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Abstract: In addition to the filter coefficients, the location of the microphone array is a crucial factor in
improving the overall performance of a beamformer. The optimal microphone array placement can con-
siderably enhance speech quality. However, the optimization problem with microphone configuration
variables is non-convex and highly non-linear. Heuristic algorithms that are frequently employed take a
long time and have a chance of missing the optimal microphone array placement design. We extend
the Bayesian optimization method to solve the microphone array configuration design problem. The
proposed Bayesian optimization method does not depend on gradient and Hessian approximations
and makes use of all the information available from prior evaluations. Furthermore, Gaussian process
regression and acquisition functions make up the Bayesian optimization method. The objective function
is given a prior probabilistic model through Gaussian process regression, which exploits this model
while integrating out uncertainty. The acquisition function is adopted to decide the next placement
point based upon the incumbent optimum with the posterior distribution. Numerical experiments have
demonstrated that the Bayesian optimization method could find a similar or better microphone array
placement compared with the hybrid descent method and computational time is significantly reduced.
Our proposed method is at least four times faster than the hybrid descent method to find the optimal
microphone array configuration from the numerical results.

Keywords: Bayesian optimization; beamformer design; microphone placement; Gaussian process
regression; acquisition function

1. Introduction

Beamforming techniques can effectively obtain the sound of interest via spatial fil-
tering to reduce interference and ambient noise from a mixed signal received by a set of
microphone arrays. They are now widely used in the fields of wireless communications,
hearing aids, and speech recognition [1–4]. Many techniques currently exist for solving the
filter coefficients to achieve speech enhancement under specific conditions; for example, the
linearly constrained minimum variance (LCMV) beamformer presented in [5] minimizes
the power of the background noise, and dereverberation and interference suppressing
are employed as constraints. It is worth noting that the length of the filters and number
of microphones also greatly affect the beamformer’s performance. When filters reach a
certain length, the performance limit enters stagnation and is far from satisfactory; in
contrast, as the number of microphones is increased, the desired directivity pattern can be
achieved under some circumstances [6]. In addition, the design of the microphone array’s
location has a big influence on how well the beamformer works. Regular microphone array
placements are always chosen [7], but it was discovered that the optimized microphone
array placement within specific dimensions and areas significantly increased the overall
performance compared to the regular placement in [8,9].

Many optimization problems and algorithms have been established to solve the mi-
crophone array configuration issue. The array-thinning technique [10,11] carefully selects
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the location of the microphone array while using fewer microphones to preserve the prior
performance in the one-dimensional situation. Several studies have employed heuristic
methods to identify the global optimal solution since the problem of optimization is non-
convex and nonlinear. These include evolutionary programming [12], genetic algorithm
(GA) [13–16], simulated annealing algorithm [17], pattern-search algorithm [18], and differ-
ential evolution [19]. However, these methods are often very time-consuming and have the
risk of missing the optimal solution. In [20], an approach based on compressive sensing is
described for building wideband sparse microphone arrays. The Taguchi method makes
an effort to perform systematic experiments based upon orthogonal arrays to analyze the
microphone design after pre-selecting multiple possible positions for the microphone ele-
ments [21]. By making the filter length sufficiently long, a nonlinear optimization problem
on filter coefficients and microphone array placement using the l2 norm is presented in [8].
This problem is then reduced to one where the placement variable is the only decision
variable in [9], and a hybrid descent method incorporating a genetic algorithm is provided
to obtain a more general solution.

Many methods mentioned above based on heuristic algorithms tend to be very ineffi-
cient. However, a Bayesian optimization method makes good use of the prior information
from previous iterations and provides a posterior probability distribution to describe po-
tential microphone array locations. The computational efficiency can be greatly improved.
Bayesian optimization [22,23] is mainly for independent variables over continuous do-
mains. It is widely applied in machine learning [24], the design of mechanical systems and
materials [25–27], and the development of pharmaceuticals [28,29] because it is capable of
tackling optimization problems with complicated objective functions.

