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Abstract: In the pursuit of sustainable agriculture, efficient water management remains crucial, with
growers relying on advanced techniques for informed decision-making. Cotton yield prediction, a
critical aspect of agricultural planning, benefits from cutting-edge technologies. However, traditional
methods often struggle to capture the nuanced complexities of crop health and growth. This study
introduces a novel approach to cotton yield prediction, leveraging the synergy between Unmanned
Aerial Vehicles (UAVs) and scale-aware convolutional neural networks (CNNs). The proposed
model seeks to harness the spatiotemporal dynamics inherent in high-resolution UAV imagery to
improve the accuracy of the cotton yield prediction. The CNN component adeptly extracts spatial
features from UAV-derived imagery, capturing intricate details related to crop health and growth,
modeling temporal dependencies, and facilitating the recognition of trends and patterns over time.
Research experiments were carried out in a cotton field at the USDA-ARS Cropping Systems Research
Laboratory (CSRL) in Lubbock, Texas, with three replications evaluating four irrigation treatments
(rainfed, full irrigation, percent deficit of full irrigation, and time delay of full irrigation) on cotton
yield. The prediction revealed that the proposed CNN regression models outperformed conventional
CNN models, such as AlexNet, CNN-3D, CNN-LSTM, ResNet. The proposed CNN model showed
state-of-art performance at different image scales, with the R2 exceeding 0.9. At the cotton row
level, the mean absolute error (MAE) and mean absolute percentage error (MAPE) were 3.08 pounds
per row and 7.76%, respectively. At the cotton grid level, the MAE and MAPE were 0.05 pounds
and 10%, respectively. This shows the proposed model’s adaptability to the dynamic interplay
between spatial and temporal factors that affect cotton yield. The authors conclude that integrating
UAV-derived imagery and CNN regression models is a potent strategy for advancing precision
agriculture, providing growers with a powerful tool to optimize cultivation practices and enhance
overall cotton productivity.

Keywords: cotton; irrigation; UAV; convolutional neural networks; yield

1. Introduction

Cotton holds significant importance in the global textile industry, accounting for
approximately 25% of global fiber usage. The United States (US) stands out as a leading
cotton exporter and ranks as the third-largest producer globally [1], with the northwest plain
region of Texas, known as Texas High Plains (THP), serving as a vital contributor. Cotton
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is among one of the leading cash crops in Texas, with a total coverage of approximately
6 million acres [2]. The THP region alone contributes to about 25% and 65% of the US
and Texas cotton production, respectively [3]. However, cotton cultivation in THP faces
challenges, particularly in balancing water availability with yield optimization. While
higher cotton yields are associated with increased water availability [4], water resource is
currently insufficient to provide full irrigation in that region. The Lubbock area, for instance,
is facing water limitation because of the significant decline of the water table in the Ogallala
Aquifer [5]. Under such circumstances, accurate yield prediction will be very beneficial
to the cotton production. Traditionally, remote sensing-based crop yield estimation with
machine learning (ML) methods have been commonly used. For example, satellite remote
sensing methods have been extensively utilized for crop yield estimation [6,7]. However,
satellite images may suffer from occlusion by clouds, and their revisit cycle represents also
a lack of flexibility. Although satellite remote sensing is valuable for large scale viewing of
fields, its spatial resolution is still a concern for many precision agriculture applications [8].

