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Abstract: Through the use of Underwater Smart Sensor Networks (USSNs), Marine Observatories
(MOs) provide continuous ocean monitoring. Deployed sensors may not perform as intended due to
the heterogeneity of USSN devices’ hardware and software when combined with the Internet. Hence,
USSNs are regarded as complex distributed systems. As such, USSN designers will encounter chal-
lenges throughout the design phase related to time, complexity, sharing diverse domain experiences
(viewpoints), and ensuring optimal performance for the deployed USSNs. Accordingly, during the
USSN development and deployment phases, a few Underwater Environmental Constraints (UECs)
should be taken into account. These constraints may include the salinity level and the operational
depth of every physical component (sensor, server, etc.) that will be utilized throughout the duration
of the USSN information systems’ development and implementation. To this end, in this article we
present how we integrated an Artificial Intelligence (AI) Database, an extended ArchiMO meta-model,
and a design tool into our previously proposed Enterprise Architecture Framework. This addition
proposes adding new Underwater Environmental Constraints (UECs) to the AI Database, which
is accessed by USSN designers when they define models, with the goal of simplifying the USSN
design activity. This serves as the basis for generating a new version of our ArchiMO design tool that
includes the UECs. To illustrate our proposal, we use the newly generated ArchiMO to create a model
in the MO domain. Furthermore, we use our self-developed domain-specific model compiler to
produce the relevant simulation code. Throughout the design phase, our approach contributes to the
handling and controling of the uncertainties and variances of the provided quality of service that may
occur during the performance of the USSNs, as well as reducing the design activity’s complexity and
time. It provides a way to share the different viewpoints of the designers in the domain of USSNs.

Keywords: IIoUT; Smart Sensors; Smart Fusion Servers; Domain-Specific Modeling Languages;
ArchiMate; Enterprise Architecture; Marine Observatories; NS-3; IMS

1. Introduction

The Intelligent Internet of Underwater Things (IIoUT) is proposed for sensing, collect-
ing, and storing underwater information [1]. IIoUT is an application based on Underwater
Smart Sensor Networks (USSNs) since it enhances deep sea monitoring; the tracking of
various aquatic creatures; and ocean monitoring and observation systems, which are based
on acoustic communication [2,3]. Logically, USSNs operate in the same manner as Smart
Sensor Networks (SSN) that are not submerged in water, providing the same services,
such as deep sea/underwater monitoring. However, the unreliable transmission medium,
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erratic radio signals, constrained bandwidth, low transmission rate, sluggish propagation
speed, inborn noise, node mobility, lesser resources, and restricted battery capacity present
obstacles for USSNs. Channel modeling, optimal routing, security, privacy, communication
overhead, congestion control, packet error rate, packet latency, energy consumption, and
other problems are brought on by these difficulties [4,5]. By making such information sys-
tems’ design phase less complex, this article seeks to address some of the aforementioned
issues, such as the complexity of modeling USSNs.

Thus, we can conclude that the USSN deployment phase is different from the non-
underwater phase since during this phase the experts have to take into account certain
underwater environmental constraints. In general, an environmental constraint is a restric-
tion on a physical (human/device such as sensor) object’s ability to act, perform, construct,
or do anything else. In relation to USSNs, environmental constraints that need to be taken
into account include the salinity and depth at which an underwater sensor should be
positioned for optimal performance. Failure to do so could have a negative impact on the
performance of the entire SSN and result in the improper underwater deployment of all SSN
components, including servers, sensors, cables, and other physical and telecommunication
components [6,7].

USSNs are composed of artificial intelligence (AI) and several specialized sensors [8].
This demonstrates how Smart Sensors are connected to various Smart Fusion Servers with
AI Databases [9] through the use of Distributed Fusion Architecture (Figure 1) [10] to
carry out multiple tasks like collecting, processing, and storing data continuously and
permanently from various sensors dispersed throughout various locations within the
same network. Therefore, the primary job of SSNs is to gather environmental data and
transmit them to a centralized location or processing system, such a Smart Fusion Server,
for evaluation and decision-making.

Figure 1. Centralized, hierarchical, and distributed fusion architecture.

By now, it ought to be obvious how challenging it is to create USSNs since various
resources contribute to its intricacy. Nonetheless, in this article, we specifically discuss
the following [7,11,12]: since a distributed system’s architecture consists of many hetero-
geneous components, it is a complicated system by itself. This indicates that it will be
challenging to analyze, design, and deploy USSNs. Certainly, you can expand upon the
importance of the design of the USSN and the potential consequences of design mistakes
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throughout the deployment phase of any USSN project. This is due to the fact that, in the
USSN life cycle, the design phase is performed first, coming before the deployment phase.

We focus our research on the applications for the Marine Observatories (MOs), which
have a common concept but employ diverse technologies. More specifically, our research’s
focus is dedicated on the Marine e-Data Observatory Network (MeDON) (Figure 2).

Figure 2. MeDON’s run-time (based on Distributed Fusion Architecture (Figure 1)—an example:
N = 6 Smart Sensors and Y = 3 Smart Fusions Servers).

The MeDON project [13] relies on USSNs in order to enable continuous ocean ob-
servation. MeDON uses various communication protocols (REST, SOAP, and executive
ones) to connect its various physical and logical components (e.g., Smart Sensors, Smart
Fusion Servers, and Object Localization Algorithms), and together, these sensors gather
data, which is subsequently transferred to the assigned workstations where it operates as a
complex distributed information system. This indicates that the structure of MeDON [13]
is similar to that of the USSN system, meaning that the issues we previously discussed
regarding the complexity and challenges encountered during the USSN project’s design
and deployment also arise during MeDON’s design and deployment.

