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Abstract: The real-time monitoring and fault diagnosis of modern machinery and equipment impose
higher demands on equipment maintenance, with the extraction of morphological characteristics
of wear debris in lubricating oil emerging as a critical approach for real-time monitoring of wear,
holding significant importance in the field. The online visual ferrograph (OLVF) technique serves as a
representative method in this study. Various semantic segmentation approaches, such as DeepLabV3+,
PSPNet, Segformer, Unet, and other models, are employed to process the oil wear particle image for
conducting comparative experiments. In order to accurately segment the minute wear debris in oil
abrasive images and mitigate the influence of reflection and bubbles, we propose a multi-level feature
reused Unet (MFR Unet) that enhances the residual link strategy of Unet for improved identification
of tiny wear debris in ferrograms, leading to superior segmentation results.

Keywords: debris image; semantic segmentation; convolutional neural network

1. Introduction

The stable operation and prevention of sudden failures in machinery and equipment
are crucial in the field of modern industry. Tribo-pair wear failure stands out as a primary
cause for mechanical equipment failures, accounting for over half of such occurrences.
In particular, the wear failure of these key components, namely bearings and gears [1],
constitutes a significant proportion of mechanical equipment failures. Excessive wear
not only causes damage to the key components within the equipment, but also escalates
operational costs and poses potential risks of injury and property damage. To mitigate
these issues, vibration monitoring and oil monitoring have emerged as indispensable
measures [2,3]. Despite its ability to rapidly acquire signals and identify issues with
friction pairs to a certain extent, vibration monitoring is susceptible to external excitation
interference and resonance distortion, and lacks the necessary sensitivity for the early
detection of mechanical equipment wear failures. Therefore, there is an imperative for the
development of a more robust and highly sensitive monitoring methodology capable of
pre-emptively detecting potential equipment malfunctions.

Wear debris generated by mechanical tribo-pairs contains crucial information regard-
ing the operation of mechanical equipment [4,5]. The shape, size, color, texture, and other
characteristics of wear fragments directly manifest the wear state of the tribo-pair [6–8].
According to statistical data, the size of wear particles is typically maintained within the
range of 10–20 µm during normal machine operation [9,10]. The size of wear particles will
increase to 50–100 µm and the concentration of wear particles will significantly rise when
mechanical equipment parts undergo progressive abnormal wear [11,12]. Wear debris
analysis plays an increasingly pivotal role in the prognosis and diagnosis of mechanical
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systems, thus giving rise to numerous associated methodologies, such as atomic emission
spectroscopy, particle counting, and ferrography [13,14].

The technology known as ferrography is employed to assess the wear condition of
mechanical equipment by analyzing the wear particles present in lubricating oil. During
the operation of mechanical equipment, friction between components generates wear parti-
cles that contaminate the lubricating oil. These wear particles carry valuable information
pertaining to the condition of the mechanical system. By conducting an analysis of the wear
particles present in lubricating oil, ferrography has the capability to extract and identify
the morphological characteristics exhibited by these particles. Distinct wear modes give
rise to wear particles with varying shapes [15], and these characteristics are employed for
assessing the degree of equipment tribo-pair wear [16]. Furthermore, the application of fer-
rography analysis technology enables the identification and localization of abnormal wear
through the comprehensive analysis and differentiation of wear particle composition [17].
Therefore, ferrography analysis technology is extensively utilized not only for monitoring
wear conditions and diagnosing faults, but also for investigating wear mechanisms, assess-
ing lubricant conditions, predicting wear trends, prognosticating failures, estimating life
expectancies, and analyzing the reliability of mechanical components.

The online visual ferrograph (OLVF) is an exemplary technology derived from the
conventional ferrograph [18,19]. In practical applications, OLVF is positioned externally
to the lubrication system and effectively captures minuscule wear particles in the lube oil
through the utilization of a high-gradient-magnetic-field force. Subsequently, micrographs
are captured to acquire images of the wear particle deposition spectrum, and subsequently
visual characteristics are extracted [20]. The image processing technology is utilized for
particle differentiation and size identification [21], facilitating the diagnosis and assessment
of machine operating wear conditions [22], as well as enabling effective monitoring of
machine wear conditions. The index of particle coverage area (IPCA) is employed in
this process to characterize particle concentration and analyze the characteristics of large
debris within the spectrum, enabling the identification of abnormal wear. OLVF has been
successfully implemented in various practical applications, encompassing high-power
gearboxes, diesel engines, gasoline engines, marine gas turbines, and even aero engines.