This paper aims to extend the Bayesian optimization method to solve the microphone
array configuration problem to improve the computational efficiency. Given that the non-
convexity and non-linearity of the microphone array configuration optimization issue and
the objective function form a dual integral, using heuristic methods is inefficient. The
Bayesian optimization method can make full use of previously evaluated information
by employing Gaussian progress (GP) regression to proxy the objective function of the
microphone array design problem, while the acquisition function directs iterations to the
point with the highest probability of being the minimum value.

In this study, we applied the Bayesian optimization method to find the optimal
microphone array placement since the optimization problem with respect to the microphone
array variables is non-convex and takes a long time to compute. GP regression can be
applied to approximate the objective function and obtain the posterior distributions for the
rest of the points in the feasible domain. The next sampling point should be smaller than the
current minimum with greater probability and improvement by optimizing the acquisition
function (obtained from the posterior probability distribution). As more configuration
samples are evaluated, the posterior distribution is continually updated. This can bring the
new feasible solution closer to the optimal locations for the microphone array. This method
can efficiently achieve more excellent performance than the hybrid descent method with
higher computational efficiency.

Our contributions can be summarized as the following:

1. Considering that the microphone array design problem is non-convex and non-linear,
the Bayesian optimization method is extended to solve the microphone array place-
ment design problem;

2. GP regression is used to surrogate objective function in the microphone array placement
design optimization problem, while different acquisition function strategies are applied;

3. Numerical experiments demonstrate that the proposed Bayesian optimization method
could produce the same or better performance with shorter computational time
compared with the hybrid descent method [9].
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2. Problem Formulation

Assume that the signal received by each element of an array with N microphones is
processed by a finite impulse response (FIR) filter and that L is the length of filter. The
transfer function from the sound source to the ith microphone can be given as

Ai(ri, s, f ) =
1

∥s − ri∥
e
−j2π f ∥s−ri∥

c ,

the microphone has been fixed in ri, i = 1, . . . , M, the location of the sound signal is
determined by s, its frequency is determined by f , and c denotes the speed of sound in
air. These FIR filter frequency responses are as follows when the signals are sampled
synchronously at a rate of fs per second:

Wi(wi, f , L) = wT
i d0( f , L),

where wi = [wi(0), wi(1), . . . , wi(L − 1)]T indicates the coefficients of the ith FIR filter, and
the vector d0( f , L) is stated as

d0( f , L) = [1, e
−j2π f

fs , . . . , e
−j2π f

fs
(L−1)

]T ,

in which (·)T denotes the matrix transpose.
Figure 1 illustrates the structure of the microphone array. The actual response by the

beamformer could be constructed as follows based on the ith frequency response and the
transfer function to the ith element microphone:

G(λ, s, w, L) =
M

∑
i=1

Ai(ri, s, f )Wi(wi, f , L), (1)

where λ = {r1, r2, · · · , rM} is the set of microphone array locations and w = {w1, w2, · · · , wM}
denotes the coefficients of all FIR filters.

OutputSound signal

FIR filter

Microphone 

Array

…
…

…
…

FIR filter

FIR filter

FIR filter

FIR filter

ir

( , , , )s wG L
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Figure 1. The structure of a microphone array with N microphones.

As has been proven in Lemma 1 in [8], infinite-length filters and frequency-response
functions have an equal relationship according to the infinite-length technique. In addition,
the infinite-length technique has been applied in [8,9] to provide a beamforming output
that is independent of the filter length L:

G̃(λ, s, w̃, f ) =
M

∑
i=1

Ai(ri, s, f )W̃i(w̃i, f ),

where w̃i ∈ Γ̃, Γ̃ = {ũ( f ) + jṽ( f ) : ũ( f ) and ṽ( f ) are continuous and absolutely integrable,
and the right-hand and left-hand derivatives exist, ṽ(0) = 0, ṽ( f s/2) = 0}.
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Given that the desired response is Gd(λ, s, f ) and that the l2 norm is frequently employed
as a measure of the error between G̃(λ, s, w̃, f ) and Gd(λ, s, f ), the objective function with
regard to the coefficients of beamformer w̃ and the microphone configuration variables λ are