Accordingly, our scope in the MeDON project revolves around the intricate design of
the USSN and the associated mechanisms for locating underwater moving objects. This
aspect of the project is critical for achieving its overarching goals, which include monitoring
and understanding the marine environment. According to [14], the complexity of the design
phase is due to: (1) the several expertise domains (information systems, business process,
and underlying infrastructure modeling) that the designer(s) must possess in order to
model and explain such systems; (2) the MeDON/USSN Information System’s distributed
software structure (Figure 2), which is characterized by the fact that individual components,
such as Smart Fusion Servers and Smart Sensors, are accountable for meeting specific
requirements; and (3) the high levels of accuracy that must be met by the designer(s) for
each component that must be deployed underwater throughout the design phase, especially
for the physical components such as Smart Sensors. For this purpose, an information system
like MeDON or any other USSN has a complicated design phase that demands meticulous
attention to detail. In light of this, mistakes/errors committed during this vital phase might
have a significant and negative impact on the project’s overall performance [7,11,12].
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In terms of our contribution in the MeDON project, we are involved via underwater
tracking moving objects. In order to deliver such high-level services, we have to be careful
not to make any mistakes during the design phase, especially when it comes to proper and
appropriate deployment. Otherwise, this has a negative impact on the overall performance
of the MeDON project (e.g., inaccurate object localization in our case). The next section will
go into more detail about these detrimental effects.

For this purpose, our main objective is to simplify the work of SSN designers in order
to prevent errors during the deployment phase and ensure optimal performance across the
whole SSN.

According to [7], architecture (2D or 3D), salinity levels, and operable depth are the
essential Underwater Environmental Constraints (UECs) that must be adhered to during
the deployment phase of USSNs. Therefore, because of the earlier validation procedure at
the design phase, mistakes that may arise during the deployment phase are decreased if
we ensure that these UECs are well respected throughout the design phase. Thus, there
is a requirement for seamless integration between the MO information system and the
communication system (e.g., IMS) [15].

In order to tackle all of the aforementioned issues and to reach our main objective,
our research question revolves on improving the SSN’s design phase and streamlining the
intricate details of the deployment phase.

We present an extension to the ArchiMO meta-model and design tool (Figures 3 and 4)
in this work. ArchiMO was previously developed and published in [2,3,16]. The ArchiMO
meta-model enables us to generate a specific design tool that is coherent with the Archi
tool [17] but contains additional concepts, elements, constraints, and relations that are
specific to the MeDON/MO domain, and for data fusion concepts [10], we use the ArchiMO
design tool. In order to create this generation, we have extended the Eclipse Modeling
Framework (EMF) based on the fundamental principles of Model-Driven Engineering
(MDE) [18]. EMF is based on ArchiMate, an Enterprise Architecture modeling language
consisting of three layers: application, business, and technology. Briefly, the generated
design tool ArchiMO helps the SSN designers to model the USSN system and avoid syntax
errors that may be made during the design activity.

Figure 3. ArchiMO meta-model—extended business and application layers of Archimate.
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However, an AI Database including the newly proposed UEC is absent from ArchiMO.
As a result, the SSN designer was able to define an underwater sensor during the design
phase without the ArchiMO tool preventing him or even warning him about potential
mistakes and without informing him about the appropriate UEC values that he should
uphold to prevent mistakes during the implementation phase.

In this article, we have extended the ArchiMO meta-model (abstract syntax), concrete
syntax, and the design tool by incorporating new Underwater Environmental Constraints
(UECs) [7]. Our extension’s approach is based on the utilization of domain-specific mod-
eling languages (DSMLs). The extended ArchiMO represents the specificity of the SSN
domain in terms of certain UECs that are required for the proper deployment of USSNs to
ensure its appropriate performance and functioning. Regarding the generation process of a
new version for our ArchiMO, it is similar to what we conducted in our previous research
in [2,3,16], which will be discussed in the contribution section.

Figure 4. ArchiMO design tool—extended MO business and application layers (palettes) [19]. The
MO elements that are added to the pre-existing Archi Tool elements are shown in red circles.

In addition, we have connected our extended ArchiMO design tool with the IP Mul-
timedia Subsystem (IMS) meta-model serves to seamlessly integrate the various Smart
Sensors and Smart Fusion Servers within the sensor network with the broader information
system via the core network [20,21]. Subsequently, we apply our design model to a model
compiler, which generates a simulation code that can be executed directly within the NS-3
network simulator.

The article content is organized as follows: in Section 2, we present the related work
that is connected to the design tools. Section 3 presents MO project. In Section 4, we
present MDE fundamentals and the DSML, ArchiMate, and AI Databases. Section 5
explains the abstract syntax, concrete syntax, semantics, and AI Database of the proposed
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DSML including UEC. In Section 6, we present the newly added UEC along with how it
is generated with the ArchiMO design tool, as well as the simulation approach. Then, in
Section 7, we conclude and discuss our future work.

2. Related Work

We provide the relevant work in relation to the design tools in this section. We are
interested in the following concerns, which we will define and examine in this section in
relation to the concept of Architectural Description Languages (ADLs) [22–25] and their
design tools: (C1) utilizing a language’s syntax or language structure to prevent errors at
the design level; (C2) various points of view (a viewpoint is a work product establishing
the conventions for the construction, interpretation, and use of architecture views to frame
specific system concerns) that are reflected in the architectural description [26]; (C3) design
tool extensibility; (C4) the variability of components; and (C5) a platform for execution
and testing.

Regarding the concern of preventing errors, the expanded design tool works to stop
problems before they happen, saving the designer the trouble of fixing them later. The
sources for this error prevention strategy include [27–29]. Similar to our methodology, it is
circumvented by utilizing the abstract syntax (our suggested concepts), in which we have
established and included our particular concepts, constraints, and relations.