In recent times, Unmanned Aerial Vehicles (UAVs) have emerged as valuable assets
in diverse agricultural contexts, including the forecasting of yield [8,9], management of
irrigation [10,11], and estimation of water stress [12,13]. Through the incorporation of
lightweight sensors onto UAV platforms, it has become viable to capture imagery with ex-
ceptional spatial and temporal resolution at a minimal expense [14,15]. With ML regression
models, such as support vector regression (SVR) [16] and random forest regression (RFR)
methods [17], empirical regression models have been developed between crop yield and
crop canopy features, such as vegetation indices [8,18,19]. For example, Ashapure et al. de-
veloped an ML framework for estimating cotton yield using multi-temporal remote sensing
data collected from a UAV system [8]. Several types of crop features were derived to predict
the yield, including the canopy cover, canopy height, canopy volume, normalized differ-
ence vegetation index (NDVI), excessive greenness index (ExG), etc. The model provided
low residual values with predicted yield values close to the observed yield values (R2 = 0.9).
However, traditional ML methods may face limitations when applied to yield regression
tasks in agriculture, particularly when using handcrafted features. First, traditional ML
methods rely on handcrafted features, which may not capture the full complexity and
richness of agricultural data. Features engineered by domain experts may overlook subtle
patterns or interactions present in the data, leading to suboptimal performance. Second,
traditional ML methods typically treat each input feature as independent, disregarding the
spatial relationships present in agricultural data, such as UAV images of crop fields. These
methods may overlook important spatial patterns and dependencies, leading to suboptimal
performance in tasks requiring spatial understanding, such as crop yield prediction. Third,
handcrafting features for agricultural datasets can be challenging and time-consuming,
requiring domain expertise and experimentation. Moreover, manually engineered features
may not fully capture the relevant information present in the data, leading to a loss of
predictive power.

Expanding on previous investigations, this paper suggests employing UAV-captured
RGB images solely for predicting cotton yield, utilizing convolutional neural networks
(CNNs). CNN models are preferred over traditional machine learning algorithms for
cotton yield prediction due to several key advantages. First, CNNs can automatically learn
hierarchical representations of input data, extracting relevant features directly from the raw
input images. Traditional machine learning algorithms often rely on handcrafted features,
which may not capture the complex patterns present in image data as effectively as CNNs.
Second, CNNs are well suited for processing spatial data, such as images, due to their ability
to preserve spatial relationships between pixels. This is particularly important in cotton
yield prediction, where features like crop health, vegetation density, and soil conditions
can vary spatially within a field. Traditional machine learning algorithms may struggle
to capture these spatial dependencies. Third, CNNs are inherently robust to noise and
variability in input data, making them well suited for handling real-world challenges such
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as variations in lighting conditions, camera angles, and crop growth stages. Traditional
machine learning algorithms may struggle to generalize to unseen variations in input data.

Due to their robust analytical capabilities, CNN models have found applications in various
agricultural domains, including yield prediction [20–22], water stress analysis [23], and pest
management [24]. For instance, Khaki et al. proposed a deep learning framework using
CNNs and recurrent neural networks (RNNs) for crop yield prediction based on environ-
mental data and management practices. The new model achieved a root-mean-square
error (RMSE) of 9% and 8% of their respective average yields, substantially outperforming
all other methods that were tested, such as random forest (RF) and deep fully connected
neural networks (DFNNs) [20]. In [21], Sun et al. proposed a deep CNN-LSTM model for
both end-of-season and in-season soybean yield prediction in Continental United States
(CONUS) at the county level. The model was trained with crop growth variables and
environment variables, which included weather data, MODIS Land Surface Temperature
(LST) data, and MODIS Surface Reflectance (SR) data; historical soybean yield data were
used as labels. The results of their experiment indicated that the prediction performance
of their proposed CNN-LSTM model could outperform the pure CNN or LSTM model in
both end-of-season and in-season.

