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Abstract: Modern vehicles equipped with Advanced Driver Assistance Systems (ADAS) rely heavily
on sensor fusion to achieve a comprehensive understanding of their surrounding environment.
Traditionally, the Kalman Filter (KF) has been a popular choice for this purpose, necessitating
complex data association and track management to ensure accurate results. To address errors
introduced by these processes, the application of the Gaussian Mixture Probability Hypothesis
Density (GM-PHD) filter is a good choice. This alternative filter implicitly handles the association
and appearance/disappearance of tracks. The approach presented here allows for the replacement of
KF frameworks in many applications while achieving runtimes below 1 ms on the test system. The
key innovations lie in the utilization of sensor-based parameter models to implicitly handle varying
Fields of View (FoV) and sensing capabilities. These models represent sensor-specific properties
such as detection probability and clutter density across the state space. Additionally, we introduce a
method for propagating additional track properties such as classification with the GM-PHD filter,
further contributing to its versatility and applicability. The proposed GM-PHD filter approach
surpasses a KF approach on the KITTI dataset and another custom dataset. The mean OSPA(2) error
could be reduced from 1.56 (KF approach) to 1.40 (GM-PHD approach), showcasing its potential in
ADAS perception.

Keywords: GM-PHD filter; multi-object tracking; sensor fusion

1. Introduction

Modern vehicles are equipped with a variety of Advanced Driver Assistance Systems
(ADAS) functions, such as advanced emergency braking assistance, blind spot information
system, and adaptive cruise control. These functions actively support the driver and require
a reliable environment perception, typically on the object track level. Current-generation
vehicles with Level 2 systems fuse and track object detections from multiple sensors with
different sensing domains and mounting positions to increase the overall system’s Field of
View (FoV), performance, and robustness.

This multi-sensor multi-object tracking problem can be solved by a variety of ap-
proaches. Approaches that estimate full trajectories by taking all measurements into
account at once, such as shadowing filters [1], are able to achieve good tracking results;
however, these are typically not capable of processing the data sequentially, which is
required by most online applications, where at each time only the measurements of the
current time-step are known. Particle filters are one type of online-capable approach that
processes measurements recursively. They have particular strengths in representing the
uncertainties of nonlinear systems and non-Gaussian noise, but require a large number
of particles to do this accurately, especially for high-dimensional systems. Although real-
time-capable implementations are possible, as shown by [2] using Rao–Blackwellization,
the authors still estimated the computational speed to be slower compared to a Kalman fil-
ter by a factor of 100 with 103 particles and a state vector of dimension nx ≈ 5. Because this
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paper is interested in solutions with computational requirements in the range of the Kalman
filter and is less focused on highly nonlinear and non-Gaussian applications, the particle
filter is not considered a viable choice.

A popular and computationally efficient solution to the multi-sensor multi-object
tracking problem is the use of a Kalman Filter (KF), such as the examples in [3–8]. The
states of each object are estimated by a separate KF [9], which essentially makes it an
extension of a single target filtering approach. Therefore, such approaches require a data
association scheme that matches new measurements to the already tracked objects and a
track management scheme to handle the appearance and disappearance of tracks. Errors
such as incorrect assignment during data association can occur during these two supporting
steps. Such a situation can then lead to incorrect estimation of the number of objects and
their states.

In contrast, the family of Random Finite Set (RFS) filters estimates both the cardinality
(the number of objects) and their states. Therefore, they offer true multi-target filtering with-
out data association along with complex track management. The Probability Hypothesis
Density (PHD) filter [10] estimates the probability hypothesis density (or intensity function)
of a random set variable. The Gaussian Mixture Probability Hypothesis Density (GM-PHD)
filter [11] is an efficient Gaussian implementation of the PHD filter. This paper shows an
approach that makes this filter an alternative to KF with a performance advantage that is
computationally lightweight and suitable for real-time applications. A key aspect of the
presented approach is that it is designed in such a way that a Kalman filter-based approach
can be replaced without much effort. Therefore, it is applicable to systems with partially
overlapping or non-overlapping sensor FoVs and asynchronous sensor updates, which are
common in real-world setups currently covered by KF approaches.

The standard GM-PHD filter assumes the use of a single sensor. Next to the single
sensor PHD filter, Mahler introduced the inter-corrector PHD [10] as a multi-sensor solution.
This was achieved using multiple single-sensor Bayesian filters [12]. Improvements for
multi-sensor applications of the PHD filter followed in [13] along with Gaussian mixture
implementations and developments in [14,15]. However, these approaches assume sensor
systems with completely overlapping FoVs and synchronous measurements, which is not
the case in current-generation Level 2+ systems. In general, many GM-PHD-based fusion
approaches use multiple single sensor filters together with a combination rule such as the
Generalized Covariance Intersection (GCI) for fusion. These approaches are usually not
suitable for partial/non-overlapping sensor FoVs. To overcome this shortage, ref. [16]
presented a collaborative GM-PHD filter that fuses the intensity functions of multiple filter
sources using Covariance Intersection on nearby Gaussian components only.

In [17], a comparison of two approaches to asynchronous radar sensor fusion with the
PHD filter was presented. Sequence process PHD (SP-PHD) fusion fuses measurements
of multiple sensors sequentially using a global filter, while fixed nodes PHD fusion uses
separate sensor PHD filters that are fused using the GCI. This was followed by [18],
where distributed PHD fusion approaches were shown next to the SP-PHD fusion for
asynchronous sensor setups. However, these approaches have not been described for
partially overlapping FoVs. Overall, there are only a very few publications focusing on
real-world automotive applications, where asynchronous sensor setups and partially/non-
overlapping sensor FoVs are common.