Regarding the concern of many viewpoints, the extended design tool offers the design-
ers a variety of viewpoints based on their domains of experience. The design tool in [27–29]
offers only one viewpoint to suit software development activities. It is not possible for
various designers to share a design created with this design tool. This is because there is
no architectural framework that produces a design tool that complies completely with the
aforementioned ooncer [30]. Our approach takes this into account because of the several
EA standard layers that distinguish between different points of view.

As for the extensibility concern, adding new concepts and restrictions to an existing de-
sign tool is made possible through the extension of a meta-model [27,28]. As demonstrated
in [31,32], our method achieves this by adding additional constraints to the ArchiMate
meta-model and creating a new design tool that incorporates these constraints.

Regarding the heterogeneity concern, which is the presence of various components and
communications associated with various activities and contexts, in [27–29], we encounter
this heterogeneity in the software components and models. The diversity of components
in our approach is seen in our MO model, which has several Smart Sensors linked to
numerous Data Fusion Servers.

Concerning the platform for the execution test, we may find an integration between
two distinct platforms, as shown in [33], to provide an automated execution test of a
given complex model. Additionally, as shown in [27–29], there are platforms on which the
designer is unable to test and validate his models or instances. Nevertheless, as per [31],
our approach enables us to verify the generated models on an executable platform that is
integrated inside the same framework that facilitates model construction (see to Section 6).
For instance, messages can be sent and received between Smart Sensors and Fusion Servers
using the IMS.

Actually, we should evaluate the detrimental effects of mistakes or sub-optimal sensor
network designs on the overall performance of USSNs in order to further elucidate C1.
According to C1, these mistakes should be avoided since they may arise from the follow-
ing outcomes [7,11,12]: (1) Inaccurate and incomplete data collection: this undermines
the project’s ability to gather reliable information about the underwater environment,
including the quality of services provided such as the movement patterns of marine
mammals/underwater moving objects and the state of the ecosystem. (2) Operational
inefficiencies: this can introduce an increased energy consumption, high maintenance costs,
and reduced sensor network lifespan. These inefficiencies can strain project resources
and hinder its long-term sustainability. (3) Data misinterpretation and misalignment with
project objectives: this involves drawing incorrect conclusions or failing to identify critical
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environmental trends, hindering scientific understanding. (4) Wasted resources in terms
of designers and analysts: this is costly due to the expenses for redesign and retrofitting.
This not only drains project resources but also leads to delays in deployment, potentially
impacting the project’s ability to meet deadlines and objectives. (5) Project reputation: this
may make the project less attractive to collaborators, stakeholders, and funding agencies.
(6) Inappropriate/inaccurate deployment: this could result in redeploying all or some of
the SSN’s components. This is costly due to the substantial expenses for the procurement
of specialized boats, maritime cables, hydrophones, Smart Data Fusion Servers, and the
engagement of diving experts.

Accordingly, certain Underwater Environmental Constraints (UECs) must be consid-
ered while deploying USSNs in order to prevent errors that may arise during the design
and deployment phases, as we have found in [6,7]. Otherwise, there will be a detrimental
effect on the project’s overall performance due to these intricacies, which will increase
the likelihood of errors during the deployment phase. Furthermore, it has a detrimental
impact on sensor algorithm performance, diminishing its optimization. For example, Smart
Sensors (Smart Hydrophones in our case) may only detect raw data and then transfer it
to other devices (Smart Fusion Servers in our case) within the same networks without
any analysis. This may occur when underwater sensors are not deployed in the proper
location (e.g., appropriate operable depth). In this case, the sensor may detect and transmit
erroneous and useless data to other devices because sensors function differently depending
on the operable depth. For instance, it may lead to incorrect object location detection [34,35].
It is crucial to recognize the risks that will inevitably present during the deployment phase
as a result of design phase mistakes.

3. Marine Observatories

An analog or digital transducer paired with a CPU and a communication interface
is called a Smart Sensor. It is composed of a controller or processor that supports some
intelligence, a transducer element, and an electrical signal conditioning system all combined
into one package [36]. This type of sensor is known as a system-on-a-chip (SoC) because it
combines electronics and a transducer (which changes form) element onto a single silicon
chip. The primary goal of combining electronics and sensors is to create an integrated
sensor, often known as a Smart Sensor.

In the context of the Marine e-Data Observatory Network (MeDON) project (Figure 2),
Smart Sensors should be employed in the project’s development and deployment.

Many advantages come from integrating a Smart Sensor into a MeDON project; here
are a few of them: (1) The sensor’s input is processed by the embedded CPU to produce
meaningful information. This indicates that the device’s Multiple Controller Unit (MCU)
can compute the input data without using up all of its energy. By doing this, the device’s
power consumption from the base sensors is reduced. (2) The real-time data gathered by
these sensors can be instantly linked to other devices and transferred via an Application
Programming Interface (API) without the need for time-consuming intermediate processes.
(3) It may receive input by recognizing different data parameters from several information
sources and then utilize built-in routines to determine a particular combination of inputs
before sending the data to networks that are currently active. (4) It makes it possible
for information to be collected automatically, which reduces false noise that is recorded
alongside accurate information.

Consequently, a Smart Sensor can gather environmental data more precisely and with
lower false noise [1]. In the context of Internet of Things (IoT) technologies (like MeDON),
Sensors and Smart Sensors are essential components. Fundamentally, sensors aid in the
gathering and processing of data used by IoT devices. In the IoT domain, a Smart sensor
can then make certain decisions.

