisions to ensure the well-being of our pigs, as
shown in Figure 9. Our setup consists of interconnected sensors that generate copious
amounts of data, up to 39,456 data points per sensor. Additional details are found in
Table 1.

Figure 9. Experimental setup involves the use of sensor detectors placed in a box equipped with a
Jetson Nano board for monitoring indoor and outdoor environmental conditions in a pig farm.

All these sensors converge at a local server, Jetson Nano, where the data are immedi-
ately stored as they are collected. Acting as an intermediate repository and processing node,
this Jetson Nano is then connected to a central server, which serves as a comprehensive
data hub for all the collected data. This includes sensor data, imagery, and video feeds from
cameras, all securely stored in real-time to ensure seamless consolidation, correlation, and
analysis. As mentioned in the introduction in Section 1, the dataset is sourced from our pig
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barn farm project. The sensors produce data with a 5-minute delay, creating a multivariate
time series of nine features. These features include information about the indoor conditions
of the barn, such as fattening and outdoor weather forecasts. For more detailed information,
please refer to Table 1.

Table 1. A characterization of the various features in the Indoor and Outdoor fattening barn datasets.

Indoor Fattening Barn Values

No of sensors 5
No of dataset samples 39,456

No of minutes per instance 5
No of the training set samples 80%

No of test set samples 10%
No of validation set samples 10%

Outdoor Weather Forecast Values

No of sensors 4
No of dataset samples 39,456

No of minutes per instance 5
No of the training set samples 80%

No of test set samples 10%
No of validation set samples 10%

5.1. Data Analysis and Correlation

In livestock farming, environmental parameters play a vital role in animal health,
growth, and productivity. Even minor changes in temperature or CO2 levels can drastically
affect the well-being of these animals as shown in Figure 10. Therefore, it is crucial to study
moderate correlations that may seem insignificant at first glance.

Figure 10. Confusion matrices for outdoor (left) and indoor (right) pig farm datasets.

5.2. Outdoor Weather Station Correlation

Our research shows that temperature and humidity are negatively correlated, indi-
cating that when temperature increases, humidity tends to decrease, and vice versa. On
the other hand, solar radiation is positively correlated with cumulative solar radiation,
which is expected as the latter is a cumulative measure. The other features do not exhibit
strong correlations as shown in Figure 10 (left).
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5.3. Fattening House Indoor Correlation

Figure 10 (right) shows that temperature and humidity are negatively correlated,
which is the same as at the outdoor weather station, with similar data for outdoors. CO2
concentration has a slight negative correlation with humidity. The other features in the
fattening house data do not have strong correlations.

When analyzing data, it is crucial to consider the correlation between variables. The
strength of the correlation can be classified into three categories.

5.3.1. Weak Correlation

Even if the correlation is weak, it should still be considered if the variable has practical
significance, such as CO2 levels. General interpretations for the strength of the correlation
coefficient (rr) can be

(|rr| < 0.5) (31)

5.3.2. Moderate Correlation

Moderate correlations should be closely examined, as their combined effects or inter-
actions with other variables may be important as shown in Equation (32).

0.5 ≤| rr |< 0.7 (32)

5.3.3. Strong Correlation

Strong correlations are obviously significant and should be included in the analysis.
However, if using linear models, caution should be observed regarding multicollinearity as
given in Equation (33).

(|rr| ≥ 0.7) (33)

6. Experimental Results and Discussion
6.1. Implementation Details

We developed and tested anomaly detection models for multivariate time series
using a Shared LSTM Twin-Branch technique and a Multi-Head Attention mechanism.
The models were implemented in Python 3.7 using popular frameworks such as Pandas,
NumPy, Scikit-Learn, TensorFlow 2, and the Keras API. The experiments were performed
on a PC equipped with an Intel (R) CoreTM i7-10700 CPU @ 2.90 GHz and 32 GB of RAM.
The model architecture parameters are explained in Table 2.