Most publications have assumed constant values for sensor-specific parameters such
as clutter density and detection probability. However, this is not the case for real-world
sensors, and can lead to tracking errors in the case of partial/non-overlapping sensor
FoVs. This paper shows that the application of sensor-specific models for these parameters
can solve multiple problems of GM-PHD filters in real-world applications. In [19], this
was addressed by differentiating the detection probability between inside and outside the
FoV [16]. In addition [20], introduced occlusion models for those areas where tracks are
not detectable. Ref. [21] proposed a detection probability model for sonar applications,
taking the object distance into account. This paper proposes a more versatile model for
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the detection probability with distance dependency that fits the capabilities of automotive
sensors. Compared to previous publications, the clutter density is modeled in a similar way.

Because many systems fuse additional track attributes such as the classification in
addition to the track states, this paper presents a new approach to handle the propagation
of additional attributes with the GM-PHD filter. In addition, an adaptive birth model and a
gating process are proposed to increase computational efficiency.

The presented approach uses an SP-PHD scheme for asynchronous sensor measure-
ments in a way that can replace typical KF implementations. This enables a direct perfor-
mance comparison of the proposed GM-PHD approach to a KF approach on both the KITTI
dataset [22] and a custom dataset with multiple radars and a camera. In the evaluation,
the proposed GM-PHD approach substitutes for the KF approach, with as many parameters
as possible remaining the same in order to ensure robust comparability. By testing on two
real-world datasets and considering multiple sensor combinations, a statement can be
made about its suitability for real systems, which has not been possible to date.

2. The GM-PHD Filter

RFS filters estimate a set of multiple-target states; as such, they cover both the state
estimation and the estimation of the number of states with their birth and death. Therefore,
no explicit data association between individual measurements and tracks is required, as the
state set is estimated as a whole.

The PHD filter [10] approximates the exact multi-target filter by only propagating
the first-order statistical moment (PHD) of an RFS. The PHD is also called the intensity
function. Under the assumption of a Poisson RFS, there is a closed-form analytic solution
for the prediction and update step, as both the cardinality distribution and the spatial
distribution are defined by the PHD.

The GM-PHD filter uses a Gaussian mixture to represent the PHD vk−1(x) of an object
state x at time step k − 1, which has the advantage of fast computation. Because the first-
order statistical moment of an RFS is estimated, the PHD v(x0) can be interpreted as the
density of the expected number of targets at x0. The PHD is always represented as a sum
of Jk−1 weighted Gaussians with weight w(i)

k−1, mean m(i)
k−1, and covariance P(i)

k−1 [11]:

vk−1(x) =
Jk−1

∑
i=1

w(i)
k−1N (x; m(i)

k−1, P(i)
k−1). (1)

2.1. GM-PHD Prediction

Similar to the Kalman filter, the GM-PHD filter is divided into prediction and update.
However, in practical implementations the additional computation steps prune and merge
are used to keep the number of Gaussian components at a low number, as shown by [23,24].
The GM-PHD predicted intensity vk|k−1(x) is calculated by combining the prediction
vS,k|k−1(x) with the spawn intensity vβ,k|k−1(x) and birth intensity γk(x) [11]:

vk|k−1(x) = vS,k|k−1(x) + vβ,k|k−1(x) + γk. (2)

The spawn intensity models the spawning of new targets from existing ones, while the
birth intensity models the birth of new targets; both are represented as a Gaussian mixture.
The developed model for the birth intensity is shown in Section 3.4.2, while the spawn
intensity is not used here. The prediction vS,k|k−1(x) is calculated by

vS,k|k−1(x) = pS,k

Jk−1

∑
j=1

w(j)
k−1N

(
x; m(j)

S,k|k−1, P(j)
S,k|k−1

)
, (3)

m(j)
S,k|k−1 = Ak−1m(j)

k−1, (4)

P(j)
S,k|k−1 = Qk−1 + Ak−1P(j)

k−1 AT
k−1, (5)
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using the survival probability pS,k [11]. The means and covariances are predicted using
the state transition matrix Ak−1 and process noise covariance matrix Qk−1. Similar to the
extended Kalman filter, an extended Kalman PHD filter equation set is described in [11],
which allows nonlinear process models.

2.2. GM-PHD Update

After the prediction step, the predicted intensity vk|k−1(x) for time k is represented by
the Gaussian mixture

vk|k−1(x) =
Jk|k−1

∑
i=1

w(i)
k|k−1N (x; m(i)

k|k−1, P(i)
k|k−1). (6)

The GM-PHD update step then calculates the corrected intensity vk(x) at time k using
the detection probability pD,k and the clutter density κk(z). The update is calculated by
iterating over all measurements z of the measurement set Zk [11]:

vk(x) = (1 − pD,k)vk|k−1(x) + ∑
z∈Zk

vD,k(x; z) (7)

with

vD,k(x; z) =
Jk|k−1

∑
j=1

w(j)
k (z)N

(
x; m(j)

k|k(z), P(j)
k|k

)
, (8)

w(j)
k (z) =

pD,kw(j)
k|k−1q(j)

k (z)

κk(z) + pD,k ∑
Jk|k−1
l=1 w(l)

k|k−1q(l)k (z)
, (9)

q(j)
k (z) = N

(
z; Hkm(j)

k|k−1, Rk + HkP(j)
k|k−1HT

k

)
, (10)

m(j)
k|k(z) = m(j)

k|k−1 + K(j)
k

(
z − Hkm(j)

k|k−1

)
, (11)

P(j)
k|k =

[
I − K(j)

k Hk

]
P(j)

k|k−1, (12)

K(j)
k = P(j)

k|k−1HT
k (HkP(j)

k|k−1HT
k + Rk)

−1. (13)

Here, pD,k is the detection probability and κk(z) is the clutter density, while updating of
the Gaussian components is performed using the observation matrix Hk and the observation
noise covariance matrix Rk.

The equations presented here are the basis of the proposed tracking approach. How-
ever, various optimizations and adaptations are proposed around them in order to create
an implementation that allows a fast and reliable application in real-world scenarios. These
can be found in the following sections.

