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Abstract: Existing industrial image anomaly detection techniques predominantly utilize codecs based
on convolutional neural networks (CNNs). However, traditional convolutional autoencoders are
limited to local features, struggling to assimilate global feature information. CNNs’ generalizability
enables the reconstruction of certain anomalous regions. This is particularly evident when normal and
abnormal regions, despite having similar pixel values, contain different semantic information, leading
to ineffective anomaly detection. Furthermore, collecting abnormal image samples during actual
industrial production poses challenges, often resulting in data imbalance. To mitigate these issues,
this study proposes an unsupervised anomaly detection model employing the Vision Transformer
(ViT) architecture, incorporating a Transformer structure to understand the global context between
image blocks, thereby extracting a superior representation of feature information. It integrates a
memory module to catalog normal sample features, both to counteract anomaly reconstruction
issues and bolster feature representation, and additionally introduces a coordinate attention (CA)
mechanism to intensify focus on image features at both spatial and channel dimensions, minimizing
feature information loss and thereby enabling more precise anomaly identification and localization.
Experiments conducted on two public datasets, MVTec AD and BeanTech AD, substantiate the
method’s effectiveness, demonstrating an approximate 20% improvement in average AUROC% at
the image level over traditional convolutional encoders.

Keywords: anomaly detection; Vision Transformer; memory network; attention mechanism

1. Introduction

With the improvement of national living standards and the rapid development of the
domestic manufacturing industry, the variety and quantity of industrial products have
increased dramatically. This has elevated consumer expectations regarding product quality,
particularly in terms of appearance. Currently, appearance quality is at the forefront of
market competitiveness, necessitating meticulous management of product appearance
in industrial production. Manufacturing processes face challenges from various defects,
including porosity, fractures, and wear, which impact not only appearance but also per-
formance and market competitiveness. Hence, implementing effective anomaly detection
in manufacturing processes is crucial to ensuring production safety, maintaining product
quality, and enhancing competitiveness. In practice, industrial anomaly detection demon-
strates significant application value [1,2]. The goal of industrial image anomaly detection
is to identify nonconforming products from images, safeguarding quality and enhancing
economic returns. This task is challenging because anomalies often occupy only a small
portion of the image, and industrial images are characterized by high data dimensionality,
making feature extraction and anomaly detection and localization difficult. Thus, exploring
effective anomaly detection methods to enhance efficiency remains a significant challenge.

Traditional image anomaly detection [3,4] is predicated on the manual definition and
extraction of features, a process that is both cumbersome and time-consuming, particularly
with extensive industrial image data. The rapid advancements in deep learning within
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artificial intelligence, notably in natural language processing and computer vision, have
expanded its application to industrial anomaly detection [5]. Deep learning anomaly detec-
tion techniques are categorized based on the availability of data labels into fully supervised,
unsupervised, and semi-supervised methods. Fully supervised learning methods [6,7],
used in deep learning, depend on datasets meticulously labeled by experts for model train-
ing. Although effective, this approach poses a significant financial burden on many facilities
due to the high labor costs involved. Confronted with the challenge of high data labeling
costs, researchers have advocated for semi-supervised learning as a feasible solution. Semi-
supervised learning employs a modest amount of labeled data to direct model training,
enhancing the model’s generalization capability by incorporating substantial volumes of
unlabeled data, making it particularly apt for scenarios with limited labeling resources or
high labeling costs. For instance, Qiu et al. [8] developed a framework featuring an image
alignment module and a defect detection module for identifying defects on metal surfaces.
Wan et al. [9] introduced a Logit Inducing Loss (LIS) for training with imbalanced data
distributions, alongside an Anomaly Capture Module to characterize anomalies, efficiently
leveraging limited anomaly data. Despite their effectiveness in certain contexts, super-
vised learning models see limited use in industrial image anomaly detection. Collecting
a substantial volume of anomaly samples for training supervised models is challenging
in practice, with the labeling process being both time-consuming and expensive. While
semi-supervised learning can mitigate labeling costs to some extent, it does not address the
underlying issue. Conversely, unsupervised methods, which require only normal samples
for training and eschew detailed labeling of abnormal samples, theoretically can identify
all unknown defects, rendering them ideal for anomaly detection.

In unsupervised anomaly detection, deep codec structures based on convolutional
neural networks (CNNs) are commonly employed, notably the Convolutional AutoEncoder
(CAE) [10], which compresses a normal image and reconstructs it to resemble the original.
However, the limited sensory field of traditional CNNs constrains CAE to learning merely
local information, hindering the capture of global contextual image information, result-
ing in inferior image reconstruction quality. Furthermore, while the CAE’s widespread
use in image reconstruction and anomaly detection owes to CNNs’ robust generalization
capabilities, this generalizability can prove to be a drawback. Specifically, CAE may inad-
vertently reconstruct anomalous regions during image reconstruction, thereby diminishing
anomaly detection accuracy. Recently, the application of the Transformer architecture [11]
in computer vision [12] has garnered increasing research interest. This architecture, an
encoder-decoder structure, leverages a self-attention mechanism to capture long-range
dependencies in the input sequence, extracting global feature information. Such capabil-
ity enables the Transformer to enhance processing efficiency and accuracy, maintaining
global feature representation without dependence on traditional convolutional or Recurrent
Neural Network (RNN) architectures. Mishra et al. [13] proposed a framework based on
the Transformer for patch-level image reconstruction, utilizing Gaussian Mixture Density
Networks to localize anomalous regions. Lee et al. [14] introduced AnoViT, an encoder-
decoder model based on the Vision Transformer, asserting its superiority over CNN-based
L2-CAE in anomaly detection. HaloAE [15] integrates the Transformer with HaloNet [16],
facilitating image reconstruction and achieving competitive results on the MVTec AD
dataset. Despite the Transformer’s exemplary performance and versatility in computer
vision, the nuances of industrial image anomaly detection—namely, sensitivity to anomaly
details and the scarcity of samples—necessitate focused optimization and enhancement of
the architecture.