The OLVF ferrogram is available in two forms, namely the reflection ferrogram (RF)
and the transmission ferrogram (TF). The RF is acquired by illuminating the sample with
reflected light, and its imaging principle involves positioning the light source above the
debris deposition field. The TF is acquired by illuminating the sample with a transmitted
light source. Its imaging principle involves positioning the light source within the abrasive
deposition field. In the monitoring of wear in OLVF, the uncertainty surrounding the shape
of wear particles results in their accumulation and adhesion when they are large, while
their dispersion in oil makes it difficult to capture them when they are small. The two
imaging methods result in intricate light distribution on the surface, with a conspicuous
contrast between light and dark. Moreover, due to the interference of bubbles, wear particle
segmentation becomes exceedingly challenging. Consequently, numerous algorithms have
been developed in response to this issue.

In recent years, deep learning algorithms have been extensively employed for the
segmentation of grain chains and extraction of grain signs in ferrographic images. For
example, Wang et al. [23] proposed a hybrid approach combining marker-controlled wa-
tershed segmentation with an enhanced gray clustering algorithm to effectively segment
both coarse and fine wear fragments that are deposited on the chain. In addition, Wang
et al. [24] combined the watershed algorithm with the improved ant colony clustering
algorithm to achieve accurate segmentation of abnormal wear fragments. Wu et al. [25]
proposed an algorithm based on multi-scale morphological operation based on gray-scale
and comprehensive morphological characteristics of wear fragments to achieve the segmen-
tation of wear fragment chains. Han Lang et al. [26] proposed a binary method for wear
particle images based on uniform discrete curve transformation. By using UDCT to conduct
multi-scale analysis of ferrograms and nonlinear transformation of UDCT coefficients, the
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wear particle image was suppressed at low frequency and denoised at high frequency
to solve the problem of air bubbles in lube oil interfering with wear particle recognition.
Peng et al. [27] proposed an overlapping debris segmentation network to address the issue
of abrasive chain overlap in ferrographic images.

The majority of existing segmentation algorithms are primarily designed for offline
ferrogram analysis, characterized by high resolution, uniform illumination, significant
foreground–background contrast, and an absence of bubble interference. In contrast,
the presence of light and bubble interference in OLVF is inevitable, posing challenges to
segmentation and rendering existing methods ineffective in accurately segmenting wear
debris in OLVF.

In order to solve the above problems, this paper adopts a variety of semantic seg-
mentation models, including DeepLabV3+, PSPNet, Segformer, and Unet, and conducts
comparative experiments. We found that as the depth of the network increases, the content
of feature extraction by the model becomes increasingly abstract and less specific. At
this point, the model’s extraction of information becomes uncontrollable. We introduce
residual networks for reusing feature information, correcting the deviation of information
flow in the model, preventing the model from paying excessive attention to unnecessary
information, and thus optimizing the overall segmentation information flow to enhance
its segmentation capability. Finally, the MFR Unet network is proposed to achieve RF seg-
mentation. Currently, according to the actual data and segmentation results, no potential
limitations or challenges have been identified.

2. Proposed Method
2.1. MFR Unet

The Unet proposed by Ronneberger et al. [16] has demonstrated remarkable efficacy
in addressing the segmentation challenges of small-sample medical images with intricate
backgrounds. Unet comprises a compression channel at the front end and an extended chan-
nel at the back end. The compression channel at the front end is utilized for subsampling,
comprising a convolutional layer and a pooling layer. The convolutional layer is utilized
for feature extraction, followed by upsampling through the extended channel comprising
an upsampling layer to restore the feature map size and a convolutional layer to recover
image feature information. Upon completion of upsampling, the desired segmentation
image is generated.

