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Abstract: Simultaneous transmit and receive wireless communications have been highlighted for
their potential to double the spectral efficiency. However, it is necessary to mitigate self-interference
(SI). Considering both the SI channel and remote transmission (RT) channel need to be estimated
before equalizing the received signal, we propose two adaptive algorithms for linear and nonlinear
self-interference cancellation (SIC), based on a multi-layered joint channel estimator structure. The
proposed algorithms estimate the RT channel while performing SIC, and the multi-layered structure
ensures improved performance across various interference-to-signal ratios. The M-estimate function
enhances the robustness of the algorithm, allowing it to converge even when affected by impulsive
noise. For nonlinear SIC, this paper introduces an adaptive algorithm based on generalized Hammer-
stein polynomial basis functions. The simulation results indicate that this approach achieves a better
convergence speed and normalized mean squared difference compared to existing SIC methods,
leading to a lower system bit error rate.

Keywords: simultaneous transmit and receive; self-interference cancellation; digital cancellation;
adaptive filtering; joint channel estimator

1. Introduction

Full duplex (FD) relay technology enables a communication system to simultaneously
transmit and receive signals on the same frequency through a relay node [1]. Inspired
by this technology, simultaneous transmit and receive (STAR) technology, also referred
to as in-band full-duplex (IBFD), has emerged as a novel innovation within the field. It
aims to allow communication users to directly transmit and receive signals at the same
carrier frequency, facilitating an even more efficient use of spectral resources. Moreover,
STAR technology can be synergistically combined with other advanced technologies that
enhance spectral utilization, such as reconfigurable intelligent surfaces [2], millimeter-wave
technology [3], and multiple access techniques [4]. As a result, STAR technology has arisen
as a promising approach to increase data throughput and solve the problem of scarce
spectrum resources, which can be applied in the field of wireless communications, radar,
satellites, and unmanned aerial vehicles [5,6].

However, the self-interference (SI) signal, which is generated from the near end, can be
100–120 dB stronger than the weak received signal, thus making the receiver inoperable [7].
Therefore, self-interference cancellation (SIC) technology is key to the implementation of
STAR communications. At present, the SI signal can be eliminated in several stages and
various domains, as shown in Figure 1. Typically, SIC is achieved through the cascaded
antenna domain [8], analog domain [9], and digital domain [10–15]. The antenna domain
SIC is passive in nature, and mainly uses antenna isolation or related beamforming al-
gorithms to prevent RF reception path blockage. In the analog domain, directly coupled
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interference suppression and digital-assisted analog interference-suppression methods are
commonly used at the receiver low-noise amplifier (LNA) input before the analog-to-digital
conversion. The last stage is digital SIC, which aims to eliminate the remaining SI from
the received signal by reconstructing the SI signal in the receiving link and reducing its
power below the noise floor. These steps have been applied in some prototypes and have
demonstrated the potential of STAR communications [7,16]. The remainder of this paper fo-
cuses on digital SIC algorithm design and both the linear and nonlinear SIC algorithms are
evaluated through extensive simulations, demonstrating their effectiveness in improving
the performance of STAR communication systems.
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Figure 1. A block diagram illustrating the STAR system and various forms of SIC.

Digital SIC has attracted significant attention in recent years to address the SI prob-
lem in STAR communication systems. Nonetheless, the practical application of digital
SIC still faces many challenges. First of all, the observed SI signal exhibits significant
frequency and time selectivity due to reflections within the device and its surrounding
environment, which demonstrate temporal variations. This can be regarded as a classic
system identification problem, which is typically solved through adaptive finite impulse
response (FIR) filters. Secondly, in practical communication environments, there are often
additional sources of noise, such as electromagnetic interference, lightning noise, radar
signals, and other human-made disturbances. These types of noise typically exhibit strong
pulse-like characteristics within very short time durations, which can lead to performance
degradation of various filtering algorithms based on the assumption of Gaussian noise.
Furthermore, the significantly higher power of the SI signal compared to the desired signal
at the receiver implies that even minor distortions can significantly degrade the signal of
interest. These hardware impairments, such as phase noise, in-phase/quadrature (I/Q)
imbalance, and power amplifier (PA) and baseband nonlinearity, among others, with PA
nonlinearity are especially harmful to the digital canceler, making digital SIC insufficient.