Table 2. Network architecture for Twin-Branch Shared LSTM with Multi-Head Attention. Bold
emphasizes the sections in the table (Input, Attention layers, and Twin branch layers)

Parameter Values

Input Shape (24, 4), (24, 5)
DAE Gaussian Noise 0.1

No. of Shared LSTM Encoder Layers 2
Kernel regularization to each layer with strength L2(0.001)

Attention layers
• MultiHeadAttention layer
(dmodel , numheads, numlayers) (64, 8, 0)

• HierarchicalMultiHeadAttention
(dmodel , numheads, numlayers) (64, 8, 4)

• CrossMultiHeadAttention
(dmodel , numheads, numlayers) (64, 8, 0)

• FeatureEnchancedMultiHeadAttention
(dmodel , numheads, numlayers) (64, 8, 4)

Twin-Branch layers (reconstruction and prediction)
Reconstruction Branch (Loss of weight) (64, 1.0)

Prediction Branch (Loss of weight) (64, 0.5)
Optimizer, Loss Adam, MSE

Batch Size 24, 32
Epoch, Callbacks, Feedback Loop 20, 4, Yes
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6.2. Performance Metrics

The process of evaluating an unlabeled anomaly detection model involves using
various performance metrics, including mean squared error (MSE), mean absolute error
(MAE), root mean squared error (RMSE), and the R2 score as shown in Equations (34)–(37).
These metrics are instrumental in the accurate assessment of the model’s performance.
While MSE and MAE capture the reconstruction errors vital for anomaly detection, RMSE
provides additional information on the magnitude of errors. In addition, the R2 score,
although unusual in anomaly detection, helps in comparing the ability of our model to
capture data variance with that of baseline models as given in the equations below. This
comprehensive set of metrics ensures that our model’s anomaly detection performance is
robust, even in the absence of ground truth labels [11].

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (34)

MAE =
1
n

n

∑
i=1

|yi − ŷi| (35)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (36)

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (37)

The model parameters and their respective values are detailed in Table 2. We split the
raw data into training and validation sets to train our model, with an 80% and 10% split,
respectively. Since we do not have separate data for testing, we set aside 10% of the data for
testing the model, as given in Table 1. To normalize the data, we utilized the MinMaxScaler
from the scikit–learn library in Python, which scales each feature to a specified range, usu-
ally between zero and one. Normalization guarantees that each feature contributes equally
to the final prediction, which is particularly useful when dealing with features of varying
magnitudes. It also aids in model convergence during training and ensures accurate model
performance evaluation through reported metrics such as MSE, MAE, RMSE, and R2 Score
across all features. The batch sizes of the dataset used for training the model varied from 24
to 32. To enhance the ability of the model to learn data representation and make the training
more robust, we included Gaussian noise using DAE in the training set. The progress of
model training was analyzed using a sophisticated monitoring technique known as the
feedback loop paradigm [44], which allowed for a meticulous examination of the process.
The reconstruction and prediction errors were comprehensively evaluated throughout each
epoch and systematically recorded. These errors were visualized as a bar graph, revealing
feature-specific and iteration-specific nuances, as demonstrated in Figure 11. This in-depth
analysis facilitated a nuanced understanding of the model’s learning dynamics, providing
insights into the complex challenges encountered and overcome during training. Even-
tually, the model was successfully trained on the validation set after employing specific
techniques.
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Figure 11. Feedback loop at each iteration for the indoor (left) fattening dataset and outdoor (right)
weather forecast dataset.

During the training of our model, we evaluated its performance on the validation
dataset for each epoch. The graph in Figure 12 shows the model performance on the indoor
fatten barn dataset and the outdoor weather forecast dataset. The graph highlights that
the model learned quickly at the beginning of the training process, but the loss curves
stabilized in the later epochs to avoid overfitting. We employed the kernelregularization
technique to prevent overfitting, which is elaborated in Table 2. Additionally, we applied
the early stopping technique to save computational resources.

Figure 12. A representation of the training and validation loss for the indoor (left) fattening barn
dataset and outdoor (right) weather forecast dataset.