3. Proposed Multi-Sensor Multi-Object Tracking Approach

Multi-sensor multi-object tracking is considered here as estimating the number of
all surrounding objects as well as their states over time while assigning track attributes,
a confidence rating, and unique IDs to form trajectories. Therefore, the i-th tracked object
T(i)

k of time step k is represented by a tuple T(i)
k = (τ

(i)
k , x(i)k , c(i)k , p(i)k (∃)) including the

track’s unique ID τ
(i)
k , state x(i)k , classification c(i)k , and probability of existence p(i)k (∃).

The classification c(i)k is represented as a probability distribution or pseudo-probability
distribution over all possible classes, which is necessary for fusion and estimation over
time. The set of all n tracked objects is Tk = {T(1)

k , T(2)
k , . . . , T(n)

k }.
Multiple independent sensors that may have different FoVs update the tracks with

measurements zk and classification measurements cz,k. The goal is to estimate the states and
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attributes of all existing tracks using the independent measurements provided by different
sensors. Smart sensors with integrated object tracking capabilities might be used in real-
world applications by treating the tracks of each time step as individual measurements.

3.1. Kalman Filter Approach

A Kalman filter-based approach is implemented here for comparison, as many current
systems use this approach. In Kalman filter pipelines such as [3–6,8], a separate filter
estimates the states of each tracked object. This is supported by a gating and data association
approach that maps the incoming measurements of a sensor to the existing tracks. In this
implementation, the chi-square test following ([25], p. 112) for gating and a global nearest
neighbor data association scheme [26] based on the Mahalanobis distance is used. The
distances between detections and tracks are calculated using the Mahalanobis distance DM
with the predicted measurement ẑk|k−1 and the innovation covariance matrix Sk,

DM(z) =
√
[zk − ẑk|k−1]

TS−1
k [zk − ẑk|k−1] (14)

and the association is then solved using the Hungarian algorithm [27]. A track management
scheme is responsible for adding new appearing tracks and removing disappearing tracks
accordingly. In this work, the Bayesian formulation for existence probability estimation
from [28] is used as a basis for the track management. Non-updated tracks are removed
if the existence probability is below a certain threshold, while tracks are forwarded if the
existence probability is above a minimum threshold.

The state vector of each track contains the two-dimensional position px and py, speed
vx and vy, and acceleration ax and ay, as well as the Oriented Bounding Box (OBB) orien-
tation ϕ and OBB dimensions, consisting of length l, width w, and height h. The state xk
vector is described as follows:

xk =
[
px py vx vy ax ay l w h ϕ

]T . (15)

Similarly, the measurement vector zk consists of the position px and py as well as the

dimensions l, w, and h and orientation ϕ, resulting in zk =
[
px py l w h ϕ

]T . The
system dynamics are described by a constant acceleration model with transition function f
and time difference ∆t, as the last time step k − 1 is defined by

xk|k−1 = f (xk−1|k−1, uk−1) =



px + ∆tvx +
1
2 ∆t2ax + ∆px,u

py + ∆tvy +
1
2 ∆t2ay + ∆py,u

vx + ∆tax
vy + ∆tay

ax
ay
l
w
h

ϕ + ∆ϕu


(16)

with the control vector uk−1 =
[
vego ωego

]T including the ego velocity vego and the ego
yaw rate ωego, which results in

∆px,u = −vego∆t + sin(ωego∆t)ωego∆tpx + cos(ωego∆t)ωego∆tpy, (17)

∆px,u = − cos(ωego∆t)ωego∆tpx + sin ωego∆tωego∆tpy, (18)

∆ϕu = −ωego∆t. (19)

The extended Kalman filter equations are used for the prediction.
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3.2. Substituting the KF with the GM-PHD Filter

In order to replace a KF-based Multi-Object Tracking (MOT) framework with a GM-
PHD-based one, the interfaces must be similar. The input of a KF framework is a list of
detections, each containing a measurement vector zk and attributes, such as the classification
cz. Figure 1 shows an overview of the Kalman filter framework on the left-hand side and
substitution by a GM-PHD framework on the right-hand side. With the KF, the states are
estimated separately for each track. This means that the additional attributes, such as the
classification, can also be calculated separately for each track. In contrast, the GM-PHD filter
estimates the global PHD. The tracks are then extracted from the PHD in a separate step.
Section 3.4 shows an approach to propagating additional attributes such as the classification
alongside the PHD to provide this additional information for the extracted tracks.

Figure 1. Comparison of KF and GM-PHD framework for automotive MOT application.

3.3. Sensor-Based Parameter Models
3.3.1. Detection Probability

The original implementation of the GM-PHD filter [11] assumes a constant detection
probability over the entire state space. However, this assumption is not the case with real
sensor systems. For example, if a track with state x1 is located outside the FoV of the
sensor s1, as shown in Figure 2, then the detection probability is 0; depending on the sensor
technology, the detection probability will also change with environmental influences such
as the weather or illumination conditions. For almost all sensors, there is a decrease in
capability with increasing distance, which can be modeled mathematically.

The detection probability model is an important part of proper sensor fusion in
the proposed framework; it strongly influences the appearance and disappearance, as it
highly affects the weight calculation of the GM-PHD. In this framework, if a Gaussian
component has a high detection probability and no corresponding measurement exists,
then the weight will decrease; in turn, if a component has a very low detection probability
and no corresponding measurement exists, then the weight is barely effected. Note that
the detection probability model can also be applied to the existence probability estimation
used for the KF framework.

We propose a detection probability model based on the FoV and the track’s distance.

Therefore, a mathematical model p
(sp)

Dm,k(x) for the detection probability of track x is defined
based on experimental measurements for each sensor sp. Next to the FoV, which obviously
sets limits to the detection probability, the distance is a key parameter. Due to the decreasing
resolution at higher distances, the detection probability will decrease with the distance for
all types of perception sensors. In addition, certain sensors, such as automotive radars, can
have direction-dependent sensitivities and maximum detection ranges, which can result in
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more complex detection probability models. To ensure general applicability to different
types of sensors, the proposed model is based only on the distance and a radial FoV.