Digital cancellation algorithms accounting for impulsive noise have been proposed
in earlier research [10,17]. The work in [11,12] focused on linear SIC by employing the
least mean square (LMS) adaptive filter. In addition, different linear SIC methods were
compared in [13]. To compensate for nonlinear PA distortion, the authors in [18] proposed
novel predistorters and their parameter extraction algorithms. The proposed self-adaptive
nonlinear digital cancelers in [14,15] both utilize a novel orthogonalization procedure for
nonlinear basis functions, together with low-cost LMS-based parameter learning. Both
PA nonlinearity and I/Q imbalances were considered in [19,20], and more impairments,
including local oscillator leakage and baseband nonlinearity, were analyzed and measured
on the Universal Software Radio Peripheral in [7]. Some studies have also proposed various
frequency domain SIC methods [21,22]. In [21], a frequency domain SI canceler based on the
parallel Hammerstein (PH) model for an IBFD orthogonal frequency division multiplexing
System was proposed, while Ref. [22] utilized a successive cancellation cascaded structure
as a replacement for the adaptive filter, effectively reducing the computational load of
SIC processing and simplifying the procedure. Most published works are based on the
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scenario where only the own transmitter (TX) signal is known, without considering the
remote transmission (RT) signal. When the RT sends a signal for channel estimation, it
can be assumed to be known, and additional prior information will further enhance the
performance of SIC [23].

In this paper, a robust multi-layered M-estimate total least mean square (m-MTLS)
canceler is proposed to enhance the performance in scenarios where both the data matrix
and the observation signal are also affected by impulsive noise. The method exhibits
significant robustness against impulse noise, managing to maintain a low convergence
error even in the presence of impulse noise. When both the PA nonlinearities of the local
transmitter and the training signal from RT are taken into account, we introduce a novel
algorithm for nonlinear digital SIC based on a set of generalized Hammerstein polynomials
(HPs) [15], by estimating the SI channel and the RT channel at the same time. This method
of joint estimation can more accurately estimate the remote channel while reducing the
residual SI signal, compared with existing SIC methods. The simulation results show
that this method exhibits a faster convergence rate and demonstrably enhances system
performance as the signal-to-noise ratio (SNR) increases.

The rest of this paper is organized as follows. In Section 2, the basic STAR system
and linear SI signal modeling are first described. Then, considering the nonlinearity
introduced by the PA, the SI model is extended to a nonlinear model, followed by the
introduction of a joint estimator that can simultaneously estimate both SI and RT channels.
Section 3 proposes two new algorithms for linear and nonlinear SIC based on adaptive FIR,
respectively. The linear SIC also enhances the robustness of the algorithm under impulsive
noise interference. The simulation results are reported in Section 4. Finally, Section 5
concludes the paper.

In the following, continuous and discrete time signals are expressed in italic lowercase,
while vectors are denoted by bold lowercase symbols. The acronyms used throughout the
paper are also summarized in Table 1.

Table 1. Table of acronyms.

Acronym Definition

STAR simultaneous transmit and receive
IBFD in-band full-duplex

SI self-interference
SIC self-interference cancellation
RF Radio Frequency

LNA low-noise amplifier
PA power amplifier

LMS least mean square
PH parallel Hammerstein
TX transmitter
RT remote transmitter
HP Hammerstein polynomials

SNR signal-to-noise ratio
ISR interference-to-signal ratio

m-MTLS multi-layered M-estimate total least squares
NMSD normalized mean squared difference
MSE mean squared error
BER bit error rate
DFE decision feedback equalizer

2. System Model

The structure of the analyzed STAR system is presented in Figure 2, with signals
propagating at the different stages. We denote the baseband transmission at time slot n as
x[n], which is perfectly known. In this analysis, the RF components are assumed to be ideal
and the nonlinear model will be discussed later. The received signal, after being processed
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by the LNA and and subjected to SIC in the analog domain, is converted into a baseband
signal by the ADC at time slot n and can be written as

y[n] = r[n] + f (x[n], x[n − 1], . . . x[n − L + 1]) + v[n]