6.3. Anomaly Detection and Prediction for the Indoor Fattening Barn Environment Dataset

Our model is trained using a shared LSTM encoder with several Multi-Head Attention
mechanisms and reconstructed with Twin-Branch techniques, which utilize reconstruction
errors to identify abnormalities and prediction errors that enable accurate predictions of
the following values in the sequence during runtime. The method assigns loss weights of
0.5 and 1.0, respectively, for the two branches involved in the process.

We comprehensively evaluated our proposed method by comparing it with several
baseline models. To ensure a fair comparison between different models, we made sure
to maintain identical experimental conditions. This involved using the same data splits
for training and testing, applying the same preprocessing routines, and utilizing the exact
architectures and parameters as specified in the original papers. This ensured that any
observed differences in performance were solely due to the inherent properties of the
models themselves, rather than any discrepancies in the methodology used to evaluate
them. This validates the credibility of our approach and facilitates a fair comparison,
underscoring the reliability and thoroughness of our study. TT-TBAD was conducted
and compared against various state-of-the-art baseline models across multiple features.
Table 3 displays the MSE, MAE, RMSE, and R2 scores for each feature. Our proposed
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“TT-TBAD” methodology outperforms the other analyzed baseline models. Regarding
predicting humidity, our model achieves an over R2 score = 0.93 accuracy in almost all
feature cases except for H2S.

Table 3. An evaluation of the proposed TT-TBAD model against benchmark models for various
features of the indoor fattening barn environment.

Feature Method MSE MAE RMSE R2 Score

Temperature (◦C)

LSTM-AE [21] 0.0023 0.018 0.015 0.84
GRU [22] 0.00048 0.015 0.026 0.78
LSTM [22] 0.0062 0.015 0.021 0.79

ConvLSTM-AE [22] 0.0045 0.0537 0.05 0.81
Attention-Bi-LSTM [39] 0.0014 0.032 0.038 0.82

TT-TBAD (ours) 0.00011 0.012 0.016 0.93

Humidity (%)

LSTM-AE [21] 0.0010 0.032 0.019 0.89
GRU [22] 0.0007 0.021 0.026 0.91
LSTM [22] 0.005 0.077 0.026 0.83

ConvLSTM-AE [22] 0.0032 0.046 0.048 0.86
Attention-Bi-LSTM [39] 0.0019 0.029 0.033 0.93

TT-TBAD (ours) 0.0002 0.014 0.018 0.98

CO2 (ppm)

LSTM-AE [21] 0.0011 0.053 0.039 0.71
GRU [22] 0.001 0.027 0.033 0.67
LSTM [22] 0.0006 0.01 0.033 0.79

ConvLSTM-AE [22] 0.0013 0.061 0.048 0.69
Attention-Bi-LSTM [39] 0.0007 0.021 0.027 0.81

TT-TBAD (ours) 0.0001 0.0098 0.013 0.94

NH3 (ppm)

LSTM-AE [21] 0.0062 0.053 0.078 0.88
GRU [22] 0.001 0.032 0.042 0.83
LSTM [22] 0.001 0.029 0.042 0.85

ConvLSTM-AE [22] 0.0071 0.061 0.085 0.82
Attention-Bi-LSTM [39] 0.0019 0.029 0.021 0.91

TT-TBAD (ours) 0.0011 0.024 0.013 0.94

H2S (ppm)

LSTM-AE [21] 0.071 0.035 0.10 0.11
GRU [22] 0.081 0.012 0.011 0.16
LSTM [22] 0.041 0.013 0.15 −0.018

ConvLSTM-AE [22] 0.027 0.012 0.012 0.12
Attention-Bi-LSTM [39] 0.00018 0.011 0.013 0.31

TT-TBAD (ours) 0.00013 0.0072 0.009 0.71

This could indicate potential data discrepancies. Unlike other models such as Attention
and Bi-LSTM [39], which struggle with the complexities of their attention mechanisms, our
model utilizes the power of the Multi-Head Attention technique and achieves higher preci-
sion. Through this distinction, the strength and ingenuity of our approach are highlighted.