Future big data collecting systems will be developed using Underwater Smart Sensor
Networks with a focus on environmental data acquisition [13,37,38]. They enable the
interchange and processing of data between the various devices (e.g., Smart Fusion Servers,
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Smart Sensors). We can install software components on all of these devices to handle and
store the data and information. As long as the network is functioning properly, these
components can provide new features or services such as the localization of marine mam-
mals or underwater moving objects as the Marine e-Data Observatory Network (MeDON)
project (Figure 2), which provides an example of a Marine Observatories (MOs). To provide
such services, SSNs ought to consist of a network of specialized heterogeneous devices
and communications infrastructure that can record and monitor data at different loca-
tions with varying levels of computational and communication capabilities with different
communication protocols.

In this situation, to provide such a localization service, the designer should be able
to integrate N acoustic Smart Sensors (Smart Hydrophones) connected to Y Smart Fusion
Servers to allow for data interchange between them. This exchange’s scenario is predicated
on the concept of Distributed Fusion Architecture (DFA) [10] (Figure 1). These servers
process the acoustic data that the Smart Hydrophones collected before disseminating it over
the network. The same database is used by all servers to store data to be analyzed to become
information. The web server, where a web application is configured, receives the processed
and analyzed data from the databases servers. As a result, the web server transmits, via a
graphical user interface (Figure 2), the information picked up by the hydrophones, such as
the voice of the dolphin, to the web clients.

This implementation gives priority to modularity in its architecture. One can develop
and deploy the application across numerous sites more easily when it is modular. This is
required as we are working with distributed systems [10] (Figure 1). In order to achieve the
requested modularity, we choose to break the system down into several components. There
are two groups of components (Figure 5): (1) The core components and (2) the functional
components. The core components provide the data flow (C6 Observatory Manager), the
found data, and part of the stored data functionality (C3 Data Management). The core
components should be deployed before all other components. Moreover, the component
C6 Observatory Manager should be the first one to be deployed. Then, it is possible to
deploy the component C3 Data Management. The other components can then be deployed.
Furthermore, as depicted in (Figure 6), MeDON has been physically deployed in many
places by connecting the various components using SOAP Web Services.

Figure 5. Structure of the distributed software of the Information System of MeDON.

The terms “hydro” (water) and “phone” (sound) combine to form the word hy-
drophone. To put it simply, a hydrophone is an underwater microphone that is used
to measure sound in the water [39].

Acoustic waves are considered the most efficient carriers for underwater applications
and long-distance information transmission (e.g., MeDON) due to their significantly longer
propagation distances in water compared to electromagnetic waves. Additionally, because
of issues with multipath propagation, time fluctuations in the communication channel,
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short bandwidth, and the need for powerful signals, the usage of electromagnetic wave-
based communications is severely restricted underwater. For this reason, sound has been
applied extensively in the undersea field up to this point [39].

Figure 6. Physical deployment of the Information System of MeDON.

In the field of underwater acoustic measurement, several hydrophone structures
with various operation mechanisms are employed to fulfill the various needs of the cir-
cumstances. These gadgets include underwater military weaponry and SONAR (Sound
Navigation and Ranging) equipment, in addition to standard commercial electronics.

A 2D or 3D array/network of hydrophones can be utilized in place of a single hy-
drophone, depending on certain approaches and algorithms, to enhance performance and
provide additional features in both active and passive modes.

More specifically, the logical sequential activities of MeDON are represented by
(Figure 7). Our article focuses on the two activities (Object Localization and Data Transmis-
sion Activities) that are denoted by the red circle in (Figure 7).
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Figure 7. Logical activities of MO/MeDON.

4. Model-Driven Engineering (MDE), Domain-Specific Modeling Languages (DSML),
and Artificial Intelligence (AI) Databases

They are broken down into three sections:

4.1. Model-Driven Engineering (MDE)

MDE [26] is a software development method that focuses on creating and exploiting
domain models. It enables the use of models for simulating, estimation, understanding,
and communication. The modeling idea and model transformations in MDE aid in man-
aging complexity. Modeling aids in the high-level abstraction of the design, and model
transformation aids in the generation of design tools.

In our approach, modeling tools follow the constraints and represent the concepts that
are defined in the meta-model (the meta-model defines by itself a language for describing a
specific domain of interest [40]). Similar to programming languages, it makes it possible
to instantiate lots of conforming models [41]; numerous programs can be implemented
relying on a specific programming language (e.g., C, C++, Java, etc.).

The modeling and meta-modeling processes are made easier by the powerful environ-
ment offered by the Eclipse IDE, which also supports a wide range of model transforma-
tion languages.

Model transformations enable the direct and automatic generation of design tools
and simulation programs while taking into account meta-models and model instances.
Each model transformation is based on a set of guidelines that define and regulate the
transformation procedure. Models that adhere to various meta-models may be mapped by
the transformation rules (on the same abstraction level) such as ATL [42], or map between
different domains using one meta-model for the source model to generate texts/codes (e.g.,
XPAND [43]).

In our case (Figure 3), the input model reflects the design at a very high level of
abstraction, and the meta-model (the extended ArchiMate meta-model) represents the
abstract syntax [26,44]. Our automated code generation approach connects the simulation
scripts and the design model directly [45]. As a result, it minimizes implementation errors
and shortens the implementation time for complicated simulation programs.

4.2. Domain-Specific Modeling Languages (DSML)

According to [46], Domain-Specific Modeling Languages (DSMLs) allow designers
from various fields and backgrounds to take part in software development tasks and to
express their own requirements using domain concepts. The three parts of a DSML [47]
are semantics, abstract syntax, and concrete syntax. The relationship between modeling
concepts is defined by the abstract syntax.