Figure 2. Example of two sensors s1 and s2 covering different FoVs and the states x1 and x2 of two
tracked objects.

Overall, the formula for the detection probability model p
(sp)

Dm,k(x) is as follows:

p
(sp)

Dm,k(x) = p
(sp)

dist (x)p
(sp)
FoV(x),

p
(sp)

dist (x) = k
(sp)
2 d(x)2 + k

(sp)
1 d(x) + k

(sp)
0 ,

p
(sp)
FoV(x) =

{
0, x out FoV
1, x in FoV

.

(20)

In this description, p
(sp)

dist (x) is the second-order polynomial describing the distance

dependency, with d(x) =
√

p2
x + p2

y being the distance of the track’s OBB center.
To verify this model and calculate the parameter values, the detection probabilities

were experimentally determined for the “Car” class. Using the Point-RCNN [29] detector
for Lidar and Yolo-Mono-3D [30] for monocular camera, the detection probability was
calculated using the training data from the KITTI tracking dataset. For each time step,
each of the ground truth tracks was compared with the respective measurements. If a
measurement with an overlapping OBB was found for a ground truth track, it was counted
as a true detection. Next, the percentage of detected tracks within the sensor FoV was
calculated depending on the distance in order to obtain the detection probabilities.

As shown on the top of Figure 3, the second-order polynomial used by the model
can accurately represent the distance dependent detection probability for both the camera
and the Lidar detector. The Bird’s Eye View (BEV) result of this polynomial model in
combination with the sensor’s FoV is shown at the bottom of Figure 3 and compared to the
measured result.



Sensors 2024, 24, 2436 8 of 21

Figure 3. Detection probability distance model for “Car” class. On the top, the detection probability
models of the camera and Lidar with respect to the distance; on the bottom, the detection probability
measurements and model in BEV.

The GM-PHD implementation from [11] assumes the detection probability to be
constant, but shows a closed-form update for a state-dependent detection probability
provided as a mixture. However, this form results in numerous Gaussian components,
which greatly increases the computational effort, as shown in Section 4.4. To reduce this,
the constant assumption is violated and

pD,k = p
(sp)

Dm,k(m
(j)
k|k−1) (21)

is used instead. The experiments in Section 4.3 show that the proposed solution still works
for real-world data. In [16], state-dependent detection probability was similarly used
without a mixture model. However, their emphasis was on FoV and occlusion rather than
on presenting a comprehensive model that encompasses distance dependency. Likewise,
ref. [19] differentiated the detection probability depending on the object being inside or
outside the FoV, and did not consider the distance dependency.

3.3.2. Clutter Density

Similar to the detection probability, the clutter density is described as a mathematical
model. In contrast to the detection probability, the GM-PHD standard filter equations do
not include the assumption of a static value. Therefore, a mathematical model for the clutter
density can be used directly.

The clutter density can be modeled similar to the detection probability. Therefore,

the mathematical model for κ
(sp)

k (z) of sensor sp is experimentally defined based on
the distance.
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The distance dependency was experimentally determined using the Point-RCNN [29]
detector for Lidar and Yolo-Mono-3D [30] for monocular camera on the training data of the
KITTI tracking dataset. Figure 4 shows the measured clutter density of the “Car” class for
both the Lidar and the camera. As shown, the clutter density has a peak value for medium
distances and appears to be lower for both near and far distances. This behavior can be
modeled using a sinusoidal function, which leads to the approximations shown in Figure 4.

Figure 4. Clutter density distance model for "Car" class. On the top, clutter density models of the
camera and Lidar with respect to the distance; on the bottom, the Lidar clutter density measurement
and model in BEV.

The overall mathematical description for the clutter density κ
(sp)

k (z) of measurement z
is described by

κ
(sp)

k (z) = k0 sin(k1d(z) + k2) + k0. (22)

3.4. Computational Steps for the GM-PHD Approach

This section describes the processing steps of the approach using the GM-PHD filter.
These steps use the GM-PHD filter equations, and additionally propagate the tags for the
unique ID and the classification over time. As described by [23], a unique identifier, or tag,
τk|k, is assigned to each Gaussian component at time step k, which together form a set

τk|k =
{

τ
(1)
k|k , . . . , τ

(Jk|k)

k|k

}
, (23)
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where Jk|k is the number of Gaussian components at time step k and τmax is the currently
highest unique ID. To additionally track the classification of each Gaussian component,
the respective classification set Ck|k with

Ck|k =
{

c(1)k|k , . . . , c
(Jk|k)

k|k

}
(24)

is introduced.

3.4.1. Step 0: Initialization

For initialization, the number of Gaussian components is set to J0 = 0 and the tags
and classification sets are empty, with τ0 = ∅ and C0 = ∅. After the one-time initialization,
steps 1–5 are repeated.

3.4.2. Step 1: Prediction

The prediction step predicts the PHD at the current time step using the constant
acceleration model from Section 3.1 and the extended Kalman PHD equations from [11]. In
addition, the survival probability pS,k is calculated for each time step using a base survival
probability pS,base and the time difference from the last time step ∆t, as follows:

pS,k = p∆t
S,base. (25)

The proposed implementation does not model the spawning process of Equation (2),
which ignores crtain scenarios for simplicity and sets vβ,k|k−1(x) = 0. New objects can
appear anywhere in the monitored space; however, as the computational effort should
be kept low, we want to avoid creating a high number of random Gaussian component.
Thus, adaptive birth models depending on the measurements are considered here, and a
new adaptive approach is presented. In [31,32], the authors proposed adaptive birth pro-
cesses which create new Gaussian components based on all measurements. However, this
inevitably creates an overlap between birth components and already-tracked components
in many areas. These overlaps do not truly represent the birth of new targets. Instead,
Gaussian components should only be added in areas where no components are currently
present. In this way, the influence of the newly added components on the update of
the existing components is reduced, and both the total number of Gaussian components
and the computational effort can be reduced while ensuring that the birth of new targets
remains well-modeled.