= r[n] + s[n] + v[n],
(1)

where r[n] and v[n] denote the desired signal from the remote source and noise at time
instant n, respectively. The received signal is assumed to be generated by a function f (·)
with L previous transmitted signals. Furthermore, the SI signal from the local TX, s[n], can
be represented by a linear model as

s[n] = f (x[n], x[n − 1], . . . , x[n − L + 1])

= wT [n]xL[n],
(2)

where w ∈ RN×1 denotes the SI channel and xL[n] = [x[n], x[n − 1], . . . , x[n + L − 1]].

Digital SIC

Transmitter 
signal

Receiver

RF SIC SI
channel

DAC PA

LNAADC





Figure 2. The signals propagating at the different stages of the analyzed STAR system.

When the nonlinear hardware impairments are taken into account, one particularly
important imperfection is PA nonlinearity; thus, we assume that the transmitted signal is
only distorted by high-order harmonics of the PA, excluding the effects of I/Q imbalance or
phase noise. The PAs exhibit nonlinearity when power-efficient operation is sought, and it
is commonly modeled with the well-known PH model [14,19,22,24] . With an input vector
xL[n], the output of a P-th order model can be expressed as

xPA(t) =

P+1
2

∑
p=1

p odd

hp,PA(t) ∗ ϕp(x(t)), (3)

where P is the highest nonlinearity order of the model, hp,PA(t) represents the response,
and ϕp(x(t)) = |x(t)|2px(t) is the pth-order basis function. The symbol ∗ represents the
convolution operation. We assume that the PA memory length is L1 and the length of the
SI channel is L2. Then, the observed SI signal passes through the SI channel and can be
rewritten as

s[n] =

P+1
2

∑
p=1

p odd

L−1

∑
l=0

wp[l]ϕp(x[n − l]), (4)

where wp is the response weight of the entire channel, with a length of L = L1 + L2 − 1.
Building on the analysis presented earlier, for the purpose of mitigating residual

SI within the digital domain, it is imperative to acquire the optimal estimate of the SI
channel response, denoted as ŵ[n], corresponding to w[n]. This involves subtracting
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the reconstructed SI signal from y[n]. Followed by the SIC process, the remainder of the
signal is presumed to embody the RT signal. Subsequent stages may include RT channel
estimation and equalization, facilitating the detection of data symbols embedded within
the RT signal.

From the SI model mentioned in (2) and (4), it is evident that the performance of digital
SIC is fundamentally contingent upon the accuracy of the channel response coefficient
estimation. Moreover, the power of the residual SI signal remains high after RF cancellation.
when the interference-to-signal ratio (ISR) is high, even minimal residuals can severely
compromise the separation of the RT signal. Additionally, at higher SNRs, noise ceases to be
the predominant factor impacting the estimation of the SI signal. Under such circumstances,
the primary source of error in SIC emanates from the RT signal itself. Consequently,
in scenarios where the RT signal is known, it becomes essential to employ a joint channel
estimator to enhance the precision of both SI and RT signal separations, thereby mitigating
the aforementioned challenges. We assume that the original RT signal, i[n], is known; then,
(1) and (2) can be rewritten in [23] as

y[n] = wT [n]x[n] + hT [n]i[n] + v[n], (5)

where h[n] denotes the RT channel coefficient, and the interest signal, r[n] is represented as
hT [n]i[n].

By merging two channels into a joint channel, according to (5), we can obtain the
following expression:

y[n] = cT [n]u[n] + v[n], (6)

where cT [n] = [wT [n], hT [n]] combines the coefficients of both the SI and RT channels,
and u[n] = [xT [n], iT [n]]T is the new input signal.

In (5), the estimation of SI is influenced by both r[n] = hT [n]i[n] and v[n]. However,
by combining the SI and RT channel as a new estimation parameter, only the noise v[n]
impacts this process. The benefits of this joint channel estimation approach will be detailed
in the simulations presented in Section 4.