Accordingly, we propose the multi-level feature reused Unet (MFR Unet), as shown in
Figure 1.
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The residual connection is first introduced, and the connection strategy is modified.
In the encoder part, an additive residual connection is employed to mitigate the issue of
gradient vanishing. The input of each level is combined with the output of its correspond-
ing convolutional layer to establish a residual connection, thereby facilitating network
training. At the same time, the residual connection can make the input information easier
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to propagate in the network, thus improving the model performance. The decoder part
establishes a concatenate connection between the corresponding levels of the encoder and
decoder, effectively preserving feature information from different levels and enhancing the
model’s representational capacity.

Batch normalization is employed in this study. Incorporating a batch normalization
layer after each convolutional layer not only enhances the efficiency and stability of model
training, but also serves as a preventive measure against overfitting. The eigenvalue
distribution at each layer gradually converges towards the upper and lower bounds of the
activation function’s output interval as the network depth increases or during the training
process. Consequently, this phenomenon gives rise to gradient vanishing, impeding
network convergence. By incorporating a batch normalization layer prior to the activation
function for input normalization, the distribution of input values in each neural network
layer is aligned with a standard normal distribution (mean 0 and variance 1). This alignment
compels any deviating distributions to converge towards the standard distribution, thereby
ensuring that activation inputs fall within the sensitive region of the nonlinear function,
increasing the gradient and avoiding the problem of gradient disappearance. At the same
time, it accelerates the speed of learning convergence.

In the enhanced model, a convolutional layer with a stride of 2 is employed to
replace the conventional Unet maximum pooling layer (MaxPooling2D) for achieving
downsampling. This approach effectively preserves a greater amount of information,
thereby enhancing the accuracy and precision of image segmentation. Moreover, employ-
ing Conv2DTranspose for upsampling in the extended channel demonstrates superior
capability in recovering local image features compared to conventional Unet. By using
ReLU activation functions and normal distribution initialization, the model is easier to
train and converges faster. The Sigmoid activation function is employed in the output layer,
which is well suited for binary classification tasks and effectively constrains the output
within the range of 0 to 1, thereby satisfying the requirements stipulated in this study.

Unet and its variants have certain advantages in interpretability because of their
relatively simple structure, making it easy to understand the function and role of each
module. By forcing the model to deeply understand essential features through residual
connections, in the MFR Unet model, the multi-scale feedback mechanism provides a
way to understand how the model makes segmentation decisions. Through multi-scale
feedback, the model can process features multiple times at different resolutions, extracting
richer information and segmenting targets at different scales. This mechanism enables
the model to focus on features at different scales, thereby better capturing the details and
global information of wear debris.

The MFR Unet architecture integrates technologies such as residual connections, batch
normalization, and enhanced downsampling strategies. It enhances the capability to retain
fine details in images, specifically targeting the characteristic fine wear debris in RF images.
As a result, it demonstrates superior performance in handling complex image segmentation
tasks and can be widely applied in scenarios requiring binary segmentation of wear debris.
Leveraging the inherent simplicity and strong generalization capability of Unet, it also
enables potential transplantation into various domains.

2.2. Prepare Training Data
2.2.1. OLVF Ferrograms

OLVF simultaneously monitors wear and captures RFs (Figure 2a) and TFs (Figure 2b).
TFs exhibit a high contrast between the wear debris and the background, with clear edges
that facilitate easy segmentation. However, it is unable to display wear debris deposited
outside the air gap area in TFs. Compared to TFs, RFs exhibit a wider visible range and
provide richer visual information; however, the edge contrast of wear debris is lower,
posing challenges for segmentation. To generate training data, we collected 1725 RFs and
1725 TFs with dimensions of 640 pixels × 480 pixels.
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The data we used were collected from the complete operating cycle of the gear test
bench, and the images of wear debris in the dataset were sampled from these data. The
data are highly representative and can encompass the specific conditions of the gear at each
cycle of its life span.

In the operation of machinery, from initially healthy gears to ultimately damaged ones,
the shapes, sizes, and other characteristics of wear debris vary, demonstrating diversity and
heterogeneity in debris. This encompasses various scenarios of wear debris. The results are
not influenced by specific experimental settings or the dataset.