Given the challenges in practical industrial inspection applications—namely, the
scarcity of anomaly samples, high labeling costs, and limitations of traditional CAE in
extracting global features and controlling anomaly generalization—this study proposes
an unsupervised industrial image anomaly detection method leveraging the Vision Trans-
former (ViT). The primary contributions of this study are as follows:
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1. Addressing the challenge of traditional CAE in learning global image features, the
method incorporates a Transformer structure to understand the global context be-
tween image blocks, utilizing ViT’s encoder for high-level feature representation.

2. To mitigate the issue of anomaly generalization that reduces detection accuracy, a
memory module is designed to record the normal image features extracted by the
encoder, suppressing anomaly generalization.

3. A coordinate attention mechanism is introduced to concentrate on image features
at both spatial and channel levels, enabling more precise anomaly localization and
identification.

4. L2 loss, block-based SSIM loss, and entropy loss functions are employed to define the
relationship between original and reconstructed images and calculate the anomaly
score, thereby enhancing detection accuracy.

2. Related Work
2.1. Unsupervised Anomaly Detection Method Based on Reconstruction

Within the realm of deep learning, unsupervised industrial anomaly detection methods
are primarily divided into feature-based and reconstruction-based approaches. Feature-
based approaches [17–19] commonly employ networks pre-trained on ImageNet [20] to
map original images into a more distinguishable feature space. These methods are typi-
cally characterized by low training costs and outstanding performance. However, these
approaches struggle to extract specific anomalous feature information from abstract feature
vectors. Reconstruction-based approaches [21] are more prevalent, based on the assumption
that models trained on normal samples excel in reconstructing normal patterns but falter
with abnormal regions. The fundamental concept involves reconstructing the input normal
image through encoding and decoding, training the neural network for this specific pur-
pose. During the detection phase, the trained network identifies abnormalities by analyzing
discrepancies between images pre- and post-reconstruction. A frequently employed metric
involves calculating the L2 distance or SSIM value [22] between the images pre- and post-
reconstruction, namely, the reconstruction error. Compared to feature-based approaches,
reconstruction-based methods offer more intuitive visual comprehension by permitting
the direct observation of differences between original and reconstructed images. Classic
examples of reconstruction-based methods encompass auto-encoder (AE) [23], variational
auto-encoder (VAE) [24] and generative adversarial network (GAN) [25].

Currently, most GAN-based and AE-based methods rely on convolutional neural
networks (CNNs), which often perform suboptimally due to challenges in controlling the
model’s generalization ability. When the generalization ability of AEs is excessively high,
it may lead to a blending of normal and abnormal features, where an overgeneralized
model reconstructs abnormalities too effectively, rendering them harder to distinguish. To
counteract the effects of excessive generalization, recent strategies aim to constrain the
expressive capabilities of the AE’s latent space, incorporating techniques such as memory
storage [26], selection and weighting within the latent space [27], and and clustering of
features therein [28]. However, weaker generalization capabilities lead to poorer recon-
struction of edge regions. However, diminished generalization capabilities result in inferior
reconstruction of edge regions. For instance, the VAE-based model FAVAE [29] tends to
overlook image details during processing, which leads to issues of over-detection.

In this study, we employ a reconstruction-based approach for image feature extraction,
utilizing Transformer-based encoders instead of CNN-based encoders. Furthermore, di-
verging from methods that utilize the entire image as input, this study segments the image
into uniformly sized chunks for model input, and further extracts the image’s rich features
by learning global information through patch-level images and self-attention mechanisms.

2.2. Vision Transformer

The Vision Transformer (ViT) [30] represents an innovative application of Transformer
structures to image processing tasks, marking a significant breakthrough in the field of
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image recognition and detection. In this chapter, a ViT-based encoder is utilized to supplant
the traditional convolutional encoder, beginning with an overview of the ViT model’s
workflow. Figure 1 illustrates the ViT model structure, comprising the Embedding Layer,
Transformer Encoder, and MLP Head.
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1. Embedding Layer

As depicted in Figure 1a, ViT initially divides the image into multiple fixed-size
patches, embedding positional information for each patch before inputting this data into
the Transformer Encoder (Figure 1b), equipped with the self-attention module.

2. Transformer Encoder

The image patches, now transformed into a series of vectors by the embedding layer,
are introduced into the encoder component of the Transformer. As illustrated in Figure 1b,
the Transformer Encoder comprises a series of L identical layers, encoding the input image
into a high-dimensional feature representation. Each layer features Layer Normalization
(LN), a Multi-head Self-Attention Mechanism (MSA), and a Multi-Layer Perceptron (MLP).