After conducting a thorough collective comparison with other baseline models, as
shown in Tables 4 and 5, our advanced TT-TBAD technique achieved a remarkable per-
formance R2 score of 0.993 and 0.994, indicating its superior predictive capabilities. On
the other hand, the “Attention Bi-LSTM” model falls behind. In addition, traditional ap-
proaches like LSTM [22] are not as effective, as their high error rates illustrate the challenges
they face in understanding the complex dynamics of the barn environment.

We used the dynamic threshold approach based on rolling mean addition to k stan-
dard deviation to determine the threshold for the reconstruction error. This is a flexible
method for anomaly detection in time series data. It can adjust to changing data patterns
and is suitable for many applications, especially in dynamic environments, as shown in
Equation (38). This approach is more effective than the traditional technique of taking the
average of the five highest loss values from the validation set [45]. Our model can identify
anomalies in the data by using the predetermined dynamic threshold. If the reconstruction



Sensors 2024, 24, 2453 19 of 31

loss exceeds this threshold, the model will recognize those values as abnormal; Ref. [39], as
shown in Figure 13.

Dynamic Thresholdt = RollingMeant + k × RollingStdDevt (38)

Meanwhile, the RollingMean represents the reconstruction error, and the RollingSt-
dDev is the standard deviation of observations over a specified window and time. k, a
predefined constant, determines the number of standard deviations from the rolling mean
required to qualify a point as an anomaly.

Table 4. A comparative analysis of various anomaly detection models for the indoor fattening barn
environment.

Methods MSE MAE RMSE R2 Score

LSTM-AE [21] 0.000112 0.0687 0.00106 0.89

GRU [22] 0.00071 0.0220 0.0086 0.88

LSTM [22] 0.00140 0.0196 0.0533 0.83

ConvLSTM-AE [22] 0.0036 0.0446 0.00367 0.90

Attention-Bi-LSTM [39] 0.00104 0.0147 0.0340 0.97

TT-TBAD (ours) 0.000404 0.0137 0.000404 0.993

Table 5. A comparative analysis of various anomaly detection models for the outdoor fattening barn
environment.

Methods MSE MAE RMSE R2 Score

LSTM-AE [21] 0.00311 0.0477 0.0506 0.95

GRU [22] 0.0020 0.0342 0.00202 0.90

LSTM [22] 0.00471 0.0509 0.0638 0.86

ConvLSTM-AE [22] 0.00367 0.0400 0.0491 0.96

Attention-Bi-LSTM [39] 0.0010 0.0197 0.0342 0.97

TT-TBAD (ours) 0.000618 0.0120 0.00741 0.994

Figure 13. A representation of the proposed TT-TBAD model for anomaly detection with a dynamic
threshold based on the rolling mean and reconstruction error over a specified window and time for
the indoor fattening barn environment.
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Smoothing the errors by averaging during the rolling mean calculation over a spec-
ified data window helps to reduce the reconstruction error. As a result, the green line
representing the rolling mean appears smooth. Validation data were utilized for testing
purposes, and we present the results in Figure 14.

Figure 14. A representation of the proposed TT-TBAD model for anomaly detection with a dynamic
threshold based on the rolling mean and reconstruction error over a specified window and time for
each feature in the indoor fattening barn environment.

The figure includes five line charts that display the comparison between the anomalies
and actual values for each feature separately, based on a small portion of the validation set.
Each chart plots data points over a common x-axis, with several samples for each feature,
including temperature, humidity, CO2, NH3, and H2S. After analyzing 39,456 samples,
we identified anomalies in varying percentages across different metrics. The temperature
metric showed a 3.29% anomaly rate, humidity at 3.39%, CO2 at 3.58%, and NH3 stood out
with a higher rate of 4.19%.
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Interestingly, H2S displayed the lowest anomaly rate at 2.62%. This is due to the
model’s higher reconstruction and prediction error, with an R2 score = 0.71. In compar-
ison, other features exhibited metrics indicating better performance. This discrepancy
emphasizes how model accuracy and prediction errors can impact anomaly detection.