F(λ, w̃) =
1
|Ω|

∫
Ω

ρ(λ, f )|G̃(λ, s, w̃, f )− Gd(λ, s, f )|2dsd f ,

where Ω is a predefined spatial–frequency domain. ρ(λ, f ) is a positive weighting function.
The domain Ω is frequently composed of passband area Ωp and stopband area Ωs. The
following optimization problem determines a set of microphone array placements λ and a
set of beamformer coefficients w̃ that minimize the error:

min
w̃∈Γ̃N ,λ∈Λ

F(λ, w̃)

s.t. ∥ri − rj∥2 ≥ ε̄d, i ̸= j,
(2)

Λ indicates the possible area for the microphone array. ε̄d is the square of the minimum
distance between two independent microphone elements, and restrictions ∥ri − rj∥2 ≥
ε̄d, i ̸= j ensure that microphone elements work efficiently at a minimum distance from
each other.

It is challenging to solve the non-convex optimization problem in Equation (2) as
a whole since it consists of two separate kinds of variables. If the microphone array
configuration is determined, the beamformer coefficient design is reduced to a convex
optimization problem. Therefore, the optimization problem in (2) might be rewritten as

min
λ∈Λ

F(λ, w̃∗)

s.t. ∥ri − r j∥2 ≥ ε̄d, i ̸= j.
(3)

The optimum beamformer coefficients under the specified array placements are w̃∗. How-
ever, the only decision variables λ nested inside Ai(ri, s, f ), Gd(λ, s, f ), and the objective
function in (3) are non-convex with regard to λ. Although the hybrid descent method
proposed in [9] can find the optimal set of microphone array placements, its evaluation of
the next microphone array location λ requires considerable time and results in an ineffi-
cient algorithm; a Bayesian optimization method is introduced to improve computational
efficiency and to find a better microphone array configuration.

3. Bayesian Optimization Method

The non-convex optimization problem in (3) for the location variables λ is an extremely
difficult to compute integral objective function. But, in the Bayesian optimization method,
the multiple integral function in (2) might be demonstrated with a GP model. Moreover,
the Bayesian optimization method, as has been proven by [23], can finally converge to the
global optimal solution. A detailed description of the Bayesian optimization method for
solving microphone array configuration problems is presented.

3.1. GP Regression

GP [30,31] has been considered as a good way to model loss functions in Bayesian
statistical methods and has been applied in classification [32], face recognition [33], and
neural networks [34]. Suppose that a finite collection of n different placements λ1:n is
selected and that the objective function values and noisy observations are denoted by the
variables F(λ1:n) and F̄(λ1:n), respectively. In GP regression, it is assumed that F(λ1:n)
will follow the a priori GP distribution and observation error ε ∼ N (0, σ2), resulting in
observations F̄(λ) = F(λ) + ε. Let Dn = {(λi, F̄(λi))}n

i=1 denote the group of observations

F̄(λ1:n) ∼ N (m0(λ1:n), Σ0(λ1:n, λ1:n)), (4)
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where
λ1:n = [λ1, λ2, . . . , λn],

F̄(λ1:n) = [F̄(λ1), F̄(λ2), . . . , F̄(λn)],

m0(λ1:n) = [m0(λ1), m0(λ2), . . . , m0(λn)],

Σ0(λ1:n, λ1:n) =

 Q(λ1, λ1) · · · Q(λ1, λn)
...

. . . · · ·
Q(λn, λ1) · · · Q(λn, λn)

+ σ2 I,

(5)

Equation (5) is from [22]. N (m0(·), Σ0(·)) denotes a Gaussian prior distribution with
m0(·) : R3×1 7→ R as the prior mean and Σ0(·) ∈ Rn×n as the covariance matrix. Q(λ, λ̂) is
a kernel to measure the correlation of λ and λ̂. Generally, the squared exponential kernel

Q(λ, λ̂) = σ2
f e(−

∥λ−λ̂∥2

2l2
) (6)

is used. Equation (6) is from [32]. Notice that, the closer the two points, the bigger the
value of the function, and that, the further away, the smaller the value of the function.
This property shows that squared exponential functions are suitable to characterize the
similarity between different microphone configurations.