3. MLP Head

The high-dimensional feature vectors produced by the Transformer Encoder require
appropriate transformation for classification tasks. For downstream classification tasks, the
model extracts features aligned with the category labels’ quantity, serving as the foundation
for classification. Hence, the model’s output phase typically utilizes fully connected layers
and activation functions to map the feature space to the label space for classification.

The self-attention mechanism [31] represents a crucial component within the Trans-
former architecture, dynamically adjusting the representation of each sequence element.
This mechanism generates a weighted representation for each position, considering the
interactions among elements within the input sequence. It is particularly adept at capturing
long-range dependencies within a sequence. The computational process of self-attention
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encompasses three principal sets of vectors: query (Q), key (K) and value (V), as depicted
in Equation (1):

Attention(Q, K, V) = softmax(
Q.KT
√

dk
)V (1)

In Equation (1), Q is the query matrix; K is the key matrix; V is the value matrix;
dk denotes the dimension of K;

√
dk is the scaling factor used to scale the dot product in

order to keep the gradient stable; and T denotes the transpose operation of the matrix. The
softmax function is used to calculate the attention weight.

The multi-head attention mechanism in ViT represents an advanced refinement of the
self-attention layer, enabling simultaneous information capture across multiple subspaces
and thus enhancing the model’s representational capabilities. This mechanism segments
the self-attention layer into multiple “heads,” with each performing independent self-
attention operations using distinct weight matrices. Consequently, this enables the model
to concentrate on various parts or aspects of the input sequence, thereby capturing richer
and more varied information, as demonstrated in Equations (2) and (3):

headi = Attention(QWQ
i , KWK

i , VWV
i ) (2)

MultiHead(Q, K, V) = Concat(head1, · · · , headn)Wo (3)

here, n is the total number of heads, WQ
i , WK

i , WV
i denote the linear transformation weight

matrices for the i-th query, key, and value matrices (Q, K, and V), respectively, with Wo

being the output transformation matrix. The h function executes the computation for the
i-th attention head, the C function aggregates the values across each attention channel, and
the M function calculates the multi-head self-attention value.

3. Proposed Method

The method proposed in this study leverages the benefits of both reconstruction-based
and patch-based approaches. The model comprises a ViT-based encoder, a memory module
(M), a coordinate attention (CA) mechanism, and a decoder, as depicted in Figure 2. The
specific workflow is as follows:

Input image processing: Initially, the input image X ∈ RH×W×C is decomposed into
patches Xp ∈ RN×(P2×C) of size (P, P). These patches are then mapped into a D-dimensional
space to form two-dimensional patch embeddings. Here, H, W, and C denote the height,
width, and number of channels of the image, respectively, while N = HW/P2 represents the
total number of patches.

Position embedding and sequence encoding: To preserve spatial location information
among patches, position embedding Epos ∈ R(N+1)×D is added to each patch embedding E,
and a [cls] token is introduced for global image representation.

Encoder processing: The encoder processes the encoded sequence Z0 and outputs
a series of block embeddings, each detailing information about the corresponding image
block. These block embeddings are rearranged to form a feature mapping map F that
approximates the structure of the original image.

Memory module: The feature mapping map F is input into the memory module,
generating a feature representation of the normal data pattern through matching and
weighted summation with stored normal pattern features. This step allows the model to
“remember” the normal data patterns.

Coordinate Attention: The feature maps F’ computed by the memory network are
conveyed to the CA module for further processing, yielding enhanced feature representa-
tions.

Decoding and image reconstruction: Finally, the decoder reverses the high-dimensional
feature representation from the coordinate attention module, rendering it into a recon-
structed image. Comparing differences between the input image X and the reconstructed
image X̂ enables anomaly detection and localization.
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Figure 2. The flowchart of proposed method based on vision transformer and autoencoder structure.
The model mainly consists of a ViT-based encoder, a memory module (M), a coordinate attention (CA),
and a decoder. X and X̂ represent the input image and the reconstructed output image, respectively.

3.1. ViT-Based Encoder

In the model, the encoder employs a processing flow akin to the Vision Transformer
(ViT), transforming the input image patches into a series of high-dimensional feature
representations for subsequent processing and analysis.

The input image patches are initially mapped to the embedding space and augmented
with positional information, as described in Equation (4):

Z0 = [X1
pE; X2

pE; . . . ; XN
p E] + Epos , E ∈ R(P2×C)×D , Epos ∈ R(N+1)×D (4)

Subsequently, the patch embedding sequences, augmented with location information,
are fed into the Multihead Self-Attention (MSA) module (Equation (5)) and the Multilayer
Perceptron (MLP) module (Equation (6)), where Layer Normalization (LN) is applied to
the feature sequences before they are passed to the MSA and the MLP, a step that aids in
stabilizing the training process, with l (l ∈ [1,L]) denoting the number of layers:

Z′
l = MSA(LN(Zl−1)) + Zl−1 , l = 1 . . . L (5)

Zl = MLP(LN(Z′
l)) + Z′

l , l = 1 . . . L (6)

Finally, residual connections are introduced to the outputs of the MSA and MLP
modules, meaning the module inputs are directly added to their outputs. This approach
mitigates the issue of vanishing gradients during deep network training and enhances
the network’s training stability. Through these steps, the encoder efficiently extracts and
processes the features of the input image patches, generating a rich feature representa-
tion. Additionally, this process ensures the model’s ability to fully leverage the spatial
information and intrinsic features of the image, thereby enhancing overall performance.
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3.2. Memory Network