The model predictions for temperature and humidity in the prediction phase are quite
accurate, indicating its reliability. However, there are some noticeable discrepancies in
temperature around indices 200, 600, and 800 and humidity near 800, which may be due
to external factors or model limitations. CO2 predictions match well with actual data, but
some deviations at indices 200 and 600 could be attributed to environmental changes. On
the other hand, predicting NH3 and H2S levels is more challenging, with more pronounced
fluctuations, particularly around indices 200–800 for NH3 and 200–400 for H2S, highlighting
potential challenges or sporadic environmental events. Moreover, predicting the lines using
H2S presents challenges, making the model’s future job more challenging. The deviations
in these metrics underscore the areas for model improvement, as depicted in Figure 15.

Figure 15. A comparison of the proposed TT-TBAD model for actual and predicted data points in the
indoor fattening barn environment.

6.4. Comparative Analysis of Anomaly Detection in Indoor Environment

The proposed TT-TBAD for anomaly detection is evaluated against state-of-the-art
models, including LSTM-AE, GRU, LSTM, ConvLSTM-AE, and Attention-Bi-LSTM, with
an assessment based on accuracy [46], precision [47], recall [48], and the F1 score [49].
The comparative study involves the utilization of a data annotation mechanism to label
the partial test dataset, ensuring suitability for the detection evaluation. The results are
presented in Figure 16, revealing that the LSTM-AE model demonstrated a robust balance
between precision (0.867) and recall (0.853), resulting in a solid F1 score of 0.868. The GRU
slightly outperformed, achieving precision and recall values of 0.87 and 0.871, respectively,
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although there was a modest dip in the F1 score to 0.844. The standard LSTM lagged
behind, with precision and recall scores of 0.824 and 0.835, hinting at a potential decrease
in anomaly classification accuracy, as reflected by an F1 score of 0.809. In contrast, the
ConvLSTM-AE model excelled, boasting precision and recall scores of 0.881 and 0.879, along
with an impressive F1 score of 0.893, indicating enhanced anomaly detection capability.
Additionally, the Attention-Bi-LSTM model achieved the highest precision at 0.91 and a
recall of 0.902, resulting in an F1 score of 0.891, showcasing strong predictive confidence.
However, the spotlight is on our TT-TBAD model, surpassing all others with outstanding
precision (0.94), recall (0.913), and F1 score (0.92), coupled with an unmatched accuracy
of 0.983. This establishes a new standard in anomaly detection, highlighting our model’s
exceptional precision and reliability.

Figure 16. A comparative study of the proposed TT-TBAD for anomaly detection in indoor environ-
ments against various state-of-the-art anomaly detection models.

The Receiver Operating Characteristic (ROC) curve highlights the effectiveness of en-
vironmental classifiers in detecting gases within an enclosed setting. Among the classifiers,
temperature demonstrated the highest performance with an AUC score of 0.98. NH3, CO2,
and H2S classifiers also performed exceedingly well with AUC scores ranging from 0.96 to
0.97. The humidity classifier had an AUC score of 0.96, indicating its potential effectiveness
in detecting gases.

These AUC values presented in Figure 17, markedly higher than the random guess
baseline (AUC = 0.5), reflect the classifiers’ high accuracy and confirm their potential for
reliable indoor air quality monitoring, offering substantial benefits for safety and hazard
prevention in controlled environments.
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Figure 17. A ROC curve of the proposed TT-TBAD for five classifiers based on environmental
parameters of the barn dataset in an indoor environment.

6.5. Anomaly Detection and Prediction for Outdoor Weather Forecast for the Barn
Environment Dataset

Utilizing the same effective methodology employed in the previous dataset, we applied
our method with great attention to detail to ensure uniformity and comparability in our
analysis. Upon thoroughly examining Table 6, it is evident that the TT-TBAD method
consistently outperforms its counterparts.