Inspired by the landscape of CNN applications for yield regression in agriculture,
in this article, the authors propose an innovative CNN framework for cotton yield pre-
diction by employing KerasTuner [25] to optimize and search for the best CNN models.
The current CNN regression models were built upon our previous CNN classification
paper [26], where the architecture was relatively simple and fixed. In the previous pa-
per, the CNN had a predetermined structure without much flexibility for customization.
However, in our study, we have advanced upon this by implementing a more sophisti-
cated approach. While CNNs have been widely utilized in agricultural yield prediction
tasks, the use of KerasTuner introduces a novel approach to automatically search for the
most effective CNN architecture for our specific application. This method allows us to
efficiently explore a wide range of model architectures and hyperparameters, ultimately
identifying the optimal configuration for predicting cotton yield accurately. Unlike some
other frameworks that may have fixed architectures or require extensive manual tuning,
KerasTuner offers a high level of abstraction and a user-friendly interface that simplifies
the process of building, training, and tuning CNN models. Furthermore, our study stands
out by addressing the challenge of dynamic input sizes. Unlike previous approaches that
may have focused solely on a fixed input size, the proposed framework accommodates
dynamic input sizes. This means that the proposed CNN models can seamlessly adapt to
varying input resolutions, whether at the row level or grid level, where each grid represents
only one square meter of area. This flexibility is crucial for accurately capturing spatial
information and optimizing model performance across different scales of agricultural data.
By integrating KerasTuner and accommodating dynamic input sizes, our approach offers a
robust and versatile framework for yield regression in agriculture. It not only enhances the
accuracy and efficiency of CNN-based yield prediction models but also enables seamless
scalability and adaptability to diverse agricultural landscapes and datasets.

The objectives of this study are summarized as follows: (1) Evaluate the reliability of
UAV-based RGB imagery in predicting cotton yields with different irrigation treatments.
(2) Build a CNN model framework and demonstrate the performance of CNN, CNN-3D,
Resnet, AlexNet, CNN-LSTM models on cotton yield prediction at the row and grid level.
The major contributions of this article are as follows: (1) We devised a reproducible frame-
work with customized CNN models for cotton yield prediction utilizing high-resolution
RGB images obtained from UAVs. (2) We applied a KerasTuner method to dynamically
search the best CNN model structure for cotton yield prediction. This approach offers a
reliable and efficient solution for predicting yield in cotton crops.

The remainder of the manuscript is structured as follows: Section 2 provides a de-
tailed overview of the materials and methods employed for in-season UAV-based cotton
yield prediction. Following this, Section 3 offers an extensive analysis and discussion of
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cotton yield under various irrigation treatments, emphasizing the outcomes regarding the
dependability of RGB imagery and the efficacy of CNN models. Lastly, Section 4 presents
concluding remarks that encapsulate the main insights and implications of the research.

2. Materials and Methods
2.1. The Study Site and Yield Data Collection

The research was carried out in an experimental cotton field situated at the USDA-
ARS Cropping Systems Research Laboratory (CSRL) in Lubbock, Texas, USA (33.69◦N,
101.82◦W). Cotton planting took place on 3 May 2022, using NG 4098 B3XF. The cotton
field was partitioned into 12 drip zones (Figure 1), each replicated three times, to evaluate
four distinctive irrigation treatments: “rainfed”, “full irrigation”, “percent deficit of full
irrigation”, and “time delay of full irrigation”. Each drip zone comprised eight rows, and
cotton fiber was mechanically harvested from individual rows within each drip zone, resulting
in a dataset of 96 rows of cotton yield data. Each row spanned 200 feet, accommodating
approximately 150 cotton plants, with a 40-inch spacing between rows [26].

Under the “rainfed” treatment, soil moisture conditions before planting determined
irrigation, either through natural rainfall or pre-sowing soil irrigation on a predetermined
date. No additional water was applied during the growing season under this treatment.
In the “full irrigation” treatment, irrigation events were initiated based on accumulated
stress time derived from canopy temperature, with the volume adjusted to replenish
soil moisture deficits. Irrigation was administered as single events whenever necessary
to sustain optimal soil moisture levels. The “percent deficit of full irrigation” triggered
irrigation at a predetermined fraction (25%), of the volume used in the “full irrigation”
treatment, maintaining the same frequency but with reduced volume. In the “time delay of
full irrigation" treatment, irrigation events occurred alternatively with the “full irrigation”
signal, replenishing the soil profile to full capacity, resulting in approximately 50% less
water application compared to the “full irrigation” treatment. However, this treatment
subjected the cotton to longer periods of water stress.

Figure 1. The experimental cotton field.