In the presented approach, a birth measurement set Zγ,k−1 is generated in the previous

update step k − 1 that includes all measurements with a sum of generated weights w(j)
sum,k−1

below a threshold twγ :

Zγ,k−1 =
{

z(j)
γ,k−1 ∈ Zk−1 ∀w(j)

sum,k−1 < twγ

}
. (26)

The threshold was found experimentally and set to twγ = 0.01. For the sum of weights,

the measurement weights q(l)k−1(z) from Equation (10) are used combined with the predicted
weights wk−1|k−2 from the previous time step:

w(j)
sum,k−1 =

Jk−1|k−2

∑
l=1

w(l)
k−1|k−2q(l)k−1(z). (27)

The sum of weights w(j)
sum,k−1 indicates the influence of the j-th measurement on the

PHD update. If the influence is very low, it is assumed that no Gaussian component of the
intensity function is in close range to the measurement. Therefore, Zγ,k−1 is a subset of the
measurement set Zk−1 that only contains measurements in areas where no Gaussian compo-
nents are present in the intensity function. Next, a Gaussian mixture γ̂k−1 is generated based
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on these measurements with m(j)
γ,k−1 =

[
p(j)

x p(j)
y 0 0 0 0 l(j) w(j) h(j) ϕ(j)

]T
,

P(j)
γ,k−1 = P0 with initial covariance P0 and w(j)

γ,k−1 = w0 and with initial weight w0. Then,
γ̂k−1 is predicted to time step k using the GM-PHD prediction to form γk.

For each of the birth Gaussian components, a new birth tag is added along with the
set of birth tags at the current time step, as proposed by [23]. Each tag is initialized with a
new unique ID based on τmax, which is increased by Jγk afterwards:

τk|k−1 = τk−1 ∪
{

τ
(1)
γk , . . . , τ

(Jγk )
γk

}
, (28)

τ
(j)
γk = τmax + j. (29)

Similarly, a classification probability vector is added for each Gaussian component.
The initial classification is calculated by updating a uniform classification distribution cU

with the measurement classification probability vector c(j)
zγ,k−1 . In principle, this can be done

with any classification update function fc(c, cz) capable of updating the classification in
a meaningful way; however, this is not further described here. The classification set is
accordingly extended with

Ck|k−1 = Ck−1 ∪
{

c(1)k|k−1, . . . , c
(Jγk )

k|k−1

}
, (30)

c(j)
k|k−1 = fc

(
cU , c(j)

zγ,k−1

)
. (31)

3.4.3. Step 2: Update

The update step follows the overall procedure from [23], with adaptations for im-
proved tracking results and computation speed in ADAS applications.

A gating step is introduced to improve the computation speed. The GM-PHD update
step adds many Gaussian components due to the update of each prior Gaussian component
with each measurement component. Many of these components have very low weights and
would be pruned in the next step anyway. To reduce this number of low-weight components
in advance, a gating process is introduced. Because gating in ADAS applications can be
interpreted spatially, the gating is based solely on the position in terms of the X and Y
coordinates. The minimum of the squared Mahalanobis distance DM,pos and the Euclidean

distance DEuclid,pos defining the gate are calculated using the position difference z(i)p,zm and

the position covariance P(i)
p , which only include the elements related to the X–Y position:

z(i)p,zm =
[
(z1 − m(i)

k|k−1,1) (z2 − m(i)
k|k−1,2)

]T
, (32)

P(i)
p =

P(i)
k|k−1,11 P(i)

k|k−1,12

P(i)
k|k−1,21 P(i)

k|k−1,22

. (33)

The distances are then calculated with

DM,pos(z
(i)
p,zm, P(i)

p ) =
[
z(i)p,zm

]T[
P(i)

p

]−1[
z(i)p,zm

]
, (34)

DEuclid,pos(z
(i)
p,zm) =

√[
z(i)p,zm

][
z(i)p,zm

]T
. (35)

Applying the gating based on these distances, Equation (8) changes to

vD,k(x; z) = ∑
j∈Vk(z,γDA)

w(j)
k (z)N

(
x; m(j)

k|k(z), P(j)
k|k

)
, (36)
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where only components of the gating indices Vk(z, γDA) are taken into account. For these
gating indices, either the squared Mahalanobis distance or the Euclidean distance is below
the gating threshold γDA:

Vk(z, γDA) =
{

i = 1, . . . , Jk | min(DM,p(z
(i)
p,zm, P(i)

p )2, DEuclid,p(z
(i)
p,zm)) ≤ γDA

}
. (37)

The update step uses the sensor-based parameter models proposed in Section 3.3 for
the detection probability and clutter density. Therefore, the following applies and is used
in the update equations:

pD,k = p
(sp)

Dm,k(m
(j)
k|k−1), (38)

κk(z) = κ
(sp)

k (z). (39)

Because new Gaussian components are generated during the update step, new tags
and classifications are added to the tag set and classification set with m measurements,
as follows:

τk,u =
{

τk|k−1 ∪ τz1
k|k−1 ∪ · · · ∪ τzm

k|k−1

}
, (40)

τz
k|k−1 =

{
τj ∈ τk|k−1 | j ∈ Vk(z, γDA)

}
, (41)

Ck,u =
{

Ck|k−1 ∪ Cz1
k,u ∪ · · · ∪ Czm

k,u

}
, (42)

Cz
k,u =

{
fc

(
c(j)

k , c(j)
zγ,k−1

)
| j ∈ Vk(z, γDA)

}
. (43)

For each Gaussian component created by a measurement, a tag is added that has
the same value as the tag of the updated component. Similarly, for each Gaussian com-
ponent created by a measurement, the classification probability vector is updated by the
measurements’ classification probability vector c(j)

zγ,k−1 using the function fc(c, cz).