2.2.2. Image Characterization of RFs

As shown in Figure 2a, the debris is encapsulated within the lubricating oil during the
wear debris imaging conducted by OLVF, and the RFs are subject to many interferences
caused by light, oil transparency, etc. In the RFs, the presence of either darker or brighter
wear debris affects the contrast difference between the debris and background, potentially
leading to missed detection during debris segmentation. Accordingly, the presence of light-
reflecting debris within RFs constitutes a primary factor contributing to the inaccuracies
observed in binarization.

The ratio of the coverage area of light-reflecting debris in the air gap region to the
total reflective coverage area was computed from the 1725 RFs. The RFs were binarized
using different thresholds, as illustrated in Figure 3. The statistical findings demonstrate
that the proportion of light-reflecting debris in the air gap consistently exceeded 99.5%.
The light-reflecting debris of RFs is primarily concentrated in the air gap region, with
negligible amounts outside. Fortunately, binarized TFs can compensate for this portion of
RFs. Therefore, TFs are introduced to improve the binarization accuracy of RFs so as to
realize the automatic marking of RFs.
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2.2.3. Automatic Labeling of RFs Combined with TFs

The morphological characteristics of wear debris are derived from the edges of the
debris, necessitating pixel-level marking of the wear debris. However, the intricate nature
of wear debris edge characteristics poses significant challenges for manual labeling. To
address this issue, an automated approach is proposed, comprising two distinct steps:

(1) Excluding ferrograms affected by bubble interference, retain RFs and TFs with high
imaging quality, and enhance the accuracy of labeling.

(2) The automatic threshold method is employed for the segmentation of RFs and TFs,
followed by the superimposition of the two segmentation outcomes to generate
binary masks.

The mapping relationship between RFs and binary masks is established to achieve
automatic labeling of the RFs. Importantly, the RF serves as the input to the network while
the TF assists in annotation and enhances annotation accuracy.

2.3. Model Evaluation Criteria

This paper uses three indexes, including accuracy, mean pixel accuracy (MPA), and
mean intersection over union (mIoU), to evaluate the model.

Accuracy measures the model’s ability to correctly classify all samples, which can be
calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where TP (true positive) refers to the count of accurately predicted positive samples among
those that are truly positive; TN (true negative) is the number of samples that are actually
negative and are correctly predicted to be negative; FP (false positive) is the number of
samples that are actually negative but are incorrectly predicted to be positive (false positive);
and FN (false negative) represents a false negative, that is, the number of samples that are
actually positive but are incorrectly predicted to be negative (missed).

MPA measures the ability of the model to correctly classify each pixel, that is, the
ratio of the number of correctly classified pixels to the total number of pixels. MPA can be
calculated as follows:

MPA =
1
N

N

∑
i=1

TPi
TPi + FPi

(2)

where N is the total number of images; TPi is the number of correctly classified pixels in
the i-th image (true positives); and FPi is the number of false positives in the i-th image.

The mIoU metric incorporates the model’s classification accuracy across various cat-
egories and quantifies the degree of overlap between the predicted segmentation area
and the ground-truth label. mIoU is particularly suitable for tasks involving pixel-level
classification. Its calculation can be expressed as follows:

mIoU =
1
c

c

∑
i=1

TPi
TPi + FP + FNi

(3)

where FNi is the number of pixels in the first category that are misclassified as other
categories (false negatives).

This study aims to investigate the performance and efficiency of various deep learning
models for the binary segmentation task of wear debris in lube oil through comprehensive
analysis and comparison. Five models, namely, DeepLabV3+, PSPNet, Segformer, Unet,
and MFR Unet, were trained and their performances were compared.