Concrete syntax comes in a variety of forms, including visual, textual, XML-based,
etc. [48]. The representation of the abstract syntax is defined by a set of rules that are
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connected to the concrete syntax. Semantics, which are connected to abstract syntax, define
a model’s meaning. They serve as well-defined model rules that limit the use of the concrete
syntax [47]. According to [48], modeling languages are used to describe systems with a
high level of abstraction. We define distributed systems for MeDON/MO in connection to
our goals. UML only has one layer that encompasses all of the design concepts, and these
concepts are too broad to meet our needs. For further information, see Horton [49]. Because
it relies on the TOGAF framework and can describe systems from the IT domain and share
multiple points of view during the design process, ArchiMate is the modeling language we
chose [26]. Additionally, as of January 2018, the ArchiMate meta-model by The Open Group
can be used to generate the most recent iteration of the NATO Architecture Framework
(NAF v4) [30]. A standard for creating architectures is NAFv4.

The Enterprise Architecture (EA) framework is a fundamental component of Archi-
Mate [26,50]. The system design is broken down into the business, application, and techno-
logical layers. According to our methodology, we show these levels as follows:

1. Business Layer: describes the roles and responsibilities of the end user. It explains
how the end-user views the service operations and how they flow together.

2. Application Layer: describes the features and software parts of the service. It explains
the capabilities and method of operation of the system being studied.

3. Technology Layer: describes the underlying platform’s hardware components, topol-
ogy, signaling protocols, and functions. It provides information about the execution
platform’s functionalities that the application layer’s functions can utilize.

4.3. Artificial Intelligence (AI) Databases

AI databases are designed to handle three different types of data: unstructured, semi-
structured, and structured. All of these data types are necessary for creating and utilizing
AI models.

The many formats in which information is saved and structured are referred to as
“types of data” when discussing AI databases. These formats are crucial for processing,
analyzing, and using data to create AI models [9].

Structured data are set up in a very clear and organized way. Each data entry contains
particular fields and features with clearly defined data types, and the system follows a
transparent data model.

Tables, spreadsheets, and classic relational databases all contain organized data as
examples. The links between the data elements are well specified in structured data, which
makes them simple to query and analyze with established techniques. Structured data
for AI applications might include numbers, categorized labels, dates, and other clearly
specified information.

5. Contribution

Domain specificity (MO) in our situation is represented by concepts/operations and
constraints that are generally represented by a meta-model of Domain-Specific Language
(DSL) [48]. Information systems are modeled and described using a modeling language
that is provided by a meta-model. It includes the language’s abstract syntax, which explains
its constraints in terms of the concrete syntax that the design tool can use.

Two views comprise our previous proposed ArchiMo meta-model ([16] (Figure 3):
one for the application layer and another for the business layer. In order to connect the
information system with the core network at the technological layer, we rely on a meta-
model for IMS that offers an underlying platform in [16].

In this section, we present our contribution to extend the ArchiMO meta-model that
we previously developed and published in [2,3,16]. Our previous contribution ArchiMO is
presented in (Figures 3 and 4).

The ArchiMO meta-model represents the domain specifications of MO. It enables us to
generate a specific design tool that is coherent with Archi tool [17] but contains additional
concepts, elements, constraints, and relations that are specific to the MeDON/MO domain
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and for data fusion concepts [10]. Briefly, the generated design tool ArchiMO helps the
SSN designers to model information systems such as MeDON and avoid syntax errors that
may be made during the design activity.

Our primary goal in writing this article is to improve ArchiMO’s intelligence by
increasing its ability to identify mistakes that SSN designers may have made when creating
and developing MO models. Additionally, we aim to keep the entire deployed SSN
operating at peak performance and avoid any malfunction.

To reach this goal, we have extended the ArchiMO meta-model (abstract syntax),
concrete syntax, and the design tool by incorporating new Underwater Environmental
Constraints (UECs). This extended ArchiMO represents the specificity of the SSN domain
in terms of certain UECs that are required for the proper deployment of USSNs to ensure
the appropriate performance and functioning of SSNs [6,7,11,12,34,35]. Additionally, it
enables us to generate a new and an updated version of our ArchiMO design tool that is
consistent with Archi and includes the new UECs.

Relying on [6,7,34] and according to MeDON project [13] (Figure 2), SSN information
systems must meet certain UEC requirements in order to be deployed properly. This
implies that every physical component of SSNs, including Smart Sensors (SSs) and Smart
Fusion Servers (SFSs), must comply with these UECs. Otherwise, inadequate service
quality on each deployed component level (e.g., inaccurate/useless detected data by the
underwater SS) and overall SSN performance (e.g., erroneous/useless gathered, analyzed,
and treated data that are provided by underwater SFSs after receiving data from different
underwater SSs) may result from this. As a result, we identify the following UECs that
are interrelated, depend on each other, and need to be taken into account when deploying
underwater SSSs/SFss to ensure the appropriate performance and functioning of SSN [11]:
(1) architecture (2D or 3D); (2) salinity level; and (3) operable depth.

SSN designers need to be aware of the various ways in which these UECs are inter-
dependencies and related in terms of values [6] such as the two following scenarios: (1) If
the experts want to deal with 3D architecture, they should be aware of the salinity level
(e.g., sea or shallow water) at which they wish to install the physical components of the
USSNs (e.g., SSSs/SFss). The deployment of SSs/SFs should be carried out at a depth
of 10,920 m underwater if the salinity level is sea. However, the deployment of SSs/SFs
should be carried out at a depth of 3000 m underwater if the salinity level is shallow water.
(2) If the experts want to deal with sea salinity level, they should be aware of architecture
type (e.g., 2D or 3D) of which they wish to install the physical components of the USSNs.
The deployment of SSs/SFs should be carried out at a depth of 110 m underwater if the
architecture is 2D. However, the deployment of SSs/SFs should be carried out at a depth of
10,920 m underwater if the architecture is 3D.