3.4.4. Step 3: Pruning

The pruning step from [23] is implemented without adaptations, which means that
all components with low weights below a truncation threshold τ are eliminated. The
classification set Ck,u is pruned in a similar way to the tag set.

3.4.5. Step 4: Merging

The merging procedure in general follows the one proposed in [23], and has the goal
of merging Gaussian components that have a low distance based on a distance criterion. In
contrast to [11,23], and similar to [33], this approach uses the Kullback-Leiber Divergence
(KLD) DKL as the distance criterion, which is defined as follows:

DKL(Ni||Nj) =
1
2

(
tr(P−1

j Pi)− k + (mj − mi)
TP−

j 1(mj − mi) + ln
(

det Pj

det Pi

))
. (44)

Here, k is the dimension of the covariance matrices Pi and Pj. This distance is well-
suited to being used as a criterion for whether two Gaussian components should be merged,
as it provides an indication of the possible information loss.

When merging multiple components, the tag τ
(i)
k of the component with the highest

weight w(i)
k is kept for the merged component. If components with the same tag still exist

after the merging procedure, the component with the highest weight keeps the tag and all
others are assigned a new one, similar to the proposal from [23].
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The classification is merged similarly to the mean. Therefore, the merged classification
distribution vector c̃k is calculated using the weighted average of all merged components L:

c̃k =
1

w̃k
∑
i∈L

w(i)
k c(i)k . (45)

3.4.6. Step 5: Track Extraction

In the last step, the tracks are extracted from the PHD estimation. To be interpreted as
a track, the weight of a Gaussian component has to exceed a weight threshold wmin creating
the track set Tk:

Tk =
{
(τ

(i)
k , m(i)

k , c(i)k , p̃(i)k (∃)) |w(i)
k > wmin

}
. (46)

To provide an existence probability for further processing steps, the weight of the Gaus-
sian component is interpreted as a pseudo-existence probability with p̃(i)k (∃) = min(w(i)

k , 1).

3.5. Track Confirmation Strategy

After the track extractions, the relevant information for ADAS functions, such as
the unique IDs, states, classifications, and pseudo-existence probabilities, are available;
however, the tracks may still be unstable. The existence and stability of the tracks is
determined by the calculated weights of the Gaussian components and the propagated ID
tags in the GM-PHD filter. However, there are situations in which these methods reach
their limits:

• Short-term occlusion of objects, where the track may disappear and a new one with a
new ID is subsequently created.

• Clutter tracks created due to random false detections.
• If one of several sensors systematically fails to detect a target, the weight of the track

may be low even though the object is tracked over a long period.

A track confirmation strategy is applied to overcome these limitations and pass only
those tracks confirmed based on several criteria to the ADAS function. This consists
of a confirmation list that is updated after each update cycle based on the track set Tk.
Each element in the confirmation list consists of a confirmation track T̂(i)

k , an ID alias,
the unobserved time, the time of first appearance t f a, and a confirmation flag, as shown
in the example in Figure 5. The unobserved time is the time since the ID of the track was
last updated. Figure 5 shows an example scenario with two cars around the ego vehicle.
The arrows show the trajectories of the tracks provided by MOT. One car is directly in front
of the ego vehicle, but the provided existence probability is low. The other car is overtaking
and occluded for a short duration, during which the tracks are lost. In addition, there is a
false positive track in the right top corner. This scenario represents several different errors
that can possibly occur for a MOT system.

In each update cycle of the confirmation strategy, the tracks in the confirmation list
should be updated. Here, the ID alias of the stored confirmation track is compared with
the ID of the tracks in the track set. If no match is found, then the unobserved time is
increased and the state is predicted using the motion model. In Figure 5, this is the case
during occlusion of the overtaking car with τ̂(2) = 2. Otherwise, the unobserved time is set
to 0.

Next, ID switches are searched for all tracks in the confirmation list that have not yet
received an assignment from the update track set. If a track is found in the update track
set for a non-updated track in the confirmation list for which the Euclidean distance of
the location is below the threshold, then an ID change is assumed and the ID alias is set
to the new ID, which is indicated in Figure 5 when the occluded car is tracked again. In
this way, objects that have been lost for a short time, e.g., due to occlusion, can be found
again while preserving their original unique ID. For all tracks in the update track set that
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have not yet been assigned to a track in the confirmation list, a new element is created in
the confirmation list.

For all elements in the list, the next step checks whether they can be marked as
confirmed. To be confirmed, one of the following criteria must be met:

• p(∃) > p∃,min ∧ tk − t f a > tmin

• tk − t f a > tcon f

Figure 5. Example situation with track confirmation strategy. The trajectories of the confirmation list
are drawn in red, while the trajectories of the track set have different colors. The confirmation list
table shows example values at the time where the objects are at the cars’ positions.

In order to be confirmed, a track must either have an existence probability p(∃) greater
than a threshold p∃,min and at the same time be tracked for a minimum duration tmin,
or be tracked for a duration greater than tcon f regardless of the existence probability. In
Figure 5, the car with low existence probability is confirmed, as it has been tracked for
a long duration, while the false positive track is not confirmed, and consequently is not
forwarded to the ADAS functions. All tracks in the confirmation list are then checked for
deletion using the unobserved time. If the unobserved time is above the threshold, they
are removed from the list. The threshold for already-confirmed tracks is higher than the
threshold for unconfirmed tracks.

This confirmation strategy can filter out some of the errors shown in Figure 5. In
particular, situations where ID changes occur or tracks are lost for a short period of time
can be resolved. In addition, it can reduce the amount of false positive tracks provided to
the ADAS application. Therefore, the confirmation strategy can help to improve overall
system performance. In our experiments, the confirmation strategy was applied to both the
GM-PHD approach and the Kalman approach.