2.2. Description of the UAV and RGB Image Processing

A UAV platform, specifically, a DJI Phantom 4, was used to capture high-resolution RGB
images from an altitude of 90 m, producing images sized at 4096 × 2160 pixels. The onboard
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camera boasts a 1-inch 20-megapixel (MP) complementary metal–oxide–semiconductor
(CMOS) sensor with a mechanical shutter, thus avoiding rolling shutter distortion. This
sophisticated sensor, along with robust processing capabilities, captures fine details crucial
for subsequent advanced post-production analysis. Flight missions occurred biweekly
throughout the cotton growing season, from May to October in 2022. Following each
mission, the UAV RGB images underwent seamless stitching to produce orthomosaic
images using Metashape (Agisoft LLC, St. Petersburg, Russia). Because of the reliable
image quality, the data from the following four dates were selected, 18 August, 2 September,
9 September, and 20 September in 2022 [26].

The study aimed to predict cotton yield using advanced CNN models. To effectively
analyze the robustness of the following proposed CNN models. The authors trained the
CNN models at two different image scales, at the row and grid level. For the 96 row cotton
images, as mentioned earlier, yield data were collected from each row. The original image
size for the row cotton image was 1792 × 32 × 3. To better fit the row cotton images into
CNN models, each row image was resized to 256 × 224 × 3. For the grid cotton images,
the authors split the large-scale UAV cotton image into a grid scale with ArcGIS Pro, which
created 5376 images for each sampling date (Figure 2 is a demonstration of the generated
dataset [26]). The new image size was 32 × 32 × 3. The corresponding irrigation treatment
was also added at the bottom of each image in Figure 2 for demonstration.

Figure 2. To predict the cotton yield with CNN models at the grid level, the authors first split the
large scale of UAV cotton image into smaller scales with ArcGIS Pro, which created 5376 images for
each sampling date.

2.3. Convolutional Neural Networks

In this paper, the authors developed a comprehensive framework for cotton yield pre-
diction, leveraging the power of deep learning techniques. The framework comprised five
customized CNN models tailored specifically for cotton yield prediction. In the following
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section, we delve into an exploration of the CNN model, CNN-LSTM, ResNet, CNN-3D,
and AlexNet, which offer unique advantages in various prediction tasks. For more detailed
information and specific instructions on replicating the models discussed, please refer to
the “Reproducibility” section located at the end of this paper.

2.3.1. A Customized Convolutional Neural Network

As mentioned earlier, authors divided the large-scale UAV cotton image into row and
grid level. To create a training and testing dataset, the UAV dataset was split into training (80%)
and testing (20%) sets. For example, to prepare the grid-level cotton images for input into the
CNN models, all the images were resized to a dimension of 32 × 32 × 12. The implementation
of the CNN model relied on the TensorFlow 2.0 framework [27]. An illustration depicting
the architecture of the CNN model is provided in Figure 3. This model predominantly
comprised layers such as Conv2D and MaxPooling2D, where each layer yielded a 3D
tensor output representing dimensions of height, width, and channels. With increasing
depth of the network, the width and height dimensions tended to diminish. The number
of output channels for each Conv2D layer was determined by the first specified argument.
Subsequently, the output tensor from the convolutional base was directed to Dense layers
for yield prediction in the form of a regression model. The CNN model utilized in this
research can be readily replicated for validation purposes.

2.3.2. Convolutional Neural Networks with Long Short-Term Memory
(CNN-LSTM) Networks

The incorporation of long short-term memory (LSTM) networks in our model stems
from the key idea that crop yield is influenced by temporal variations in crop growth
across different months [28]. Unlike a traditional 2D CNN, where images from various
months are stacked along the same axis, we introduced a fourth dimension to consider
the temporal factor explicitly. The unique recursive structure of LSTM incorporates a
sophisticated gating mechanism, which effectively controls the flow of information in and
out of cells. This gating mechanism not only regulates the entry and exit of data but also
facilitates the processing of sequential information and time series data. The intricate
design of LSTM enables it to effectively capture and retain long-range dependencies in
sequential data, distinguishing it from traditional RNNs [29]. Our study leveraged a CNN-
LSTM architecture to investigate the hypothesis that crop yield depends on both temporal
and spatial features. The CNN component is good at capturing spatial and hierarchical
features inherent in crop images whereas the LSTM component proves advantageous in
identifying temporal patterns crucial for understanding crop yield variations throughout
their growth cycle.