In this article, we have extended our ArchiMO meta-model by incorporating new
UECs. In practice, we have specialized the definition of the Smart Sensors according to the
UECs. This specialization involves creating an AI Database (Figure 8) that is connected to
the Eclipse Modeling Framework (EMF) by implementing java code in the EMF (e.g., JDBC
connection string, etc.), as well as by extending the Eclipse Modeling Framework (EMF),
which is based on the ArchiMate and ArchiMO meta-models, by implementing Java code
(e.g., control instructions such as if, else, etc.).
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Figure 8. Operational AI database model—underwater environmental constraints.

In technical terms, the extension of ArchiMO is carried out by: (1) using the ArchiMate
modeling language together with learning control (which is one application of Artificial
Intelligence) that is based on an AI Database and includes structured data that are necessary
for designing and deploying AI models in order to properly model USSN systems [9]. AI
Database, a relational database, is created containing various related entities that describe
how the data of the proposed UECs could be inserted, modified, and retrieved in an
organized and structured manner using a relational database management system (MySQL)
based on Structured Query Language (SQL); (2) implementing Java code in the EMF
(e.g., JDBC connection string, etc.), in order to invoke the values of UEC during the
design activity.

Then, in accordance with Archi, we have generated an upgraded version of our
ArchiMO design tool (Figure 4) that incorporates the new proposed UEC. Additionally,
when using this tool, the built and implemented AI Database is invoked by the imple-
mented Java code in order to retrieve data (Figure 8) related to UEC that must be respected
by SSN designers (Figures 9 and 10). This implementation is the grammar of the new
proposed DSML.

To visualize and have a graphical view for the added UECs, we utilized the generated
version of ArchiMO during the creation of an MO model. This design tool helps the designer
to model the information system in a highly abstract way by dragging and dropping the
elements (e.g., Smart Sensors) and relations from the palette. The potential to employ the
newly added UECs and their proper operation is verified during model editing in the
following way: when a designer taps the SS icon in the ArchiMO palette, our extended
ArchiMO design tool uses the AI Database to extract the relevant UEC’ values and the
targeted SS’s accompanying constraints according to a valid primary key that should be
assigned by the designers.

At this stage, ArchiMO continues asking the SSN designer to enter the right primary
key of the targeted SS and then the right architecture, salinity level, and operable depth
in order to compare and verify the entered values of UEC with the retrieved values from
the AI Database. At this point, if the SSN designer executes one of the next two scenarios,
he will obtain confirmation from the framework that he can deploy the Smart Sensor
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(Figure 9): (architecture: 3D, salinity level: sea, and operable depth: 10,920) or (architecture:
2D, salinity level: sea, and operable depth: 110). In the opposite scenario, as seen in (Figure
10), the SSN designer will be informed that he is unable to deploy the Smart Sensor due
to one or more improper UEC. Consequently, these constraints prevent the SSN designers
from inputting the improper UEC for SSs/SFs/Fixed Nodes.

Figure 9. Appropriate underwater environmental constraints.

Our contribution replies to the concerns that we have presented in section II by: (C1)
Enabling the SSN designers to cease entering the incorrect UEC for SS (Figures 9 and
10), ArchiMO helps to avoid potential syntax errors during the design activity. (C2) The
ArchiMO design tool considers different domains of experience; each domain expert works
in a specific layer (business, application, or technology) as the model created in section VI.
It provides three layers according to each domain specificity. One notable characteristic of
Enterprise Architecture (EA) frameworks is their ability to facilitate the sharing of multiple
viewpoints [51]. This, in turn, simplifies the complexity of individual views, making them
more manageable. The Enterprise Architecture frameworks also introduce interoperability
challenges when attempting to integrate various viewpoints with their respective dedicated
software. (C3) We have expanded the Eclipse Modeling Framework (EMF), an open and
standard framework based on the ArchiMate and ArchiMO meta-models, by implementing
java code and building an AI database that is invoked. Subsequently, we have generated
an upgraded version of our design tool (Figure 4) to have a specific one like ArchiMO
that incorporates the new proposed UEC. (C4) The ArchiMO design tool provides the
ability to deploy SSN models (the model created in section VI) that contains heterogeneous
components in terms of software; hardware; functionality; and communication protocols
such as Smart Sensors, Smart Fusion Servers, and Localization Algorithms.
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Figure 10. Inappropriate underwater environmental constraints.

6. Underwater Object Localization Service Case Study Relying on Multi-Sensor
Data Fusion

The data fusion analysis theory [10] is utilized in this case study to locate things, and it
primarily demonstrates how we apply our method to combine underwater sensor networks
with the information system employing IP technology and IMS. We use the localization
service as an illustration of one of these uses. The underwater moving object localization
service seeks to pinpoint an object’s location following its detection by a sensor or group
of underwater sensors. For underwater applications where electromagnetic waves cannot
travel great distances, acoustic hydrophones are suitable sensors. The topology of the Fu-
sion Servers and sensor network in the context of data fusion is represented by information
graphs (centralized and distributed architecture). According to [10], information graphs
(Figure 1) provide “convenient means to understand how fusion process flows impact a
network system”. To offer a thorough and comprehensive picture of an environment or
process of interest, data fusion [52] integrates information from sets of disparate sources.
Sensors [53] are the sources of data used in the MeDON project. These data are then
merged using multi-data fusion techniques, as described in [10]. The target location is
determined and updated by the localization algorithms applied in the server (Figure 1)
node (e.g., fusion node).

Our newly proposed UECs, which are introduced in this article, were validated by
using the most recent version of the ArchiMO design tool, which includes the UECs and the
previously added MO concepts. We built a model that localizes any underwater moving
object (in our case, MeDON).