The aforementioned five models were trained and their performance on the test set was
compared. Using Anaconda, Python 3.8, the specific environment consists of the following:
scipy 1.2.1; numpy 1.17.0; matplotlib 3.1.2; opencv 4.1.2.30; torch 1.2.0; torchvision 0.4.0;
tqdm 4.60.0; Pillow 8.2.0; h5py 2.10.0.
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As shown in Figure 4, the loss curves corresponding to 100 epochs were obtained,
revealing that MFR Unet exhibits a superior convergence rate. The mIoU, MPA, and
accuracy of each model on the test set were computed in addition to being depicted in
Figure 4 and Table 1. Notably, MFR Unet outperformed other models in terms of mIoU,
MPA, and accuracy. The MFR Unet has demonstrated remarkable advantages in terms of
both performance and efficiency, thereby holding great potential to offer more dependable
support for practical applications such as equipment monitoring and maintenance.
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Table 1. Accuracy and MPA of five models.

PSPNet DeepLabV3+ Segformer Unet MFR Unet

Accuracy (%) 95.91 98.41 98.61 98.14 98.76
MPA (%) 65.06 90.28 90.75 82.27 91.39

As shown in Figure 5, optimization is conducted through the loss function, learning
rate, and other factors, with a greater emphasis on segmentation accuracy in this process.
However, there is no blind increase in model complexity to improve the effectiveness.
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3. Segmentation Results and Discussions
3.1. Small Debris Recognition of MFR Unet

Oil debris generated by certain mechanical equipment, such as pumps, valves, and
aircraft engines, exhibits a small particle size. Furthermore, the quantity of small debris
serves as a direct indicator of the wear rate of the tribo-pairs, and the precise and effective
identification of these minute wear particles forms the foundation of quantitative wear
analysis. The segmentation of RFs containing a lot of small wear debris was performed
using five models, as illustrated in Figure 6.
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The DeepLabV3+ features a deep variable convolutional network structure, capable
of capturing a wider range of contextual information. It utilizes dilated convolutions to
expand the receptive field, which helps in handling large-scale targets. However, the
training and inference processes are relatively complex, requiring more computational
resources. It may not be sensitive enough to small targets or fine details.

The PSPNet utilizes pyramid pooling modules to capture contextual information at
different scales, aiding in handling wear debris with large variations in scale. It has good
memory and computational efficiency. However, it may not handle boundary details finely
enough and may not perform well on wear debris with complex textures or structures.

The Segformer captures global contextual information through a global self-attention
mechanism, aiding in handling large-scale wear debris. It has high parallelism and can ef-
fectively utilize multiple GPUs for training. However, it has high computational complexity,
leading to longer training times, and may not be sensitive enough to small targets.

The Unet performs well on small datasets and has strong generalization ability. It
is suitable for segmentation tasks on small-scale targets. However, its segmentation per-
formance may be poor for large-scale targets, and it lacks a mechanism to capture global
contextual information.

The MFR Unet introduces a multi-scale feedback mechanism, aiding in extracting
features of different scales, suitable for handling wear debris with large variations in scale.
It combines the simplicity of Unet with the ability to capture multi-scale information. It
may face overfitting issues, especially with limited training data.

PSPNet demonstrated limited efficacy in detecting such minute wear debris, result-
ing in the identification of only a minimal quantity. The segmentation performances of
DeepLabV3+, Segformer, and Unet exhibit similarity in effectively segmenting large wear
debris; however, these three models still demonstrate limitations in accurately identifying
very small wear debris with low contrast. The MFR Unet model exhibited superior capa-
bility in detecting small wear debris compared to the other four models. By ensuring the
high-quality segmentation of large wear particles, it is possible to significantly enhance the
identification accuracy of small wear debris, thereby facilitating the quantitative analysis of
lubricating oil wear debris. This advancement in analysis techniques contributes to early
problem detection and enables proactive measures.
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3.2. Segmentation of Ferrograms Containing Bubbles