3.2. Choosing Prior Hyperparameters

In the covariance matrix Σ0(λ1:n, λ1:n), prior hyperparameters θ =: {σf , l, σ} must be
chosen in accordance with the provided observations samples Dn. Maximum likelihood
estimation (MLE) is frequently used in probability and statistics to fit the GP model [35].
The distribution under these previous hyperparameters is known to us:

F̄(λ1:n)|θ ∼ N (m0(λ1:n), Σ0(λ1:n, λ1:n)),

where we modify the notation in (4) to show that it depends on θ. The log-likelihood
function can be easily obtained:

logP(F̄(λ1:n)|θ) = −1
2

log|Σ0| −
1
2

F̄T(λ1:n)Σ0 F̄(λ1:n)−
n
2

log(2π). (7)

Equation (7) is from [23]. Subsequently, the maximum likelihood function is employed to
determine the prior hyperparameters:

θ̂ = arg max
θ

logP(F̄(λ1:n)|θ). (8)

3.3. Acquisition Function

Bayes’ rules predict that the random variable F̄(λ̄) is normally distributed. The
posterior mean and variance function are as follows:

F̄(λ̄)|F̄(λ1:n) ∼ N(m(λ̄), σ2(λ̄)), (9)

where
m(λ̄) = Σ0(λ̄, λ1:n)Σ0(λ1:n, λ1:n)

−1(F̄(λ1:n)− m0(λ1:n)) + m0(λ̄),

σ2
n(λ̄) = Σ0(λ̄, λ̄)− Σ0(λ̄, λ1:n)Σ0(λ1:n, λ1:n)

−1Σ0(λ1:n, λ̄),
(10)

Equation (10) is from [22]. The input data F̄(λ1:n) and prior m0(λ̄) are averaged jointly
to obtain the posterior mean m(λ̄), whose weight is dependent on the kernel. The data
provide more information; it should be shown that the posterior variance is always less
than the previous variance.

The objective function’s prediction and uncertainty are represented by the posterior
mean m(λ̄) and variance σ2

n(λ̄), calculated at each point λ̄ in (10). The acquisition function
has the responsibility of directing the pursuit of the optimum by these posterior functions.
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To locate the new sample placement, conventional improvement-based and optimistic
acquisition methods are introduced.

The earliest acquisition function makes the next placement candidate superior to the
optimal incumbent F̄∗

n = minm≤n F̄(λ1:m) by maximizing the probability of improvement
(PI) [36]:

λn+1 = arg max
λ̄

PI(λ̄), (11)

where
PI(λ̄) : = P(F̄(λ̄) < F̄∗

n )

= Φ(
m(λ̄)− F̄∗

n
σn(λ̄)

).

The standard normal cumulative distribution function is denoted by Φ(·). The posterior
distribution of F̄(λ̄) is expressed as in (9). The new point λn+1 is intended to have a high
probability of being larger than the optimal incumbent F̄∗

n , which will miss the point with
larger gain but lower certainty.

Expected improvement (EI) [26,37] considers both the probability of improvement
and the quantity of improvement. Suppose that we compute one of the remaining points
λn+1 and the corresponding values F̄(λn+1) in the subsequent iterations; the optimal
function value is either F̄∗

n or F̄(λn+1). If this quantity [F̄∗
n − F̄(λn+1)] is positive, the

improvement in the best observed point is [F̄∗
n − F̄(λn+1)]; if not, it is 0. This improvement

could be expressed more succinctly as [F̄∗
n − F̄(λn+1)]

+, where a+ := max(a; 0) represents
the positive part.

Since F̄(λn+1) is unknown, we can maximize the expected value of the improvement
to make both this improvement [F̄∗

n − F̄(λn+1)]
+ and the possibility P(F̄(λn+1) < F̄∗

n ) large
in the next point λn+1:

λn+1 = arg max
λ̄

EIn(λ̄), (12)

where
EIn(λ̄) :=En

[
[F̄∗

n − F̄(λ̄)]+
]

=

{
σn(λ̄)ϕ(

∆n(λ̄)
σn(λ̄)

) + ∆n(λ̄)Φ(∆n(λ̄)
σn(λ̄)