In order to validate this, the newly added UECs and their appropriate functioning
are being used in the following manner while creating a MO model: upon tapping the
SS icon inside the ArchiMO palette, our extended ArchiMO design tool leverages the AI
Database to retrieve pertinent UEC values and the associated constraints of the selected SS,
contingent upon a legitimate primary key that the designers must designate. In order to
check and compare the input UEC values with the retrieved values from the AI Database,
ArchiMO now asks the SSN designer to enter the correct architecture, salinity level, and
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operational depth for the intended SS. The SSN designer will now receive confirmation
from the framework that he can deploy the Smart Sensor if he performs one of the following
two scenarios (Figure 9): (Architecture: 3D, Salinity Level: Sea, Operable Depth: 10,920) or
(Architecture: 2D, Salinity Level: Sea, Operable Depth: 110). In contrast, the SSN designer
will be notified that one or more incorrect UEC prevents him from deploying the Smart
Sensor (Figure 10). As a result, these constraints stop the SSN designers from entering an
incorrect UEC for Fixed Nodes, SS, or SFS.

The defined model is then used to run various error checks and automatically produce
simulation code for NS-3 using a model compiler (see to Section 6.4) that we have created
in [2,3], and [21]. A standard and classical networking simulator, the NS-3 tool, is used to
run this simulation code.

The design model comprises three views pertaining to the ArchiMate layers (Figure 11):
technology, application, and business. To guarantee interoperability across levels, this figure
demonstrates the use of certain relationships like “Used by” and “Realization” to associate
the many produced models according to the various ArchiMate layers. By utilizing the
inter-relationships (shown by the red lines in Figure 11) among these layers, the various
designers involved can combine their separately produced business, application, and
technology models into a single, coherent MO model.

Figure 11. Consistency between business, application, and technology layers [2,3].

6.1. Business Model

Figures 9 and 10 illustrate how the elements and constraints (like UEC) found in the
proposed meta-model and ArchiMO design tool can be used to define the business model
at the time of creating each Smart Sensor (hydrophone). In the context of MO, the object
localization system seeks to find and identify an object as it comes into the range of one
or more sensors. Sensors are connected to Fusion Servers, which employ a distributed
algorithm to determine the object’s position based on the data collected from these sensors.

In our approach, we concentrate on the communication among the several nodes that
comprise the MO model. It is possible to add internal actions to the simulator’s modules.
Our goal is to demonstrate our capacity to model the MO scenario using the IMS core-
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network and to produce simulation codes that can be used in NS-3 directly. This aids in
assessing the design according to the networking concepts and the constraints that are
defined in the meta-model (DSML).

The various tasks and operations that must be carried out while localizing an object in
an underwater environment are represented by the business model. Six Smart Sensors and
three Fusion Servers are assumed to be part of the system’s architecture. In the network
design, both the fusion server and the Smart Sensor are regarded as end-user terminals
even though they are crucial components of the information system. As a result, we decide
to depict their roles in the business and application layers, leaving the technical layer to
depict the network architecture and roles associated with IMS communication exchanges.

Typically, each Smart Sensor finds the dolphin on its own and relays the information
to the fusion server, which connects to the other sensors. After merging these inputs, the
fusion server employs a localization algorithm to determine the dolphin’s specific location
underwater.

The many tasks involved in the item localization process are represented by the busi-
ness layer of ArchiMate (Figure 12). The dolphin is detected by the several Smart Sensors
(1A, 2A, 3A, 1B, 2B, and C) when it passes across the detection region. DolphinDetection is
the function that makes this detection possible. Subsequently, each DataFusion center de-
termines the appropriate algorithm for object localization. The DataFusion centers perform
this process (trilateration), after which the data are transmitted via the DataFusionTransmis-
sion function between the Data Fusion Servers for analysis and subsequent determination
of the object’s coordinates.

Figure 12. Business view from the underwater object (dolphin) localization model [16]—ArchiMate
Business Layer.

6.2. Application Model

The application model is a representation of the system’s functions and application
components (in this example, the MeDON information system). The model in (Figure 13)
illustrates several associations that connect application and business functions. The sig-
nificance of the triggering links between two functions is conveyed by these associations.
It explains what a call between two functions means. For instance, in accordance with
the assignment relationship between functions and components, the SmartSensorSystemA
component calls the InformA application function when sensor1A detects a dolphin. The
various triggering relationships throughout the application functions then dictate the order
of execution. The following two activities, ComputeCoordinatesA and StoreCoordinatesA,
are carried out by the FusionSystemA with the resources allocated by the application
function SystemResourceReservationA. Next, using the function CoordinatesTransmission
to B, the coordination data are transferred from the active DataFusion component to the
following DataFusion component, and so on. This process is repeated until the coordinates
are determined with greater accuracy while accounting for the detection data gathered by
the various Smart Sensors.



Sensors 2024, 24, 2433 18 of 23

Figure 13. Application view from the underwater object (dolphin) localization model [16]—ArchiMate
Application Layer.

6.3. Technology Model

The topology and the tasks to be carried out in each of the network’s nodes are
described in the technology model. We concentrate on the technological implementations
of the InformA function from the application layer because of its extensive design. An
extract from the extensive model (Figure 14) is showcased. To carry out the InformA
application function, a wide range of technology functions such as SendTo are connected at
the technology layer. A message of type SIP or Diameter can be forwarded or sent from
one node to another via the SendTo function.

Figure 14. An excerpt of the technology view from the underwater object (dolphin) localization
model [16,21]—ArchiMate Technology Layer.

In the context of technology, we have extended the ArchiMO tool in [21,26] by utilizing
the IMS meta-model and ArchiMate. IMS standards are mostly considered and contained in
this extension [54]. After the simulation program is executed, the NS-3 simulator creates an
animation script. The NetAnim tool imports this script to display the simulation scenario’s
animation (see to Section 6.4, which depicts the messages that are transmitted and received
between the various nodes. The transparency of our model transformation methods is
demonstrated by the produced topology and by watching the message exchanges between
the various nodes.