During the interaction between the tribo-pairs and the lubricating oil, air is entrained
into the lubricating oil, resulting in bubble formation. This phenomenon is commonly
observed, for instance, in gearbox systems that are lubricated by an oil bath. The bubbles
flow through the OLVF and create smooth-edged blob shadows, which can be easily
recognized as wear debris by traditional segmentation algorithms. This seriously affects the
accuracy of wear debris recognition. This is a common challenge encountered by all image-
based debris detectors, including the five network models depicted in Figure 7. While
PSPNet fails to segment wear debris, it also does not address the segmentation of bubbles.
DeepLabV3+, Segformer, and Unet exhibit effective identification of large bubbles, but still
misclassify some small bubbles as wear debris. The MFR Unet demonstrates robustness
in handling bubbles of varying scales, effectively mitigating the impact of bubbles on
wear debris segmentation results and enhancing the model’s ability to accurately focus on
wear debris.
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3.3. Retention of Debris Edge in MFR Unet

The wear debris edge serves as a primary source of information for extracting wear
debris features, while the retention of this edge represents a crucial evaluation criterion
for wear debris algorithms. The segmentation performance of PSPNet is limited in ef-
fectively capturing the wear debris, resulting in minimal delineation of the wear debris
edges, as depicted in Figure 8. The edge retention of DeepLabV3+ exhibits suboptimal
performance, with evident manifestations of overfitting at the periphery of the wear debris.
The Segformer model also exhibits the phenomenon of debris edge overfitting; however,
it outperforms DeepLabV3+ in terms of segmentation effectiveness. The Unet and MFR
Unet models effectively preserve the edges of wear debris and accurately capture their
morphological characteristics, thereby establishing a solid foundation for feature extraction.
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Figure 8. Edge preserving of wear debris: (a) original; (b) DeepLabV3+; (c) PSPNet; (d) Segformer;
(e) Unet; (f) MFR Unet.

4. Application in Gearbox Monitoring

A gear wear monitoring experiment was conducted to validate the efficacy of the
developed methodology, wherein an accelerated gear wear experiment was performed on a
dedicated test bench for gear wear. The test bench comprised two oil-bath-lubricated spur
gearboxes, as illustrated in Figure 9. An AC three-phase electrical motor (3 KW) drove the
test bench at a speed of 1450 rpm. The parameters of the test gear are presented in Table 2.
The load applied to the wheel was 200 Nm. During the test, downtime sampling was
performed to collect oil samples for offline analysis. Sampling intervals were approximately
6 h in the early stages of the test and decreased to approximately 3 h in the later stages of
the test.

Sensors 2024, 24, x FOR PEER REVIEW 10 of 14 
 

 

Figure 7. Segmentation of ferrograms containing bubbles: (a) original; (b) DeepLabV3+; (c) PSPNet; 
(d) Segformer; (e) Unet; (f) MFR Unet. 

3.3. Retention of Debris Edge in MFR Unet 
The wear debris edge serves as a primary source of information for extracting wear 

debris features, while the retention of this edge represents a crucial evaluation criterion 
for wear debris algorithms. The segmentation performance of PSPNet is limited in effec-
tively capturing the wear debris, resulting in minimal delineation of the wear debris 
edges, as depicted in Figure 8. The edge retention of DeepLabV3+ exhibits suboptimal 
performance, with evident manifestations of overfitting at the periphery of the wear de-
bris. The Segformer model also exhibits the phenomenon of debris edge overfitting; how-
ever, it outperforms DeepLabV3+ in terms of segmentation effectiveness. The Unet and 
MFR Unet models effectively preserve the edges of wear debris and accurately capture 
their morphological characteristics, thereby establishing a solid foundation for feature ex-
traction. 

 
Figure 8. Edge preserving of wear debris: (a) original; (b) DeepLabV3+; (c) PSPNet; (d) Segformer; 
(e) Unet; (f) MFR Unet. 

4. Application in Gearbox Monitoring 
A gear wear monitoring experiment was conducted to validate the efficacy of the 

developed methodology, wherein an accelerated gear wear experiment was performed on 
a dedicated test bench for gear wear. The test bench comprised two oil-bath-lubricated 
spur gearboxes, as illustrated in Figure 9. An AC three-phase electrical motor (3 KW) 
drove the test bench at a speed of 1450 rpm. The parameters of the test gear are presented 
in Table 2. The load applied to the wheel was 200 Nm. During the test, downtime sampling 
was performed to collect oil samples for offline analysis. Sampling intervals were approx-
imately 6 h in the early stages of the test and decreased to approximately 3 h in the later 
stages of the test. 