4. Results

The proposed approach was evaluated on both the KITTI dataset [22] and a custom
dataset recorded using a truck with multiple sensors that had partially overlapping sensor
FoVs. The experiments show a comparison between the proposed approach and the KF
reference approach on both datasets. In addition, the influence of the parameter models is
shown and the runtimes are analyzed.

4.1. Datasets

The sensor setup and sensor FoVs of both datasets are visualized in Figure 6. As shown
in the figure, both datasets have a forward-facing camera, while the KITTI dataset uses a
larger FoV. The custom setup relies more on radars, with two corner Short Range Radar
(SRR) and a central Long Range Radar (LRR). The KITTI dataset is well suited for the
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comparisons in this paper, as it is well studied, widely used, and contains ground truth
data. For the experiments, only objects of the “Car” type were examined, as they occur
most frequently in the dataset and as such are the most meaningful.

Figure 6. Comparison of dataset FoVs.

A new custom dataset was created to evaluate the tracking and fusion algorithms
on the basis of current generation sensors and validate the results from the KITTI dataset.
This dataset included sensors comparable to truck series equipment with integrated object
detection in order to prove the validity and performance of the presented approaches for
use in current-generation vehicles. The Lidar sensor was only used to generate ground
truth OBB data in these experiments, with the other sensors used for tracking. The objects
provided by the camera and radar sensors are geometrically represented either as a point,
as a point with estimated width, or as an L-shape, depending on the situation and distance.
In order to create a common representation, the detections of all sensors were converted to
point objects without spatial expansion; thus, the length, width, height, and orientation are
ignored for the custom dataset.

The custom dataset is small compared to KITTI, and contains three scenes from
different operational design domains (highway, rural, and urban). Due to its smaller
size, the custom dataset is less meaningful; however, it can still serve for confirmation or
questioning of the results on the KITTI dataset, and provides the opportunity to study the
fusion of more than two sensors with different and partially non-overlapping FoVs.

4.2. Comparison of Kalman and GM-PHD Filters on Real-World Data

First, a comparison of the GM-PHD approach and the Kalman approach is carried out
to show the general potential of the presented approach. Only the FoV-dependency of the
detection probability is used, with the parameters otherwise modeled as constant, as the
Kalman approach does not take such dependencies into account either. The parameters are
optimized for the fused setup for both datasets, and are kept the same for single-sensor
tracking. Manual optimization of the parameters was carried out with the goal of achieving
optimal results for both GM-PHD and KF. In order to provide a direct comparison of the
filter outputs and prevent the comparison from being primarily dependent on the final
optimization, the parameters were kept the same for both. Slight improvements were
still possible by fine-tuning the parameters depending on the filter; thus, the results for
separately tuned parameters are provided for the custom dataset.

The comparison was first conducted using the KITTI dataset. The training dataset of
the MOT benchmark was used to show multiple comparisons. The Higher Order Tracking
Accuracy (HOTA) metric [34] was used as a performance measure. As the KITTI dataset
only contains raw data, the Point-RCNN [29] detection approach was used to provide
detections based on Lidar and Yolo-Mono-3D [30] was used to provide camera-based
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detections. Therefore, detections in the form of oriented bounding boxes suitable for
processing are available. First, the performance of the Kalman and the GM-PHD approach
is compared directly.

Figure 7 shows the HOTA results of both approaches on the KITTI dataset. The com-
parison is shown when using only Lidar, only camera, and fused data. The GM-PHD
approach clearly outperforms the Kalman approach for Lidar only, and even more so for
fused data. When comparing the sub-metrics on the fused data in Figure 8, the differences
are particularly evident for “DetA” and “AssA” [34], which are measures of detection accu-
racy and association accuracy. This indicates that the GM-PHD approach has a particular
advantage when creating/deleting tracks and ensuring correct ID assignment.

Figure 7. Comparison of HOTA results for Kalman and GM-PHD filters with different tracking setups
on the KITTI dataset.

Figure 8. HOTA submetrices for fused tracking setup on the KITTI dataset.

Both filters were then compared using the custom dataset. Here, the Second Order
Optimal Sub-Pattern Assignment (OSPA(2)) metric [35] with cut-off c = 2.5 and order p = 1
was used, while the Euclidean distance was used as the base distance. Note that lower
values of this metric represent a lower error. For a simplified comparison, the mean OSPA(2)

distance over all time steps of all three scenes was used. Figure 9 shows the results for
the single-sensor tracking and fused setups. As shown, the GM-PHD filter achieves lower
mean distances for all tracking setups except camera-only. In addition to the results from
Figure 9, where the parameters were the same for the GM-PHD filter and the KF, the results
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for separately fine-tuned covariances are presented: the GM-PHD filter achieves an OSPA(2)

distance of 1.478, while the KF achieves 1.522 for the fused setup. While this performance
difference is slightly decreased compared to the shared parameters, the GM-PHD approach
still clearly outperforms the KF approach in this comparison.

Overall, the performance of the GM-PHD approach outperforms the Kalman approach
in most tracking setups, and in particular for the fused data. The main advantages lie
in its stable handling of appearing/disappearing tracks. For both datasets, the tracking
performance in the camera-only setup is worse with the GM-PHD approach compared to
the Kalman approach. This is probably due to the fact that the camera detections produce
few clutter objects, but the position of the existing detections has a higher variance, which
has a negative effect on the calculation of weights by the GM-PHD filter. In addition,
the parameters are optimized for the fused setup and not fine-tuned for the single sensor
tracking, which might have led to suboptimal results.

As shown by Figure 9, sensor-based parameter models can further reduce the OSPA(2)

distance, which is shown in detail in the following section.

Figure 9. Comparison of OSPA(2) error results for the Kalman and GM-PHD filters for different
tracking setups on the custom dataset (smaller is better).