The memory module, a pivotal component, is designed to bolster the model’s capacity
for memorizing normal data patterns, thereby aiding in more accurate recognition of
deviations from these patterns. This functionality is realized by storing and processing the
query mapping z extracted from the feature map F, output by Encoder, with its network
structure depicted in Figure 3. In essence, the memory module is represented by a matrix
M ∈ RN×C, where M is an addressable memory matrix, N denotes the number of feature
information items in the memory, and C represents the dimensionality of each feature
vector. This matrix functions as a long-term memory bank, storing valid feature information
acquired during the training on normal data. Each element mi (where i = 1, 2, 3...N) in the
memory M represents the i-th memory item, with each item being a C-dimensional feature
vector representing a specific normal data pattern learned during training.
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from the feature map and ẑ represents the enhanced features computed by the memory module.

To access the memory item, the similarity between the input feature z and the memory
item mi in the M is initially calculated:

d(z, mi) =
zmT

i
∥z∥∥mi∥

(7)

In Equation (7), d(•,•) is defined as the cosine similarity [32]. Subsequently, a softmax
operation is applied to the similarity scores between z and all memory items in {mi}N

i=1,
yielding the weight coefficient w (w∈R1×C) for the input feature z with respect to the
memory storage unit M:

wi =
exp(d(z, mi))

N
∑

j=1
exp(d(z, mj))

(8)

The weighting coefficients indicate the degree of match between the current feature
and the memory items in M. Memory items corresponding to the input feature z are
retrieved, weighted, and summed to acquire a new feature representation ẑ:

ẑ = wM =
N

∑
i=1

wimi (9)
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To mitigate the issue of certain anomalies being reconstructible during the model’s
reconstruction process and to minimize interference from excessive irrelevant memory
terms, a sparsification operation can be applied to the weights w:

ŵi =
max(wi − λ, 0).wi

|wi − λ|+ ε
(10)

where, the shrinkage threshold λ is set to 1/N (N represents the number of memory items),
and ε is a very small positive number to prevent division by zero in subsequent calculations
and ensure numerical stability. The weights w are processed through a shrinkage function
to diminish the values of less significant weights. The contraction function max(·, 0) here
refers to the ReLU activation function. The processed weights then undergo a normalization
operation ŵi = ŵi

∥ŵi∥1
to ensure their sum equals 1. This step aims to maintain weight

distribution consistency and ensure the model output’s stability. Finally, the sparsified
and normalized weights are utilized to calculate the weighted sum of all memory terms,
generating the final feature representation ẑ = ŵM. This feature representation will thus
be more focused on the most critical and useful information for the current input.

3.3. Coordinate Attention

Coordinate Attention (CA) [33] is a lightweight attention mechanism designed to en-
hance feature representation. It can process any intermediate feature tensor
X =

[
x1, x2, · · · , xc] ∈ RC×H×W within the network, transforming it into a tensor

Y =
[
y1, y2, · · · , yc] ∈ RC×H×W with identical size and dimensions, with its structure

illustrated in Figure 4.
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Specifically, the input feature maps undergo a 1D global average pooling operation
along the horizontal (H, 1) and vertical (1, W) directions, respectively, aggregating features
in both spatial directions to form feature maps that capture the long-distance dependencies
along each spatial direction. The resulting feature maps are then encoded to emphasize
the weights of target regions within the original feature maps. This mechanism integrates
coordinate information into channel attention, capturing long-range dependencies while
preserving precise positional information, facilitating more accurate target location and
recognition by the model. The Coordinate Attention (CA) module is positioned between
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the memory module and the encoder, with the feature map F′ processed by the memory
module passed onto the CA module, enabling further feature enhancement. The enhanced
feature representations are then directed to the decoder for image reconstruction, whereby
the decoder, leveraging the rich and precise feature information from the CA module, recon-
structs the image with greater accuracy, particularly in the presence of subtle abnormalities.
Furthermore, the CA module is flexible, with a minimal parameter count, allowing for easy
integration into network modules to achieve notable performance improvements without
substantial computational resources.

3.4. Decoder

The decoder is tasked with inversely mapping the high-dimensional feature repre-
sentations processed by the encoder or the memory module back into the image space,
thereby generating the reconstructed image. As depicted in Figure 2, the decoder incremen-
tally increases the size of the feature map using six transposed convolutional layers, each
consisting of two sublayers: a normalization layer and a ReLU layer. The normalization
layer normalizes small batches of data, accelerating the training process and enhancing
model stability, while the ReLU function introduces non-linear processing capabilities,
enabling the model to capture complex input-output relationships. Applying ReLU after
each normalization layer allows the decoder to more effectively learn and reconstruct image
details. The final layer employs tanh as the last non-linear activation function. Through
these operations, the decoder inversely maps the high-dimensional feature vectors back
into the image space, generating a reconstructed image X̂ ∈ RH×W×C akin to the original
input image. Differences between the reconstructed and original input images are utilized
to assess the model’s performance, with anomalous regions often efficiently identified
through significant differences in the reconstructed image.