3. Proposed Digital Canceler

When considering the SI and RT channels, it is important to acknowledge that they
will vary over time, as the environmental reflection paths are also time-variant. Therefore,
we opted for adaptive filtering algorithms and incorporated a multi-layered structure,
as shown in Figure 3, to enhance the RT estimation performance of the joint estimator.

…

Adaptive
 filter

Adaptive
 filter

Adaptive
 filter

Figure 3. The multi-layered structure of the joint channel estimator.

As depicted in Figure 3, the estimation of joint channel coefficients ĉ[n] in the first

layer is given by ĉT
(1)[n] = [ŵT

(1)[n], ĥ
T
(1)[n]]; then, the residual signal y(2)[n], obtained by

subtracting the reconstructed SI signal from y[n], serves as the input for the second layer.
Furthermore, we can obtain

y(2)[n] = cT
(1)[n]u[n]− ŵT

(1)[n]x[n] + v[n]

= cT
(2)[n]u[n] + v[n].

(7)
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This procedure is consistently implemented across successive layers of the filter. In the
m-th layer, this process is articulated as

y(m+1)[n] = y(m)[n]−ŵT
(m) [n]x[n] + v[n]

= cT
(m+1)[n]u[n] + v[n]

, (8)

where y(m)[n] is the input of the m-th layer and ŵ(m)[n] is the estimation of the SI channel,

and we have ĉT
(m)[n] = [ŵT

(m)[n], ĥ
T
(m)[n]] as the estimation of the joint channel.

For each layer, while subtracting the residual from the received signal, an estimation of
the RT channel ĥ(m)[n] is performed and the output of the last layer y(M+1)[n] is regarded
as the interest signal r̂[n].

3.1. Robust m-MTLS Adaptive Algorithm

We consider a linear model where both the independent and dependent variables are
subject to measurement errors, which can be illustrated by

(yn + vn) = (xn + un)
Tw, (9)

where w ∈ RL×1 denotes the system vector to be estimated, with xn ∈ RL×1 as the
input vector and yn ∈ R as the output signal at time n. The noise vectors un, distributed
as N(0, σ2

i I) ∈ RL×1, represent the input noise, and vn, distributed as N(0, σ2
o ) ∈ R,

represent the output noise, where σ2
i and σ2

o are the variances in the input and output noise,
respectively. Here, 0 indicates the zero vector and I the identity matrix.

Total least squares (TLS) considers errors in all variables, making it particularly useful
for more accurate modeling and estimation when errors are present in both predictors and
outcomes [25]. Its cost function can be formulated as

min
w

J(w) =
1
N

N

∑
n=1

(
ỹn − wT x̃n

)2

∥w∥2 + γ
, (10)

where γ
def
= σ2

o /σ2
i is a parameter to normalize the noise variances, ỹn = yn + vn and

x̃n = xn + un.
Similar to other adaptive algorithms, the iterative formula for TLS based on stochastic

gradient descent can be expressed as

ŵn+1 = ŵn − µĝ(ŵn)

= ŵn + µαn(x̃n + αnŵn),
(11)

where µ is the step-size parameter, and ĝ is the instantaneous gradient of J(w), which can
be represented as

ĝ(w) = αn(x̃n + αnwn),

αn
def
=

ỹn − x̃T
n wn

∥wn∥2 + γ
.

(12)

To enhance the robustness of the algorithm when the received signal is subjected to
impulsive noise, an M-estimate function can be utilized to improve TLS. This improved
algorithm, referred to as the M-estimate total least mean square (MTLS) adaptive algorithm,
has its cost function defined as

min
w

J(w) = E
[

ρ(e2
n)

∥w∥2 + γ

]
, (13)
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where ρ(·) is the M-estimate function, which is a real-valued even function, given by

ρ(en) =

{
e2

n/2, |en| < ξ

ξ2/2, |en| ≥ ξ,
(14)

where ξ = c1σ̂e represents the threshold parameter, with c1 set to 2.576, and σ̂e can be
calculated by

σ̂2
en = λσσ̂2

en−1
+ c2(1 − λσ)med(Aen), (15)

where Ae[n] =
[
e2[n], e2[n − 1], . . . , e2[n − Nw + 1]

]
, med(·) denotes the median operation,

and the parameter λσ, indicative of the weighting factor, is typically selected within the
range of 0.98 to 0.99. The constant c2 = 1.483(1 + 5/(Nw − 1)), and Nw represents the
length of the window over which the estimation is performed.