6.4. Compilation and Simulation

An XMI file is generated using the enhanced ArchiMO design tool to reflect the
graphical design. This facilitates the design model’s interaction with other tools.

The simulation code is generated by our own domain-specific model compiler using
the XMI file as an input (Figure 15). This saves a significant amount of development time
by concealing from the designer the complexity involved in building simulation programs.
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Figure 15. The code generator workflow in XPAND language [2].

For UEC, the code generator requires the input model generated by the ArchiMO
design tool in addition to the meta-model containing the abstract syntax of DSML.

The mapping rules between the model elements and their representations in NS-3
are contained in the XPAND template in (Figure 15) [45]. The code is prone to errors, as
evidenced by the compilation and execution results when we ran the resulting code in NS-3
(version 3.13). To analyze the results of the simulation, traces and logs (such as PCAP files)
were created.

The architecture of the system design created by NS-3 for the specified design model
is displayed in Figure 16. For each design model element, NS-3 produced a hardware
representation (nodes, interfaces, and wires). A message that is transmitted and received at
any given time between two nodes is represented by the blue stream. This attests to the
behavioral aspects being mapped in the anticipated manner.

Figure 16. The network topology for the underwater object (dolphin) localization example is repre-
sented by a snapshot taken from the NS-3 simulator’s Net Animator tool [2].

This model compiler has an error section in addition to code generation. When
used, the defined MO model is used as input to build a simulation code that is ready
for simulation. For this reason, we give an illustration of an error that might be found
prior to turning the MO model, which was established in the preceding section into a
simulation code.

To demonstrate the iterative process when we face an error, we have chosen an
example that contains an error. We identified a communication failure between the P-
CSCF1 IMS node and a Smart Sensor interface. There is a conflicting IP address causing
this problem. We change one of the P2P link’s network addresses (Figure 17). A log file
including an explanation of this problem is generated by the model compiler (Figure 17).
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This is where the following question can be posed: How is the model compiler able to
identify these errors?

Actually, according to [16], some error detection rules are implemented using the
XPAND code generator template. The generating rules that are in charge of creating the
simulation situation come before these rules. The procedure in question is accountable for
producing a log file that includes an explanation of the problems found in the design model
(Figure 17). Since there is a mistake in this figure, we repeat the relevant task until the fault
is fixed and a new version of the MO model is created to be simulated. Next, we use the
model compiler to iterate the validation task on the updated version, and the outcome
is free of architectural design errors. It is challenging to predict the number of iterations
required to produce a reliable model, though.

Our approach has been used to several application domains and network simulators
(Video Conferencing System [44,45] and MO Context [16]). The underlying platform (IMS),
which represents the Platform Specific Model (PSM), is the common design concept shared
by all of these use cases [48].

Put differently, by addressing the underlying platform that is represented in the
technology layer, we might modify the application domain while still relying on ArchiMate
and our extensions (DSML) if we were to use a single tool (such as NS-3). This validates
that the models generated by our extended design tool (ArchiMO) adhere to the same
meta-model and domain-specific concepts/constraints.

In order to address the problem raised in Section 2, our testing approach does the
following: (C5) give the designer the capacity to test and validate his model developed in
MO on an executable platform that is part of the same framework in which the designer
generates MO. This is achieved by first creating the model’s simulation code and then
running it through NS-3.

Figure 17. An example of an error detection in design model of Marine Observatory system [16]. The
IP addresses of the PCSCF1 IMS node and SmartSensor1A are two different IP addresses shown in
the red circles.
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7. Conclusions and Future Work

We have discussed and presented Underwater Environmental Constraints at a high
abstract level in this study. These constraints are DSML extensions coupled with the
AI Database for the MO context.

We illustrated the proposed UECs and ArchiMO design tool, using a Marine Obser-
vatory case study. We presented a defined model for MOs showing their different views:
business, application, and technology. These models are created with the help of our
extended version of the ArchiMO design tool in terms of abstract syntax, concrete syntax,
AI Database, and semantics. This tool includes the newly proposed UEC based on MDE
fundamentals. The system model is then validated by simulating the resulting consistent
model with the NS-3 network simulator.

Our extended ArchiMO tool protects against design mistakes earlier than traditional
design processes/activities and the code generation stage. We rely on a standard and
open tool (Archi) that we extend through developing the modeling language and java
implementations.

Another benefit of our proposed ArchiMO deign tool is its extensibility. Depending on
the development of the SSN domain, the developers may extend it and add new (IIoT)/SSN
concepts and constraints, as well as incorporate new and recent useful data into the AI-
Developed Database, which is one of the most popular and efficient ways to enhance the
efficiency and precision of the AI learning control.

The additional UEC concepts and constraints can be reused in many applications,
activities, models, or instances thanks to ArchiMO. Because ArchiMO’s palette includes
specific concepts and constraints, it also shortens the time required for the design process.
Additionally, we maintain the normative concepts and constraints in the abstract syntax
(meta-model) of ArchiMate since the recently added UECs inherit concepts from standard
ArchiMate elements.

The opposite is also true: expressing and meta-modeling domain knowledge and
enhancing the performance of AI learning control are challenging tasks that demand
expertise and a high degree of accuracy, particularly when setting the DSML in accordance
with the meta-model requirements and standards.

We will extend our ArchiMO meta-model and design tool by including new Intelligent
Internet of Things (IIoT)/Smart Sensor Networks concepts, relationships, and UECs in
order to satisfy and cover the most possible required operations, concepts, and activities in
the context of SSNs and IIoT. In addition, we will expand the AI-Developed Database by
adding more recent and useful data to it.
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