3.5. Loss Functions

In this study, normal images serve as training samples, with both normal and abnormal
images being input into the model during the testing phase to attempt data reconstruc-
tion. Given the model’s learning and memorization of normal image patterns, the use of
abnormal images as inputs results in poor reconstruction of abnormal regions, leading to
significant reconstruction errors. To ensure the model’s predictions closely align with actual
values, multiple loss functions are employed in training. The loss function utilized in this
study comprises two components: image reconstruction loss and entropy loss associated
with the query weights in the memory module.

1. Reconstruction loss function

Reconstruction loss comprises two components: per-pixel mean squared error loss
L2 (Equation (11)) and block-based Structural Similarity (SSIM) loss [14] (Equation (12)). Per-
pixel mean squared error loss quantifies pixel-level differences between the reconstructed
and original images, while block-based SSIM loss evaluates similarity in structure and
texture, ensuring visual consistency between the reconstructed and original images.

L2(X, X̂) =
1

WH
∥X − X̂∥2

2 (11)

LSSIM(X, X̂) =
1

WH

H

∑
i=1

W

∑
j=1

1 − SSIM(X, X̂)(i,j) (12)

where X and X̂ denote the original and reconstructed images, respectively, with H and
W representing their height and width, and W × H indicating the total number of pixels,
and SSIM(X, X̂)(i,j) represents the SSIM value for two corresponding blocks in X and X̂
centered at coordinates (i, j). Finally, the reconstruction loss is defined as follows:

Lrecon(X, X̂) = L2(X, X̂) + λLSSIM(X, X̂) (13)
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Here, λ is a hyperparameter utilized to balance the contributions of the two types of
loss: mean squared error loss and SSIM loss.

2. Entropy loss function

In the memory module, the entropy loss on the matching probability wi of each
memory item assists in evaluating the model’s utilization of various memory items, thus
optimizing memory utilization efficiency and the model’s generalization ability, defined
as follows:

Lent =
N

∑
i=1

ŵi log(ŵi) (14)

where ŵi represents the matching probability of the i-th memory item in the memory
module. Minimizing the entropy loss encourages the model to adjust the matching prob-
ability of certain memory items close to 1 and others near 0, indicating increased model
“confidence” in selected memory items and reduced decision-making uncertainty.

To balance the reconstruction loss and entropy loss, a comprehensive loss function is
constructed for model training:

Loss = λreconLrecon + λentLent (15)

where Lrecon represents the reconstruction loss, assessing the similarity between the recon-
structed and original images; Lent represents the entropy loss, quantifying the model’s
certainty regarding the probability of matching memory items; and λrecon and λent are the
weight parameters regulating the impact of the respective losses on the total loss.

4. Experiments and Results
4.1. Datasets

This study employs the MVTec AD dataset [22] and the BeanTech AD dataset [13] for
anomaly detection. These datasets are extensively utilized to evaluate anomaly detection
algorithms, offering diverse testing scenarios and data for this research.

• MVTec AD

Released by MVTec in 2019 at the CVPR conference, the MVTec AD dataset is tailored
for unsupervised image anomaly detection tasks. Simulating real-world industrial sce-
narios, its comprehensiveness and practicality have led to widespread use. The dataset
comprises a broad collection of object categories, a rich variety of anomaly types, and
pixel-level labels for anomalous images. Encompassing 5354 high-resolution color images
(3629 normal and 1725 anomalous), resolutions are either 700 × 700 or 1024 × 1024 pixels.
Spanning 15 categories (5 texture and 10 object), the dataset covers over 70 types of artifi-
cially induced defects, such as scratches, stains, and deformations. Each category includes
about 60–400 normal training samples, along with a mix of normal and anomalous test
images. Table 1 summarizes the dataset’s key statistical data, where N denotes the number
of normal samples, and P the number of anomalous samples.

• BeanTech AD

The BeanTech AD dataset, designed for unsupervised anomaly detection in industrial
settings, features a structure similar to the MVTec AD dataset. It comprises 2830 RGB
images across three different industrial products. Specifically, product 1 images are
1600 × 1600 pixels, product 2 images 600 × 600 pixels, and product 3 images 800 × 600 pixels.
The training set includes 400 images for product 1, 1000 for product 2, and 399 for product 3.
All images feature pixel-level labels indicating the location and size of anomalous regions,
as illustrated in Figure 5.
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Table 1. Detailed information of the MVTecAD.

Category Train Test
Resolution Ratio

N N P

Texture

Carpet 280 28 89 1024
Grid 264 21 57 1024

Leather 245 32 92 1024
Tile 230 33 84 840

Wood 247 19 60 1024

Object

Bottle 209 20 63 900
Cable 224 58 92 1024

Capsule 219 23 109 1000
Hazelnut 391 40 70 1024
Metalnut 220 22 93 700

Pill 267 26 141 800
Screw 320 41 119 1024

Toothbrush 60 12 30 1024
Transistor 213 60 40 1024

Zipper 240 32 119 1024

Total 3629 467 1258
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4.2. Parameter Settings

This experiment comprises two phases: training and testing, with both phases initiated
from scratch. Initially, the size of the input image is uniformly adjusted to 384 × 384, the
segmented image block size is set to 16 × 16, the embedding dimension is set to 768
(representing the vector size mapping the image block to high-dimensional space), and the
multi-head self-attention mechanism is configured with 8 heads. The model undergoes
200 training epochs, the batch size is set to 8, the learning rate is established at 0.0002,
hyperparameters λrecon and λent in the loss function are set to 1.0 and 0.001, respectively,
with remaining hyperparameters using the network’s default configuration. Additionally,
the method employs the Adam optimizer for training and grid search for hyperparameter
optimization. Gaussian smoothing serves as a post-processing technique for image anomaly
detection, generating a final score map by distributing each pixel’s score in a Gaussian
distribution, a technique applied in various studies [34–36]. Furthermore, this experiment
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is conducted using the PyTorch framework, with the specific experimental environment
detailed in Table 2:

Table 2. Experimental Environment Configuration.