The architecture of our model involved hyperparameter tuning using the KerasTuner
to optimize the CNN and LSTM layers, kernel size, learning rate, optimizer, and dropout
rates. The TimeDistributed CNN section applied convolutional layers along the temporal
dimension of the input. For example, for a row cotton image, the input given to the
model was 4 × 256 × 224 × 3, where 4 was the number of timestamps. The number
of CNN layers was flexibly determined by varying the depth from 1 to 5 layers, each
consisting of a Conv2D operation with a ReLU activation function and BatchNormalization.
MaxPooling was applied after the initial CNN layer, enhancing the model’s ability to
discern spatial features. The kernel size, a critical hyperparameter, was sampled from a
uniform distribution between 2 and 5. Subsequently, the output from the CNN section
was flattened using TimeDistributed Flatten, providing the input for the subsequent LSTM
layers. The number of LSTM layers was also tuned to determine the optimal depth. Each
LSTM layer exhibited a diminishing number of units, and dropout rates varying from
0.3 to 0.7 were applied for regularization purposes. The optimization further extended to
the choice of optimizer, offering alternatives such as Adam, SGD, RMSprop, and Adagrad.
The learning rate, as with previous models, was sampled from a logarithmic scale between
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1×10−4 and 1×10−2. The model was compiled using the specified optimizer, employing
the mean squared error as the loss function and the MAE as the evaluation metric.

Figure 3. The implementation of the CNN models relied on the TensorFlow 2.0 framework [27] and
KerasTuner [25]. An illustration depicting the architecture of the CNN model is provided in this figure.

2.3.3. Residual Network (ResNet)

We developed a customized ResNet network for yield prediction tasks. The incor-
poration of ResNet’s concept of residual connections serves to enhance the depth of the
network and mitigate the degradation problem when the accuracy gets saturated [30]. This
innovation involves implementing skip connections between layers, allowing the model
to learn the disparities between input and output across consecutive layers. This design
choice mitigates the vanishing gradient problem during backpropagation, ensuring more
effective and stable training. The convolutional layer comprises a Conv2D filter, ReLU as
the activation function, max pooling, and batch normalization. Identity blocks are stacked
sequentially, each composed of two convolutional layers, followed by skip connections
referencing the outputs of the previous two layers. This architectural configuration aims to
capture essential features in the data, enhancing the model’s predictive capabilities.

We also conducted a hyperparameter tuning process on the ResNet model using the
Keras framework. A maximum of 10 tuning trials were executed to minimize the MAE
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of the validation loss. This exhaustive tuning process aimed to identify the most effective
combination of hyperparameters, aligning with our primary objective of accurate yield
prediction. The kernel size parameter, determining the dimensions of the convolutional
filters, was sampled from a uniform distribution ranging between 2 and 5. The number
of identity blocks, crucial components in our architecture, underwent variation from a
simple configuration with one layer to a more intricate structure with four layers, allowing
us to explore diverse model complexities. The number of filters varied in multiples of
32 as the depth continued to increase. To enhance learning dynamics, the learning rate
was tuned by sampling a logarithmic scale ranging from 1×10−4 to 1×10−2. This ensured
a balanced exploration of learning rates that were essential for convergence and model
performance. We considered various optimizers like Adam, SGD, RMSprop, and Adagrad.
This comprehensive exploration aimed to identify the most suitable optimizer for our yield
prediction tasks.