The iterative formula (11) can be rewritten as

ĝ(w) =

− (∥w∥2+γ)en x̃n+e2
nw

(∥w∥2+γ)
2 , |en| < ξ

0, |en| ≥ ξ,
(16)

and
ŵn+1 = ŵn − µĝ(ŵn). (17)

By integrating the MTLS adaptive algorithm with the multi-layered joint channel estimator
discussed in Section 2, a robust linear SI canceler can be achieved [10].

3.2. Multi-Layered Generalized HP-Based Adaptive Algorithm

Nonlinear SIC can be regarded as a problem of nonlinear system identification. Before
engaging in adaptive filtering, it is necessary to linearize the SI signal using the basis
functions described in (4).

The nonlinear PA model first proposed in [15] employs a set of generalized HPs for its
representation. The p-th order nonlinear basis function in Equation (3) is defined as

ϕp
(
x(t); cp

)
=

p−1

∑
k=0

cp,k|x(t)|2kx(t), (18)

which can be rewritten in the digital domain as

ϕp
(
x[n]; cp

)
=

p−1

∑
k=0

cp,k|x[n]|2kx[n], (19)

where cp =
[
cp,0, . . . cp,p−1

]T represents the polynomial coefficients of the p-th basis function.
When the polynomial coefficients satisfy cp,p−1 = 1 and cp,k = 0, ∀k ̸= p − 1, the basis

function simplifies to the standard HP basis function, i.e., ϕp(x[n]) = |x[n]|p−1x[n]. Then,
the SI signal s[n] can be represented by the aforementioned generalized HP as

s[n] =

P+1
2

∑
p=1

L−1

∑
l=0

wp[l]ϕp
(

x[n − l]; cp
)

=

P+1
2

∑
p=1

L−1

∑
l=0

wp[l]

(
p−1

∑
k=0

cp,k|x[n − l]|2kx[n − l]

)
.

(20)

To enhance the convergence speed of the adaptive filtering algorithm, it is also nec-
essary to determine the coefficients cp =

[
cp,0, . . . cp,p−1

]T of the generalized HP basis
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functions to ensure their orthogonality. A set of orthonormal basis functions is defined as{
ϕ1(xL[n]; c1), . . . , ϕ P+1

2

(
xL[n]; c P+1

2

)}
, which satisfies the following orthogonality condition:{

E
[
ϕp
(

x[n]; cp
)
ϕj
(

x[n]; cj
)]

= 1, p = j
E
[
ϕp
(

x[n]; cp
)
ϕj
(

x[n]; cj
)]

= 0, p ̸= j
. (21)

For polynomial basis functions with the highest order term of 2p− 1 (p > 1), assuming
orthogonality with any basis function of order less than 2p − 1, it is possible to derive p − 1
orthogonal equations as

E
[
ϕp
(
x[n]; cp

)
ϕk(x[n]; ck)

]
= 0, k = 1, 2, . . . , p − 1. (22)

Furthermore, we can obtain

E
[
ϕp
(

x[n]; cp
)
c1,0x[n]

]
= 0, (k = 1)

E
[
ϕp
(

x[n]; cp
)(

c2,0x[n] + c2,1|x[n]|2x[n]
)]

= 0, (k = 2)
...

E
[
ϕp
(

x[n]; cp
)(

cp−1,0x[n] + · · ·+ cp−1,p−2|x[n]|2p−2x[n]
)]

= 0, (k = p − 1).