Configuration Name Environmental Parameters

Operating system Windows 11
CPU Intel(R) Xeon(R) Platinum 8358P

Memory 64 GB
GPU NVIDIA GTX A5000 (24 G)

Programming Python 3.8
CUDA CUDA 11.0

Framework Pytorch 1.7.1

4.3. Evaluation Metrics

This study employs two metrics to comprehensively assess the model’s performance.
Firstly, the Area Under the Receiver Operating Characteristic (AUROC), at both image and
pixel levels, serves as a commonly used primary standard for model assessment. AUROC,
derived from False Positive Rate (FPR) and True Positive Rate (TPR) values, is a threshold-
independent performance measure unaffected by the positive to negative sample ratio,
making it especially suitable for datasets with imbalanced samples.

Image-level AUROC evaluates the model’s overall efficiency in anomaly detection,
while pixel-level AUROC assesses the model’s precision in localizing anomalous regions.
However, given that many anomalies occupy only a small portion of an image’s pixels,
pixel-level AUROC may not fully capture the true performance of anomaly localization.
Occasionally, despite a high number of false positives, AUROC can remain high if the FPR
is low. Therefore, when the FPR is below 0.3, this study introduces the Per-Region Overlap
(PRO) [17] as a supplementary metric for anomaly localization assessment. The calculation
Equation for this metric is as follows:

PRO =
1
N

N

∑
n=1

P ∩ Gn

Gn
(16)

In the Equation, N denotes localized defect results, with actual true values divided
into N regions based on connectivity, P represents predicted values, Gn represents true
values, and P ∩ Gn denotes the intersection between predicted and true values in each
region. Higher values of AUROC and PRO indicate superior model performance. AUROC
measures the model’s overall efficiency in anomaly detection, whereas PRO more closely
examines the model’s precision in localizing anomalous regions.

4.4. Comparative Experiment
4.4.1. Results

To evaluate the performance of the aforementioned methods, a comparative analysis
was conducted using existing and recently proposed techniques on the MVTecAD and
BTAD datasets.

On the MVTecAD dataset, the proposed method was compared with various un-
supervised learning algorithms, including AE_SSIM [37], AnoGAN [38], L2-CAE [14],
VAE [39], MKD [40], CAVGA [41], SCADN [42], AnoViT [14], VT-ADL [13]. Among these,
AE_SSIM [37], L2-CAE [14], and VAE [39] utilize a convolutional autoencoder architecture,
while AnoViT [14] and VT-ADL [13] employ a Transformer-based architecture. Experimen-
tal results are detailed in Tables 3 and 4, with Table 3 displaying each model’s performance
on the image-level AUROC score, reflecting the models’ anomaly detection capabilities
with an average score of 91.2%. Conversely, Table 4 details each model’s performance
on anomaly localization, evaluated by pixel-level AUROC and PRO scores, with average
scores of 93.0% and 92.3%, respectively, across the dataset.
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Table 3. Anomaly detection results on the MVTec AD dataset (image level AUROC (%)).

Category AE_SSIM AnoGAN L2-CAE VAE CAVGA AnoViT MKD Ours

Carpet 67.0 49.0 54.0 67.0 73.0 50.0 79.3 85.0
Grid 69.0 51.0 78.0 83.0 75.0 52.0 78.1 89.6

Leather 46.0 52.0 77.0 71.0 71.0 85.0 95.1 92.0
Tile 52.0 51.0 85.0 81.0 70.0 89.0 91.6 92.8

Wood 83.0 68.0 98.0 89.0 85.0 95.0 94.3 95.3
Bottle 88.0 69.0 77.0 86.0 89.0 83.0 99.4 94.0
Cable 61.0 53.0 66.0 56.0 63.0 74.0 89.2 93.0

Capsule 61.0 58.0 67.0 77.0 83.0 73.0 81.5 83.7
Huzelnut 54.0 50.0 88.0 74.0 84.0 88.0 98.4 100.0
Metal nut 54.0 50.0 42.0 78.0 67.0 86.0 73.6 89.5

Pill 60.0 68.0 68.0 80.0 88.0 72.0 82.7 86.3
Screw 51.0 35.0 100.0 71.0 77.0 100.0 83.3 100.0

Toothbrush 74.0 57.0 41.0 89.0 91.0 74.0 92.2 93.2
Transistor 52.0 67.0 88.0 70.0 73.0 83.0 85.6 86.8

Zipper 80.0 59.0 71.0 67.0 87.0 73.0 93.2 89.7

Average 63.0 55.0 73.0 77.0 78.0 78.0 87.8 91.2

Table 4. Anomaly localization results on the MVTec AD dataset (pixel level AUROC (%), PRO (%)).