The performance of various models was evaluated based on different features such as
temperature, humidity, solar energy, and accumulated solar energy per day. The TT-TBAD
method displayed superior precision for temperature and humidity, with the lowest MSE,
MAE, and RMSE values and R2 scores = 0.99 and 0.99, respectively. In solar energy, the TT-
TBAD method outperforms other models with its impressive R2 score = 0.94 for Attention-
Bi-LSTM and 0.98 for accumulated solar energy/day. Although Attention-Bi-LSTM has
slightly better error metrics, TT-TBAD stands out for its adaptability and resilience, making
it a reliable and versatile model for predictive analysis. Its consistency in performance
across various datasets underlines its potential as an excellent choice for predictive analysis
of solar energy.

The study used various modeling techniques for outdoor weather forecasting in a
fattening barn environment. The results showed that our TT-TBAD method performed the
best with the lowest mean squared error (MSE) of 0.000618 and an excellent R2 Score = 0.99.
This demonstrates the exceptional predictive accuracy of our method in this particular
setting. Other methods, such as LSTM-AE and ConvLSTM-AE, also performed well, with
R2 Scores = 0.95 and 0.96, respectively. However, Attention-Bi-LSTM achieved the highest
R2 score = 0.97. GRU slightly surpassed LSTM-AE with an R2 score = 0.90.

Figure 18 illustrates the same dynamic threshold approach is used for outdoor weather
forecast datasets to identify anomalies in the data compared to the reconstruction error.
The black data points indicate the anomalies, meaning the model finds it difficult to
reconstruct them accurately. The blue line represents the difference between the original
and reconstructed data.
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Table 6. An evaluation of the proposed TT-TBAD model against benchmark models for various
features of the outdoor fattening barn environment.

Feature Method MSE MAE RMSE R2 Score

Temperature (◦C)

LSTM-AE [21] 0.0029 0.0415 0.0542 0.88
GRU [22] 0.00197 0.0372 0.0444 0.91
LSTM [22] 0.00254 0.04427 0.05045 0.90

ConvLSTM-AE [22] 0.00306 0.0439 0.05531 0.88
Attention-Bi-LSTM [39] 0.00075 0.0216 0.0275 0.96

TT-TBAD (ours) 0.00026 0.00418 0.00462 0.99

Humidity (%)

LSTM-AE [21] 0.0049 0.0515 0.0705 0.93
GRU [22] 0.00092 0.0224 0.0303 0.95
LSTM [22] 0.00174 0.0342 0.0417 0.96

ConvLSTM-AE [22] 0.00371 0.04481 0.06096 0.94
Attention-Bi-LSTM [39] 0.0013 0.0290 0.0301 0.97

TT-TBAD (ours) 0.00045 0.0151 0.0211 0.99

Solar Energy (w/m2)

LSTM-AE [21] 0.0050 0.0490 0.0712 0.72
GRU [22] 0.00142 0.0241 0.0377 0.86
LSTM [22] 0.01404 0.0843 0.0102 0.81

ConvLSTM-AE [22] 0.00231 0.03435 0.04808 0.87
Attention-Bi-LSTM [39] 0.0014 0.0244 0.0383 0.91

TT-TBAD (ours) 0.0011 0.0201 0.0271 0.94

Accumulated Solar
Radiation (J/cm2)

LSTM-AE [21] 0.0074 0.0489 0.0965 80.0
GRU [22] 0.00177 0.02591 0.0421 0.93
LSTM [22] 0.0040 0.0409 0.0638 0.89

ConvLSTM-AE [22] 0.00561 0.03727 0.07496 0.85
Attention-Bi-LSTM [39] 0.00172 0.0138 0.0415 0.95

TT-TBAD (ours) 0.00075 0.0084 0.0271 0.98

Figure 18. A representation of the proposed TT-TBAD model for anomaly detection with a dynamic
threshold based on rolling mean and reconstruction error over a specified window and time for the
outdoor fattening barn environment.