(23)

Assume cp,p−1 = 1, ∀p. When k = 1, we define µp = E
[
(x[n])p]; then, (23) can be

rewritten as

E
[(

cp,0x[n] + cp,1|x[n]|2x[n] + · · ·+ |x[n]|2p−2x[n]
)

x[n]
]

= E
[(

cp,0|x[n]|2 + cp,1|x[n]|4 + · · ·+ |x[n]|2p
)]

= cp,0µ2 + cp,1µ4 + · · ·+ µ2p
= 0

, (k = 1). (24)

Let µ2b
2a = {µ2a, µ2a+2, . . . , µ2b}, 1 ⩽ a ⩽ b. Equation (23) can be written in matrix

form as
CpMp c̄p + Cpµ

4p−4
2p = 0, (25)

where c̄p is a subvector of the cp =
[
c̄T

p 1
]T

and Cp is an invertible lower triangular matrix.
The matrix Mp is defined as

Mp =


µ2 µ4 · · · µ2p−2
µ4 µ6 · · · µ2p
...

...
. . .

...
µ2p−2 µ2p · · · µ4p−6

and det
(
Mp
)
̸= 0 (26)

Thus, we have
c̄p = −Mp

−1µ
4p−4
2p . (27)

The instantaneous basis function vector is defined as

Φ[n] =
[
ϕ1(xL[n]; c1), . . . , ϕ P+1

2

(
xL[n]; c P+1

2

)]T
. (28)
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Integrating the nonlinear PA model with the multi-layered joint channel estimator
employing the LMS algorithm results in

y[n] = wT [n]Φ[n] + hT [n]i[n] + v[n]

=
[
wT [n] hT [n]

] [
ΦT [n] iT [n]

]T
+ v[n]

= hT
joint[n]u[n] + v[n],

(29)

where hT
joint[n] =

[
wT [n] hT [n]

]
and u[n] =

[
ΦT [n] iT [n]

]T
.

Furthermore, the iterative formula can be expressed as

ĥjoint[n + 1] = ĥjoint[n] + µu[n]e[n], (30)

where µ is the step size.
At the m-th layer, the received signal after digital SIC is

y(m+1)[n] = y(m)[n]− ĥ
T
joint(m) [n]Φ[n] + v[n]. (31)

The M-layered adaptive nonlinear SIC algorithm is summarized in Algorithm 1 and
Table 2.

Algorithm 1 Adaptive algorithm for nonlinear SIC

Input: received signal y[n], known signals x[n] and i[n], basis order P, moment collect
length Nm and basis function generation interval Nint

Output: signal after SIC r̂[n] and RT channel estimation ĥ
T
(m)[n]

Initialization: ns = 1 and hT
joint(m)[n] = 0

1: for n = 1, 2, . . . , N do
2: if n = ns + Nm − 1 then
3: µp = 1

N ∑ns+Nm−1
ns (x[n])p

4: for p = 2, 3, . . . , P+1
2 do

5: c̄p = −Mp
−1µ

4p−4
2p , basis function ϕp

(
x[n]; cp

)
generation

6: end for
7: end if
8: if n = ns + Nint − 1 then
9: ns = n

10: end if
11: y(1)[n] = y[n] = hT

joint[n]u[n] + v[n]
12: for m = 1, 2, . . . , M do
13: e(m)[n] = y(m)[n]− ĥ

T
joint(m)[n]u[n]

14: ĥ
T
joint(m)[n + 1] = ĥ

T
joint(m)[n] + µu[n]e(m)[n]

15: ŵT
(m)[n + 1] =

(
ĥ

T
joint(m)[n + 1]

)
1:N1

16: ĥ
T
(m)[n + 1] =

(
ĥ

T
joint(m)[n]

)
N1+1:N1+N2

17: y(m+1)[n] = y(m)[n]− ŵT
(m)[n]x[n]

18: end for
19: r̂[n] = y(m+1)[n]
20: end for
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Table 2. Table of notations.