), if σn(r̄) > 0,
0, if σn(λ̄) = 0,

(13)

denotes the expectation provided under the posterior distribution given observations Dn.
Equation (13) is from [38]. If ∆n(λ̄) = m(λ̄)− F̄∗

n is the expected difference between the mean
of the new point r̄ and the previous best F̄∗

n , then En[[F̄∗
n − F̄(r̄)]+] is the expected value of

improvement. The standard normal probability density function is denoted by ϕ(·).
The lower confidence bound (LCB) [39] strategy is widely applied in the field of multi-

armed bandit [40]. Since the remaining points obey a Gaussian distribution N(m(λ̄), σ2(λ̄))
and we want to find the minimum value of the objective functions in (3), the confidence
lower bound can be expressed as

LCB(λ̄) := m(λ̄)− βσ(λ̄).

To balance the mean and variance, the hyperparameter β is employed. Choose the next
sampling point by minimizing LCB(λ̄):

λn+1 = arg min
λ̄

LCB(λ̄). (14)

A formal statement of Bayesian optimization to solve the microphone array placement
location problem based on the design broadband beamformer is given in Algorithm 1.
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Algorithm 1 Bayesian optimization method for microphone array placement design

Initial step. Select sensor location sample r1, r2, . . . , rn, calculate objective function
F(r1), F(r1), . . . , F(rn), prior mean value m(λ) = 0 and set t = n.
S1. Choose prior hyperparameters θ =: {σf , l, σ} by MLE in (8) and F̄(r1), F̄(r2), . . . , F̄(rt)
can be obtained.
S2. The resulting prior distribution on F̄(λ1), F̄(λ2), . . . , F̄(λt) is

F̄(λ1:t) ∼ N (m0(λ1:t), Σ0(λ1:t, λ1:t)).

S3. Find the current optimal array placement r∗ corresponding to the F̄∗
t = mins≤t F̄(r1:t).

S4. Choose rt+1 as the next sample point by finding the optimal value of optimization
problem (11), (12) or (14) using conditional distribution (9).
S5. Add {rt+1, F̄(rt+1)} to the known sensor location sample, set t = t + 1.
S6. Repeat step 1,2 3,4 and 5 until convergence.

4. Numerical Experiment

To demonstrate the algorithm’s performance, the microphone array placement design
issue in different dimensions is provided. Convex optimization subproblems are solved
using the quadprog function in Matlab, and Bayesian optimization pocket GpyOpt is
employed in Python 3.7. All codes are performed on a laptop with Intel(R), Core(TM) i5
CPU, and 2.42 GHz.

In the following example, the desired response function is defined throughout an area
that would be suitable for a hands-free or multimedia mobile phone application in the
passband area:

Gd(s, λ, f ) = e−j2π f ( ∥s−rc∥
c + L−1

2 T), (15)

where rc = ∑M
i=1 ri is the center position of all placement variables λ and c = 340.9 m/s is

the speed of sound in air. Equation (15) is from [6]. We put Gd(λ, s, f ) = 0 in the stopband
to remove the interference and background noise. The minimum distance between two
distinct elements is ε̄d = 0.0152, ρ(s, f ) = 1, and fs = 8 khz; maximum frequency is selected
as 4 kHz. A performance limit, which is the logarithmic value of observations F̄(λ∗) under
the optimal microphone array design λ∗, is provided to represent the differences among
various microphone array configurations:

PLIM =: 10logF(λ∗).

4.1. The 2D Microphone Array Placement Design Problem

A two-dimensional microphone array configuration problem is considered firstly.
Both the passband and the stopband are specified on the plane z = 0, where the speaker
is located. The microphones are located on plane z = 1 (see Figure 2). Discussion and
comparison of microphone arrays containing nine elements follow.

These are the specific region definitions:

Ωp = {(s, f )|∥(x, y)∥ ≤ 0.4 m, z = 0 m, 0.5 kHz ≤ f ≤ 1.5 kHz},

and

Ωs = {(s, f )|∥(x, y)∥ ≤ 0.4 m, z = 0 m, 2.0 kHz ≤ f ≤ 4 kHz}
∪ {(s, f )|1.8 m ≤ ∥(x, y)∥ ≤ 3.0 m, z = 0 m, 0.5 kHz ≤ f ≤ 1.5 kHz}
∪ {(s, f )|1.8 m ≤ ∥(x, y)∥ ≤ 3.0 m, z = 0 m, 2.0 kHz ≤ f ≤ 4.0 kHz},

and the placement feasible region is

Λ = {λ||x| ≤ 1.5 m, |y| ≤ 1.5 m, z = 1 m}.
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The discretization of Ω = Ωp ∪ Ωs is applied: 60 points are generated for each
frequency domain area and 0.2 m for each spatial domain region.