Category AE_SSIM AnoGAN VAE MKD SCADN VT_ADL Ours

Carpet (87.0, 64.7) (54.0, 20.4) (73.5, 50.1) (—, 87.9) (75.0, 85.0) (—, 77.3) (88.4, 88.0)
Grid (94.0, 84.9) (58.0, 22.6) (96.1, 22.4) (—, 95.2) (97.7, 96.8) (—, 87.1) (97.2, 96.3)

Leather (78.0, 56.1) (64.0, 37.8) (92.5, 63.5) (—, 94.5) (99.3, 98.7) (—, 72.8) (96.6, 95.0)
Tile (59.0, 17.5) (50.0, 17.7) (65.4, 87.0) (—, 94.6) (96.7, 95.3) (—, 79.6) (92.8, 93.4)

Wood (73.0, 60.5) (62.0, 38.6) (83.8, 62.8) (—, 91.1) (87.0, 85.3) (—, 78.1) (91.4, 90.0)
Bottle (93.0, 83.4) (86.0, 62.0) (92.2, 89.7) (—, 93.1) (96.8, 92.9) (—, 94.9) (95.1, 92.1)
Cable (82.0, 47.8) (78.0, 38.3) (91.0, 65.4) (—, 81.8) (89.2, 89.9) (—, 77.6) (92.6, 91.4)

Capsule (94.0, 86.0) (84.0, 30.6) (91.7, 52.6) (—, 96.8) (86.0, 91.4) (—, 67.2) (93.1, 92.2)
Huzelnut (97.0, 91.6) (87.0, 69.8) (97.6, 87.8) (—, 96.5) (97.1, 93.6) (—, 89.7) (98.2, 99.0)
Metal nut (89.0, 60.3) (76.0, 32.0) (90.7, 57.6) (—, 94.2) (97.0, 94.6) (—, 72.6) (91.0, 89.0)

Pill (91.0, 83.0) (87.0, 77.6) (93.0, 76.9) (—, 96.1) (94.4, 96.0) (—, 70.5) (92.6, 93.2)
Screw (96.0, 88.7) (80.0, 46.6) (94.5, 55.9) (—, 94.2) (87.0, 90.1) (—, 92.8) (97.7, 100.0)

Toothbrush (92.0, 78.4) (90.0, 74.9) (98.5, 69.3) (—, 93.3) (93.8, 90.7) (—, 90.1) (89.4, 90.5)
Transistor (90.0,72.5) (80.0, 54.9) (91.9, 62.6) (—, 66.6) (78.0, 75.3) (—, 79.6) (85.0, 81.0)

Zipper (88.0, 66.5) (78.0, 46.7) (86.9, 54.9) (—, 95.1) (89.2, 89.2) (—, 80.8) (93.2, 94.0)

Average (87.0, 69.4) (74.3, 44.3) (89.3, 63.9) (—, 91.4) (91.0, 90.4) (—, 80.7) (93.0, 92.3)

On the BTAD dataset, our approach was compared against popular techniques like P-
SVDD [43], SSPCAB [44], DRAEM [45], and VT-ADL [13]. Table 5 details the experimental
results, covering the performance evaluation for anomaly detection and localization. The
results indicate that the average image-level and pixel-level AUROC scores were 92.2%
and 91.9%, respectively, with the average PRO score at 91.0%.

Table 5. Anomaly detection and localization results on the BTAD dataset (image-level AUROC (%),
pixel-level AUROC (%), PRO (%)).

Category 01 02 03 Average

P-SVDD (95.7, 91.6, —) (70.3, 92.7, —) (82.1, 91.0, —) (82.7, 91.7, —)
SSPCAB (96.2, 92.4, 62.8) (69.3, 65.6, 28.6) (99.4, 92.4, 71.0) (88.3, 83.5, 54.1)
DRAEM (98.5, 91.5, 61.4) (68.6, 73.4, 39.0) (98.6, 92.7, 84.3) (88.6, 85.6, 61.6)
VT-ADL (97.6, 76.3, 92.0) (71.0, 88.9, 89.0) (82.6, 80.3, 86.0) (83.7, 81.8, 89.0)

Ours (98.7, 93.2, 93.0) (85.0, 89.4, 89.0) (93.0, 93.1, 91.0) (92.2, 91.9, 91.0)
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4.4.2. Analysis

(1) MVTec AD

Anomaly detection results in Table 3 reveal that our method achieves the highest
scores in 9 categories, notably hazelnut and screw, with a performance of 100%. Compared
to traditional convolutional autoencoder-based methods (AE_SSIM, L2-CAE, VAE), our
method’s overall average performance improved by 14% to 28%. Furthermore, anomaly
localization scores in Table 4 indicate significant performance enhancement across all
15 categories, with average pixel-level AUROC values improving by 2% to 18.7% and
average PRO values by 0.9% to 48%, affirming our method’s exceptional performance in
both anomaly detection and localization.

In particular, the codec utilizing the ViT architecture significantly surpasses traditional
autoencoder models in anomaly detection, owing to the ViT’s capability to retain spatial
information of embedded patches and comprehend the image’s global context, enabling
more effective differentiation between normal and anomalous conditions. Compared to
the AnoViT method, also based on Transformer architecture, our method registers signifi-
cant improvements in all categories. For anomaly localization, our method outperforms
VT_ADL, which also utilizes ViT as a backbone, in almost all categories. This success
is primarily attributed to the inclusion of the memory module, significantly enhancing
the model’s capability to infer anomalous regions. However, detection results in chal-
lenging categories, like transistors, are not satisfactory, which may be due to the model’s
difficulty in accurately identifying and localizing subtle anomalies, such as missing or
misoriented transistors.