Parameter Symbol

p-th order basis functions ϕp
(

x[n]; cp
)

Coefficients of the p-th basis function cp
Nonlinear order of PA P

p-th SI channel response wp
p-th RT channel response hp

Joint channel response hjoint
p-th even-order partial moments Mp

Number of layers M
Input of m-th layers y(m)

4. Simulation Results
4.1. Linear SI Canceler

In the scenario described by Equation (9), the unknown vector w, with a dimension-
ality of L = 14, conforms to the condition ∥w∥2 = 1. Additionally, the elements of w
are distributed according to a Gaussian distribution with a mean of zero. The input sig-
nal is independently generated from zero-mean Gaussian with unit variance. The input
and output noises are denoted as vin = vb and vout = va + vi, respectively, where va
and vb are Gaussian-distributed with equal variances of σ2

a = σ2
b = 0.1. The Bernoulli–

Gaussian (BG) process is utilized as an impulsive noise model. The impulsive noise
vi[n] = b[n]p[n], where b[n] is a Bernoulli process with the probability density function
P(b[n] = 1) = Pi, P(b[n] = 0) = 1 − Pi and p[n] ∼ N(0, 10) [26]. Their performance is dis-
played in Figure 4, quantitatively evaluated via the normalized mean squared difference
(NMSD), defined as = 10 log

(
∥ŵn − w∥2/∥w∥2). It can be observed that the LMS and TLS

algorithms decline due to noise interference, whereas the MTLS algorithm remains largely
unaffected by such disturbances.

500 1000 1500 2000 2500 3000 3500 4000

Iteration
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-20

-15

-10

-5

0

N
M

S
D

(d
B

)

LMS  = 0.0125
TLS  = 0.0125
MTLS  = 0.03

(a)
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-10

-5

0

N
M

S
D
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B

)

LMS  = 0.0125
TLS  = 0.0125
MTLS  = 0.03

(b)

Figure 4. Average NMSD learning curve with different impulsive noise probabilities. (a) Pi = 0;
(b) Pi = 0.01.

We consider a baseband STAR system characterized by a 5 MHz signal bandwidth. The
system operates at a sampling rate of 10 MHz, with both the local and remote transmitters
employing binary phase shift keying modulation for signal transmission. The SI and RT
channels have lengths specified as N1 = 4 and N2 = 10, respectively. Furthermore, their
average energy follows the conditions ISR = E(∥w∥2/∥h∥2) and SNR = E(∥s(n)∥2/σ2

a ).
The received signal y(n) is subject to corruption from two sources: Gaussian white noise



Sensors 2024, 24, 2449 11 of 15

va and random impulsive noise vi. The occurrence probability of the impulsive noise
is denoted as Pi. Additionally, the local reference signal i(n) is influenced by Gaussian
noise vb, where the condition σ2

a = σ2
b holds true. In the context of this simulation, we

employ the m-MTLS algorithm with a total of number of M = 2 layers, which is mainly a
compromise considering the additional computational cost brought by multi-layer filters.
As M increases, the effectiveness of SIC initially improves and then tends to stabilize or
even decline. This is due to the propagation of estimation errors across different layers.
To assess the efficacy of the proposed multi-layered joint estimator, a comparative analysis is
conducted against the minimum mean square error (MMSE) estimator and the single-layer
MTLS estimator, focusing on their performance in estimating the RT channel. The physical
meaning of the parameters involved in this simulation is summarized in Table 3.

Table 3. Table of parameters.

Parameter Symbol Value

Length of SI channel N1 4
Length of RT channel N2 10

Layers M 2
Input noise vin vb

Output noise vout va + vi
Gaussian noise va, vb σ2

a = σ2
b

Impulsive noise vi σ2
i = 10

ISR - 20 dB

Figure 5 illustrates the performance curves of several algorithms in terms of NMSD as
the SNR varies across different noise environments, with ISR = 20 dB. Compared to the
MMSE estimator, the proposed method exhibits higher robustness. The MMSE estimator
shows a noticeable decline in performance at certain sampling points when affected by
impulsive noise pollution. However, thanks to the M-estimate function, the m-MTLS
estimator remains virtually unaffected. Furthermore, as the SNR increases, the NMSD
of the m-MTLS estimator gradually decreases, whereas the MMSE estimator experiences
limited gain due to convergence being disrupted by interference from the interest signal.