4.3. Influence of Sensor-Based Parameter Models

The sensor-based parameter models for detection probability and clutter density were
evaluated with the GM-PHD approach. By applying the FoV to the detection probability,
objects can be tracked through the FoVs of several sensors without applying additional
rules. Figure 10a shows this on the custom dataset with an overtaking vehicle that is
initially only in the FoV of the left SRR, then moves into the FoVs of all combined sensors.
Without FoV modeling, stable tracking only occurs in the area of the combined view of all
sensors (marked with an orange circle).

Because the detection capabilities of all sensors are quite different with respect to
the distance, a similar effect occurs at higher distances, where some sensors are no longer
capable of detecting an object while others remain able to detect it. Figure 10b shows a
track from the custom dataset with a trajectory that is moving away from the ego vehicle.
At a certain point, it is outside the capabilities of all sensors except the LRR; thanks to the
distance-dependent model proposed here, it can still be tracked, while the track is lost
when applying constant parameters (marked with an orange circle).



Sensors 2024, 24, 2436 18 of 21

(a) (b)

Figure 10. Example situations showing benefits of sensor-based parameter models. (a) An overtaking
car moving in the direction of the orange arrow crosses multiple sensor FoVs. Stable tracking without
the FoV model is reached at the overlap of all sensor FoVs. (b) Without the distance model for
detection probability, the track of a car moving away in the direction of the orange arrow is lost at
higher distances (the orange circle).

In addition to these detailed examples, a comparison of the performance with and
without the sensor-based models was carried out for the tracking setups with sensor fusion.
Because a comparison is not possible without modeling the FoV for the detection probability,
this was applied to all scenarios, while the distance dependency was activated/deactivated
depending on the test. Table 1 shows the results on the KITTI dataset and on the custom
dataset. For both datasets, improvements can be achieved using the detection probability
and the clutter density parameter model. However, the improvements on the KITTI dataset
are rather small, while the improvements on the custom dataset show more potential. Here,
the differences in the detection capabilities between the sensors is high in certain areas of the
observed space and therefore needs to be modeled accordingly, which explains the higher
improvements. In addition, the clutter density model shows less improvement for both
datasets compared to the detection probability model. However, this is no limitation in the
usage of the models, since improvements can be achieved in all situations, although they
are small for some scenarios.

Table 1. Results of sensor-based parameter models using fused tracking setup on both datasets.

KITTI Dataset (HOTA) Custom Dataset (OSPA(2))

Constant model 77.11 1.50
pd with dist model 77.26 1.42
κ with dist model 77.15 1.48
pd and κ with dist model 77.34 1.40

4.4. Runtime Evaluation

The runtime of the presented GM-PHD approach was compared with the Kalman
approach on the KITTI dataset and on the custom dataset with the Lidar-only setup. In
addition, a variant without the gating in the update step was compared, as well as a variant
where the detection probability was calculated using a mixture with seven components,
as described in [11]. Table 2 shows the HOTA results and the average runtime for one cycle.
All approaches were implemented in C++ and tested on an Intel Core I7-9700K CPU.
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The runtime can be greatly reduced without significantly affecting the HOTA results
by the introduction of gating. The original variant with mixture implementation for
the detection probability is considerably slower. Thanks to the presented optimizations,
the runtime is only 2.5 times that of the Kalman filter, which is not possible with other
GM-PHD approaches. This means that the approach presented here is expected to work in
embedded devices.

Table 2. Runtime comparison of multiple test scenarios.

HOTA Runtime in ms

Kalman approach 74.65 0.285
GM-PHD as proposed 76.86 0.715
GM-PHD without gating 76.84 1.629
GM-PHD without gating and with mixture pd 75.81 15.015

In general, fast reactions are as important as accuracy for ADAS functions. If an
emergency function needs to pursue the absolute minimum reaction times, KF might be
the preferable choice. In real systems, it is necessary to calculate the updates for all sensors
with cycle times of 10–20 Hz. If only limited computing power is available and these cycles
cannot be achieved with the GM-PHD filter, then KF needs to be used. However, as KF has
been used in sensor fusion systems for years and the available computing power continues
to increase, experiments have shown that an update cycle of the GM-PHD filter can be
calculated within the range of a millisecond; it can be assumed that this constraint can also
be met by the GM-PHD filter in most systems nowadays. In these cases, the improved
accuracy of the GM-PHD will benefit the system.

5. Conclusions

This paper shows a GM-PHD MOT approach that uses optimizations to enable easy
application in real-time automotive systems. It supports multiple sensors with different
FoVs and sensing capabilities by embracing sensor-based parameter models. Furthermore,
the proposed approach introduces the possibility of propagating additional track properties,
such as the classification, with the GM-PHD filter through time, thereby enhancing the
filter’s versatility. The proposed approach is able to achieve low runtimes while exceeding
a Kalman-based MOT in terms of tracking performance, and can handle the appearance
and disappearance of objects as well as the data association problem implicitly due to its
RFS properties. The proposed GM-PHD approach achieved an OSPA(2) error of 1.40 on the
custom dataset, compared to 1.56 for the KF approach; therefore, this paper shows that the
proposed GM-PHD filter approach is very well suited as a substitute for KF in automotive
MOT and fusion systems. This allows existing systems to be improved in the short term.
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Abbreviations
The following abbreviations are used in this manuscript:

ADAS Advanced Driver Assistance Systems
BEV Bird’s-Eye View
FoV Field of View
GM-PHD Gaussian Mixture Probability Hypothesis Density
HOTA Higher-Order Tracking Accuracy
KF Kalman Filter
KLD Kullback–Leibler Divergence
LRR Long-Range Radar
MOT Multi-Object Tracking
OBB Oriented Bounding Box
OSPA(2) Second-Order Optimal Sub-Pattern Assignment
PHD Probability Hypothesis Density
RFS Random Finite Set
SRR Short-Range Radar
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