Figure 2. The setup of the 2D microphone array placement design problem.

The performance and CPU time (measured in seconds) for the proposed Bayesian
optimization method and the hybrid descent method applied to microphone arrays with
nine elements are displayed in Table 1. In this table, the Bayesian optimization method
consists mainly of a GP and different acquisition functions. It is evident that the proposed
algorithm could considerably boost the speed of computing while achieving the same
broadband beamformer performance as the hybrid descent approach [9]. The proposed
algorithm reaches the optimal performance in only 1518 s, which is more than four times
faster than the hybrid descent method. Moreover, an optimal set of microphone arrays can
effectively improve the performance of the beamformer compared with linear placement.
In Table 1, we also show the average stopband gain Gs at f = 1400 Hz and filter length
L = 50. They illustrate that the noise in the stopband region is better suppressed with an
optimal set of microphone array configurations compared with linear placement.

Table 1. Summary of beamformer performance with different array placement design.

GP-PI GP-EI GP-LCB GA-Gradient * Linear

CPU time (s) 1255 1518 1375 6407 -
PLIM (dB) −38.5996 −39.1635 −38.1337 −39.1635 −19.4577

Gs (dB) −43.5372 −45.6333 −42.0707 −45.6333 −25.0743
* GA-gradient stands for hybrid descent method.

By applying the proposed algorithm and hybrid descent method, the optimal place-
ment r∗ is shown in Figure 3 below. Because the optimization problem in (3) is non-convex,
as can be seen from these figures, the microphone array configuration can vary significantly.
Figure 4 shows the beamformer’s performance for the optimal microphone array con-
figuration r∗ in the (x, y)-plane at 1400 Hz and in the (x, f )-plane at y = 0 for a filter
of finite length L = 50 to illustrate the impact of the beamformer, where G denotes the
beamformer’s output (Equation (1)) over the whole targeted region.
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Figure 3. Optimal microphone array placement in the 2D plane with different methods, the blue
stars represent the position of each microphone. (a) Bayesian optimization method based on GP
regression and PI acquisition function. (b) Bayesian optimization method based on GP regression
and EI acquisition function. (c) Bayesian optimization method based on GP regression and LCB
acquisition function. (d) Hybrid descent method based on GA and gradient descent algorithm.

(a)
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32000
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Figure 4. Performance under the optimal 2D configuration. (a) Beamformer output response in the
(x, y)-plane at 1400 Hz with filter length L = 50. (b) Beamformer output response in the (x, f )-plane
at y = 0 with filter length L = 50.

It is worth noting that a failure of one of the microphones in the optimal array con-
figuration will not invalidate the beamformer, but it will degrade the performance. The
stopband gain Gs is −45.6333 dB in the optimal microphone array. If a microphone in the
array fails randomly, stopband gain Gs reduces to −31.7916 dB.
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4.2. The 3D Microphone Array Placement Problem

In the next example, a 3D microphone array placement design problem is considered.
The microphone elements are selected in a solid that is 0.5 m away from the desired cubic
region for beamforming, as shown in Figure 5 below.

These are the specific region definitions:

Ωp = {(s, f )|∥(x, y)∥ ≤ 0.4 m, 1.5 m ≤ |z| ≤ 2 m, 0.5 kHz ≤ f ≤ 1.5 kHz},

and

Ωs = {(s, f )|∥(x, y)∥ ≤ 0.4 m, 1.5 m ≤ |z| ≤ 2 m, 2.0 kHz ≤ f ≤ 4 kHz}
∪ {(s, f )|∥(x, y)∥ ≥ 1.8 m, |x|, |y| ≤ 3.0 m, 1.5 m ≤ |z| ≤ 2 m, 0.5 kHz ≤ f ≤ 1.5 kHz}
∪ {(s, f )|1.8 m ≤ ∥(x, y)∥ ≤ 3.0 m, 1.5 m ≤ |z| ≤ 2 m, 2.0 kHz ≤ f ≤ 4.0 kHz},

and the placement feasible region is

Λ = {λ||x| ≤ 1.5 m, |y| ≤ 1.5 m, 1.5 m ≤ |z| ≤ 2 m}.