Additionally, Figure 6 displays visualization results on the MVTecAD dataset. From
the figure, the method identifies anomalous regions closely resembling the ground truth
mask and locates anomalies more effectively than L2_CAE and AnoViT, detecting anoma-
lous regions across a range of industrial images, irrespective of size and shape.
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(2) BTAD

Based on average metrics in Table 5, our method leads in overall dataset performance,
with average image-level and pixel-level AUROC scores of 92.2% and 91.9%, respectively,
and an average PRO score of 91.0%. Compared to other methods, our results show im-
provements of 3.6% to 10.5%, 0.2% to 10.1%, and 2% to 37% across each metric, respectively.
Particularly, our method excels in anomaly detection and localization for product 01, achiev-



Sensors 2024, 24, 2440 15 of 18

ing the highest scores across all evaluation metrics. Compared to VT_ADL, which also
employs ViT as a feature extraction framework, our method outperforms in nearly all
classification tasks, further affirming its effectiveness. Additionally, Figure 7 presents visu-
alization results on the BTAD dataset, intuitively demonstrating our method’s capability to
clearly identify and localize anomalous regions.
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4.5. Ablation Experiment and Analysis

This subsection presents an ablation study conducted on the MVTecAD dataset to
investigate the effectiveness of different workflow modules, with results displayed in
Table 6. Table 6 details the average performance across 15 categories in terms of image-
level AUROC, pixel-level AUROC, and PRO metrics. Specifically, a model utilizing only
the ViT encoder and decoder serves as the base network (Base), with M representing the
incorporated memory module and CA the coordinate attention mechanism.

Table 6. Results of ablation experiment on different modules used on the MVTecAD.

M CA I-AUROC (%) P-AUROC (%) PRO (%)

Base 82.2 83.8 79.6
Base + M

√
85.7 91.8 90.5

Base + CA
√

84.5 86.4 85.7
Base + M + CA (Ours)

√ √
91.2 93.0 92.3

Table 6 shows that the introduction of the memory module (M) and coordinate atten-
tion mechanism (CA) significantly enhances anomaly detection and localization. Adding
only the M module to the base network increases image-level AUROC (I-AUROC), pixel-
level AUROC (P-AUROC), and PRO metrics by 3.5%, 8%, and 20.9%, respectively. Con-
versely, adding only the CA module results in improvements of 2.3%, 2.6%, and 6.1% in
these metrics, respectively. Introducing both M and CA modules improves I-AUROC to
91.2%, P-AUROC to 93.0%, and PRO to 92.3%. Overall, the M module significantly impacts
pixel-level AUROC and PRO metrics, whereas introducing the CA module at various
points yields different outcomes, notably when placed between the memory module and
encoder, slightly enhancing overall anomaly detection and localization. Figure 8 offers a
visualization comparison of the ablation study results on the MVTecAD dataset. Image
comparison reveals that incorporating the M and CA modules significantly enhances model
performance in anomaly detection, markedly increasing agreement between identified
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anomalous regions and ground truth (GT). This visualization intuitively demonstrates the
effectiveness of both M and CA modules in enhancing model accuracy.
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memory unit leads to increased computational demands. Future work will focus on reducing 
computational demands while further improving anomaly detection performance. Addition-
ally, improving the clarity of stored potential features is essential, given the limitations of cur-
rent memory module storage methods. Future efforts will aim to identify more efficient stor-
age structures to enhance the memory module’s operational efficiency through improved 
query efficiency. 
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Figure 8. Visualization of ablation experiment results on MVTecAD. From top to bottom are the
3 categories of carpet, tile and grid, and from left to right are the input normal image, anomaly image,
ground truth image and the results of Base and the proposed method in this paper.

5. Conclusions

This study proposes an unsupervised industrial image anomaly detection method
based on the Vision Transformer (ViT) to address the scarcity of anomalous image samples,
high tagging costs in industry, limitations of traditional convolutional encoders in extract-
ing global features, and anomalous generalization issues, utilizing a ViT-based encoder for
feature extraction to effectively capture global contextual information, thereby enhancing
detailed and holistic image understanding. The memory module stores feature information,
enabling effective inference of abnormal regions and suppression of anomalous recon-
struction. The introduced Coordinate Attention (CA) mechanism further enhances the
model’s ability to capture image features, particularly at spatial and channel levels. By
precisely focusing on important features and regions, the CA mechanism minimizes feature
information loss and enhances anomaly recognition accuracy. The effectiveness of the pro-
posed method has been fully validated through ablation studies on two public datasets and
comparisons with contemporary mainstream models. Experimental results demonstrate
the method’s strong detection performance and generalizability. However, the substantial
content required for storage in the memory unit leads to increased computational demands.
Future work will focus on reducing computational demands while further improving
anomaly detection performance. Additionally, improving the clarity of stored potential
features is essential, given the limitations of current memory module storage methods.
Future efforts will aim to identify more efficient storage structures to enhance the memory
module’s operational efficiency through improved query efficiency.
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