10 12 14 16 18 20

SNR (dB)

-42

-40

-38

-36

-34

-32

-30

-28

-26

N
M

S
D

 (
dB

)

Joint m-MTLS estimator (M=1)
Joint m-MTLS estimator (M=2)
MMSE estimator

(a)

10 12 14 16 18 20

SNR (dB)

-40

-35

-30

-25

N
M

S
D

 (
dB

)

Joint m-MTLS estimator (M=1)
Joint m-MTLS estimator (M=2)
MMSE estimator

(b)

Figure 5. The performance of different estimators under the impulse noise probability. (a) Pi = 0.01;
(b) Pi = 0.05.
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4.2. Nonlinear SI Canceler

In this section, We use the Saleh’s PA model [27] to simulate the nonlinear distortion,
and the SI signal received after ADC can be described as follows:

f (x[n]) =
L−1

∑
l=0

h[l]
γx[n − l]

1 + β|x[n − l]|2
, (32)

where γ = 3 and β = 0.03 in this simulation, and h[n] is the overall memory length, set to
L = 5.

We assess the performance in terms of the mean squared error (MSE), defined as follows:

MSE = E
[
( f (x[n])− ŷ[n])2

]
. (33)

The performance of the proposed algorithm and the commonly used LMS algorithms
based on HPs are evaluated and the results are shown in Figure 6. In this simulation, we
assume the transmitted data follow a uniform distribution in the range [−2.5, 2.5] and v[n]
is zero-mean Gaussian noise with variance 1.

As shown in Figure 6, compared to existing algorithms based on standard HPs, the pro-
posed algorithm achieves faster convergence while maintaining equivalent MSE performance.

0 5000 10,000 15,000

Samples (n)

-40

-30

-20

-10

0

10

20

M
S

E
 (

dB
)

HP-LMS without Orth =0.001
HP-LMS =0.001
Proposed algorithm =0.001
Noise

Figure 6. MSE performance of different SIC algorithms with the same step size, when P = 5.

In the nonlinear SIC scenario, we simulate data transmission using a uniform distri-
bution within the range of [−2.5, 2.5], and the remote signal i[n] ∈ {−1, 1}. The nonlinear
SI canceler is demonstrated in Section 3.2. Considering both computational complexity
and algorithm performance, the joint SIC algorithm has a two-layer filtering structure with
M = 2. The basis functions for all algorithms are of order up to five.

Figures 7 and 8 compare the power spectrum of different signals at the receiver for
ISR = 20 dB and ISR = 40 dB, respectively. As seen, in both cases, the signal after SIC more
closely approximates the remote signal when using the proposed SIC algorithm compared
to the method based on HP-LMS.

Figure 9 shows the NMSD and bit error rate (BER) performance of the proposed
algorithm and other SIC algorithms. For symbol detection at the receiver, a decision
feedback equalizer (DFE) is employed, with both the feedforward and feedback filters
having lengths of 15. The DFE employs a truncated version of the transmitted signal as the
training signal, with tap weights being trained exclusively during the first block. In this
result, as expected, the joint SIC algorithm with a generalized HP basis function with
orthogonality exhibits superior performance.
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(a) (b)

Figure 7. Power spectrum of signals at the receiver, with ISR = 20 dB. (a) Proposed algorithm;
(b) HP-LMS algorithm.

(a) (b)

Figure 8. Power spectrum of signals at the receiver, with ISR = 40 dB. (a) Proposed algorithm;
(b) HP-LMS algorithm.
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(a) NMSD performance of different algorithms.
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(b) BER performance of different algorithms.

Figure 9. Performance of different algorithms, with ISR = 40 dB. (a) NMSD performance;
(b) BER performance.
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5. Conclusions

In this paper, we proposed two adaptive algorithms for linear and nonlinear SIC,
based on a multi-layered joint channel estimator structure. In the case of linear SI, given
that both the independent and dependent variables are subject to measurement errors,
and considering the impact of impulsive noise present in wireless environments on the
convergence process of adaptive algorithms, the m-MTLS algorithm is proposed to enhance
robustness. For the nonlinear distortion generated by the PA, we combine the joint channel
estimator and generalized HP basis function to propose a joint SIC method that outperforms
current state-of-the-art SIC algorithms in scenarios of both high and low ISR, as well as
high SNR. However, the complexity of this method is higher, mainly due to the increase in
the number of basis function coefficients and the length of the filter during joint estimation,
as well as the number of layers M, which also contributes to the increased complexity.
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