 

Drive Motor

Load 
Coupling

Torsion Bar

Slave GearboxTest Gearbox

C
M

O
S

Pu
m

p

El
ec
tr
om

ag
ne

t

OLVF

 
(a) (b) 

Figure 9. Schematic diagram of the OLVF monitoring gearbox: (a) Photograph. (b) Schematic.

Table 2. Details of test gears.

Parameter Pinion Wheel

Number of teeth 21 82
Helix angle (deg) 11

Normal modulus (Mn) 1.5
Addendum modification +0.5 +0.419

Face width (mm) 10 32
Material 20CrMnMo

Hardness (HRC) 58
Center distance (mm) 80
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The monitoring of on-line wear debris concentration was conducted using OLVF,
positioned in the gearbox near the oil level. The OLVF effectively captured and discharged
in-use oil carrying wear debris back into the gearbox. A high-resolution industrial camera
within the OLVF recorded an RF and a TF every 2 min, resulting in a total sampling interval
of 132 h and the acquisition of 3961 ferrograms. Five models were employed for precise
segmentation of the wear debris, while the IPCA, an indicator of debris concentration, was
calculated as follows [6]:

IPCA =
∑ Di

L × W
(4)

where L and W represent the length and width of the rectangular region, and ∑ Di represents
the total coverage area of the wear debris. The IPCA curves are presented in Figure 10.
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Obviously, PSPNet is unsuitable for ferrogram segmentation as it can only detect
a limited amount of large debris, and the IPCA curve fails to accurately represent the
actual gear wear process. DeepLabV3+, Segformer, and Unet exhibit similar segmentation
effects with comparable trends in the obtained IPCA curves. However, these models
have limited recognition capabilities for small wear debris resulting in a significant loss
of particle information in the segmentation results. In contrast, MFR Unet demonstrates
distinct trends in its IPCA curve. It exhibits a superior ability to identify small particles
with correspondingly larger IPCA values. Consequently, MFR Unet outperforms other
models by identifying a greater number of wear particles and producing an IPCA curve
that closely aligns with the actual gear wear state.

Figure 11 is an RF showing the variation in gear wear on the test bench over time. It
corresponds to the IPCA data statistics in Figure 10. After 80 h, the RF graph shows an
increase in the amount of wear debris, accompanied by small wear debris. Therefore, the
MRF Unet, which performs better in segmenting fine wear particles, performs better after
80 h.
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5. Conclusions

In RFs, the wear debris exhibits varying shades compared to the background, with
some appearing darker and others brighter. However, conventional segmentation meth-
ods may overlook wear debris that closely resembles the background color, leading to
reduced efficiency in monitoring OLVF. Consequently, the MFR Unet model was developed
specifically for RF segmentation and subsequently validated in the gear wear monitoring
experiment. The inclusion of TF is dispensable for OLVF, thereby streamlining the hardware
and software components of the OLVF wear monitoring system. The statistical findings
demonstrate that over 99.5% of the light-reflecting particulate matter in radio-frequency
fields predominantly exists within the air gap region. The present study proposes an
automatic labeling approach for RFs combined with TFs, aiming to enhance the training
efficiency of MFR Unet. Moreover, in comparison with the four mainstream network
models, the findings demonstrate that MFR Unet exhibits a remarkable precision in wear
particle segmentation, exceptional recognition capability for small-sized wear debris, an
accurate identification of bubbles, and an excellent preservation of wear debris edges. These
attributes are instrumental in enhancing the extraction of morphological characteristics and
pattern recognition of wear debris.

6. Future Work

In practical applications, the quality of lubricating oil deteriorates over time, typically
evidenced by changes in color, such as yellowing or darkening, which may potentially
affect the final results. Regarding the dataset, we will create a dataset containing wear
debris under conditions of darker lubricating oil color. Additionally, we will explore
normalization techniques at different positions in the model to reduce data oscillation
and improve the robustness of wear debris segmentation. We will also attempt model
lightweighting by performing layer removal operations on Unet. Alternatively, we may
integrate the model with transformer to further enhance its accuracy.
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