Figure 5. The setup of the 3D microphone array placement design problem.

The frequency and spatial domain areas are divided in a way that is similar to the
2D microphone array situation. Table 2 displays that the computational efficiency of the
proposed algorithm can be increased by almost five times and that the performance of
the beamformer is better than the hybrid descent method. Moreover, an optimal set of
microphone arrays can effectively improve the performance of the beamformer compared
with linear placement. The average stopband gain Gs at 1400 Hz and z = 1.6 m in
Table 2 demonstrates that the noise at the stopband is suppressed well with the optimal
array placement.

Table 2. Summary of beamformer performance with different array placement designs.

GP-PI GP-EI GP-LCB GA-Gradient * Linear

CPU time(s) 1718 1597 1535 8340 -
PLIM(dB) −36.7066 −36.7088 −36.7082 −36.6520 −16.9972

Gs(dB) −61.2713 −62.7589 −63.1721 −61.7405 −27.4568
* GA-gradient stands for hybrid descent method.

We primarily display in Figure 6 where the microphone arrays are located. It can be
seen that the microphone placements are scattered evenly over the middle of the rectangle’s
feasible domain, with a higher density on the side that is the furthest from the sound source.
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Figure 7 shows the beamformer’s performance for the ideal set of microphone arrays in the
(x, y)-plane at 1400 Hz, z = 1.6 m and in the (x, z)-plane at 1400 Hz, y = 0 for a filter of
finite length L = 50.

The stopband gain GS that can be achieved with an optimal microphone array place-
ment is −63.1721 dB. If an element in the microphone array fails, the stopband gain
GS would reduce to −51.5854 dB without being completely ineffective.

In fact, we design 2D and 3D examples based on different scenarios. The 2D case
is also a sub-example of the 3D one. In the 2D case, the microphone array is placed at
the same level , but the microphones can be positioned at different levels in the 3D case.
The 3D case is a bit more complex, and solving the optimization problem demands more
computational time. In addition, better suppression of noise in the stopband is achieved in
the 3D case.

Figure 6. Optimal microphone array placement in the 3D plane with different methods, the blue
stars represent the position of each microphone. (a) Bayesian optimization method based on GP
regression and PI acquisition function. (b) Bayesian optimization method based on GP regression
and EI acquisition function. (c) Bayesian optimization method based on GP regression and LCB
acquisition function. (d) Hybrid descent method based on GA and gradient descent algorithm.
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Figure 7. Performance under the optimal 3D configuration. (a) Beamformer output response in the
(x, y)-plane at 1400 Hz, z = 1.6 m, with filter length L = 50. (b) Beamformer output response in the
(x, z)-plane at 1400 Hz, y = 0, with filter length L = 50.

5. Conclusions

In this paper, the Bayesian optimization method has been employed to solve the micro-
phone array configuration design problem to enhance beamformer performance. Since the
configuration design problem is non-convex and highly non-linear and the objective function
is time-consuming to calculate, GP has been used as a surrogate function to approximate the
objective function. The acquisition function guided the iterations toward the optimal set of
microphone array placements in the sense of probability, and different acquisition functions
were used for comparison. Numerical experiments have demonstrated that the proposed
Bayesian optimization method finds similar or better microphone array configuration more
efficiently. The proposed Bayesian optimization method is at least four times faster than the
hybrid descent method to find the optimal placement from the numerical results. Therefore,
the method is a competitive approach to design microphone placements when short time is
required. As a future extension, it is interesting to consider alternative probabilistic agent
models in Bayesian optimization to approximate the complicated objective function. Also,
more advanced versions of acquisition functions could be considered. Optimal microphone
arrays can be realized in many commercial products such as receivers in smart home systems
and multi-function classrooms.
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