The solar energy graph has pronounced fluctuations with several anomalies, and the
accumulated solar energy chart has a step-like pattern, with anomalies signifying unex-
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pected drops or surges. These graphs emphasize the need to monitor environmental and
energy parameters for consistency. The graphs in Figure 19 compare actual and predicted
values. While the model predictions for temperature and humidity are highly accurate,
noticeable discrepancies are evident in the solar energy graph. These inconsistencies under-
score the imperative need to develop and refine prediction mechanisms, particularly in the
context of solar energy parameters. It is crucial to address these discrepancies to enhance
the accuracy of the model predictions.

Upon analyzing the data using the rolling mean approach, it becomes evident that
metrics related to solar energy, such as solar energy and accumulated solar energy per
day, exhibit a slightly higher percentage of anomalies, approximately 4.43% and 4.54%,
respectively, as shown in Figure 20. In contrast, anomalies in temperature and humidity are
only slightly lower, at around 3.36% and 3.44%, respectively. This discrepancy suggests that
the solar metrics may be more susceptible to abnormalities or external factors influencing
their readings when compared to the more consistent readings of temperature and humidity.

Figure 19. Comparison of actual and predicted values of a small section of the validation set in
outdoor weather forecasts in a barn environment for each feature using a multivariate Twin-branch
Shared LSTM with Multi-Head Attention.
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Figure 20. A comparison of the proposed TT-TBAD model for actual and detected anomaly data
points in the outdoor fattening barn environment.

6.6. Comparative Analysis of Anomaly Detection Models in Outdoor Environment

A comparative study of anomaly detection is performed for various models, and the
results are presented in Figure 21. The figure shows that the LSTM-AE model achieves a
solid precision rate of 0.842 paired with a recall of 0.83, harmonizing into an F1 score of 0.848.
Nipping at its heels, the GRU model registers a precision of 0.83 with an incrementally
higher recall of 0.851, achieving an F1 score of 0.841. Transitioning to the LSTM model,
we observe a dip in precision to 0.792 and recall to 0.809, reflected in a modest F1 score
of 0.81. In contrast, the ConvLSTM-AE model emerges stronger, with a precision of 0.862
and recall of 0.859, coalescing into a solid F1 score of 0.876. A leap forward is seen with
the Attention-Bi-LSTM model, which achieves a notable precision of 0.909 and a recall of
0.899, commanding an F1 score of 0.901. The crescendo of our analysis is reached with
the introduction of our TT-TBAD model. It sets a new benchmark with a precision of
0.927 and a recall of 0.909, melding into an F1 score of 0.91. This performance is further
underscored by a remarkable accuracy of 0.971, positioning our model at the apex of
anomaly detection capabilities.

Moreover, the ROC curve presented in Figure 22 demonstrates the discriminative
power of four classifiers based on environmental parameters. The figure shows AUC scores
of 0.97 for both temperature and humidity, followed closely by accumulated solar energy



Sensors 2024, 24, 2453 27 of 31

per day at 0.96 and solar energy at 0.94. The classifiers exhibit robust predictive capabili-
ties, with their performance significantly surpassing the random classification benchmark
(AUC = 0.5). This underscores their potential utility in sophisticated environmental sensing
and prediction applications.

Figure 21. A comparative study of the proposed TT-TBAD for anomaly detection in outdoor environ-
ments against various state-of-the-art anomaly detection models.

Figure 22. An ROC curve of the proposed TT-TBAD for four classifiers based on environmental
parameters of the barn dataset in an outdoor environment.

7. Discussion

The TimeTector-Twin-Branch Shared LSTM encoder (TT-TBAD) is a revolutionary
development in the field of agricultural data analytics. It is particularly useful for detecting
anomalies in time series data, which can be noisy and difficult to analyze. This model is de-



Sensors 2024, 24, 2453 28 of 31

signed to understand agricultural datasets and redefine the standards of anomaly detection
by identifying genuine irregularities that are crucial for operational farm decision making.

At its core, the proposed method uses a shared LSTM encoder, which is known
for its ability to comprehend temporal data, along with advanced attention mechanisms.
These mechanisms filter through data to eliminate irrelevant noise and highlight critical
anomalies. This is especially important in agriculture, where distinguishing between
benign fluctuations and significant outliers is essential for crop yield and livestock health.
TT-TBAD also uses a Denoising Autoencoder (DAE) to counter the challenge of overfitting.
This ensures that the model remains robust and generalizable, even when faced with new
data. The Twin-Branch design of the model allows for it to simultaneously reconstruct
data and predict future environmental and biological shifts, providing valuable predictive
foresight for farmers which traditional models failed to provide. What sets TT-TBAD apart
is its ability to balance architectural complexity with computational efficiency. Despite
its advanced design, TT-TBAD has commendable training durations between 380 and
400 s, meaning that it respects the time-sensitive demands of agricultural operations.
This efficiency is achieved without sacrificing the depth and breadth of its data analysis,
maintaining high fidelity in anomaly detection and prediction. TT-TBAD introduces a
dynamic thresholding technique based on a rolling mean, which adapts to evolving data
patterns. This fine-tunes the model’s sensitivity to fluctuations and enhances its accuracy,
making it an indispensable asset in precision farming technologies. In sum, TT-TBAD is an
excellent example of meticulous data analysis, advanced predictive modeling, and practical
computational application. Its unmatched accuracy in detecting and predicting anomalies,
underpinned by a dynamic and adaptive thresholding strategy, makes it a valuable tool for
precision farming technologies that work in harmony with nature and machine learning
innovation.

Limitations and Assumptions

The model is tested and found to be efficient in identifying any unusual or abnormal
data points within the current datasets. However, its scalability and complexity make it
challenging to process larger datasets, which requires longer training periods and more
computational power. Moreover, parameter tuning has become more complex, and refined
optimization techniques are necessary. The model’s anomaly detection capability depends
on the quality of the input data, and it is crucial to judiciously integrate noise to preserve
its effectiveness. The model’s design is based on fundamental assumptions about input
data and training parameters, such as noise levels, sequence sizing, and batch processing,
which aim to improve its performance in detecting anomalies within agricultural contexts.

8. Conclusions

In our research paper, we introduce the TimeTector-Twin-Branch Shared LSTM en-
coder (TT-TBAD) model which employs a Twin-Branch Shared LSTM encoder and multiple
Multi-Head Attention mechanisms to detect anomalies and make real-time predictions
from multivariate time series sensor data. With the advent of deep learning algorithms, the
challenge of capturing spatial–temporal correlations in multi-sensor time series data is effi-
ciently addressed. These algorithms excel at generalizing normal, noisy, and abnormal data
patterns, making them an ideal solution for handling complex data structures. Our model
is a fusion of several robust frameworks. It incorporates the Denoising Autoencoder (DAE)
to characterize multi-sensor time series signals, thus minimizing the risk of overfitting
caused by noise and anomalies in the training data. Additionally, we utilize various Multi-
Head Attention mechanisms such as Multi-Head Attention (MHA), Cross-Multi-Head
Attention (C-MHA), Hierarchical Multi-Head Attention (Hi-MHA), and Feature-Enhanced
Multi-Head Attention (FH-MHA). These mechanisms enable the model to capture diverse
and hierarchical relationships, recognize cross-sequence patterns, and leverage external
features, resulting in a comprehensive understanding of complex datasets. Our experimen-
tal evaluation is conducted on proprietary livestock barn environmental datasets using
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performance metrics for both anomaly detection and future prediction, where our model
demonstrates outstanding performance compared to benchmark traditional models with
detection accuracies and R2 scores of 97.1%, 98.3% and 0.994%, 0.993%.

In our future work, we aim to develop a smart agriculture livestock environment that
allows real-time monitoring through the barn sensors. The ultimate aim is to automate
livestock farming to the greatest possible extent.
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