2.3.4. Three-Dimensional Convolutional Neural Networks (CNN-3Ds)

Interpreting spectral data poses challenges, particularly in the analysis and comparison
of multiple samples over extended periods [31]. Existing classification methods, such as 1D-
CNN (spectral feature-based) and 2D-CNN (spatial feature-based), face limitations because
they do not effectively integrate spatial and spectral features. In contrast, a 3D-CNN or
CNN-3D excels at extracting spatial–spectral features from volumetric data. Its ability
to incorporate the spectral dimension alongside spatial dimensions allows it to model
complex spatiotemporal representations. To address this, we also designed a CNN-3D
architecture for the prediction of cotton yield.

The model was designed to handle 3D volumes with dimensions (256, 224, number of
time stamps, 3). The convolutional layers were dynamically hypertuned by constructing
flexible options for the number of layers (2 to 6) and kernel size (2 to 4). Three-dimensional
filters/kernels slid over the input volume, capturing both local patterns and features [32].
A ReLU activation was applied to the convolutional layers, and the spatial downsam-
pling was achieved through MaxPooling3D after the initial two layers. The architecture
incorporated batch normalization after convolutional layers for enhanced training stability.
A flatten layer preceded a two-layered Multi-Layer Perceptron (MLP) with ReLU activa-
tion and dropouts, serving as regularization. The output layer, indicative of a regression
problem, consisted of a single-unit dense layer with ReLU activation. Hyperparameter
choices, including the optimizer (Adam, SGD, RMSprop, or Adagrad) and a tunable learn-
ing rate (in the range (1×10−4, 1×10−2)), were determined during model configuration.
The best set of hyperparameters was selected by comparing the mean absolute error on the
validation data.

2.3.5. AlexNet

The AlexNet architecture was also used to predict crop yield, utilizing input data
with dimensions (256, 224, 12). This architecture extracts hierarchical features through a
sequence of convolutional, normalization, activation, and pooling layers, with dropout
incorporated after the flattened layers to mitigate overfitting [33]. Comprising 5 convolu-
tional layers and 3 fully connected layers, each convolutional layer involves a convolution
operation, followed by max pooling for spatial dimension reduction, and ReLU activation
for non-linearity and a faster training process [34]. The flattened layer transforms the
output from convolutional layers into a 1-dimensional array, preparing it for subsequent
fully connected layers. The first dense layer consisted of 400 neurons with a ReLU acti-
vation function. Dropout layers followed the first and second dense layers to enhance
generalization. The final dense layer, with 1 neuron, indicated a regression objective.
To optimize the AlexNet model’s efficiency, a parameter tuning strategy was implemented
using KerasTuner. The goal was to maximize predictive performance by discovering the
optimal combination of hyperparameters. Hyperparameters, such as kernel size, optimizer
choice, and learning rate, were defined as tunable parameters through KerasTuner. Kernel
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sizes for each convolution layer were explored within the range of 2 to 5, and optimizer
choices encompassed Adam, SGD, RMSprop, and Adagrad. Learning rates for the selected
optimizers were sampled logarithmically between 1×10−4 and 1×10−2.

2.4. CNN Regression Models’ Evaluation Metrics

When evaluating the performance of CNN regression models, several metrics are
utilized to assess their accuracy and predictive capabilities. The mean absolute error (MAE)
serves as a fundamental metric, representing the average absolute difference between the
predicted and observed values. A lower MAE indicates better model performance, as it
signifies smaller deviations between predictions and actual outcomes.

MAE =
1
n

n

∑
i=1

|yi − ŷi|, (1)

where yi represents the actual observed value for the ith data point, ŷi is the predicted value
for the ith data point, n stands for the total number of data points.

The mean absolute percentage error (MAPE) supplements MAE by expressing the
average percentage deviation between predicted and observed values, providing insights
into the relative magnitude of errors.

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100%. (2)

Furthermore, the coefficient of determination, often denoted as R2, offers a measure of
the proportion of variance in the dependent variable that is predictable from the indepen-
dent variables. A higher R2 value indicates a better fit of the model to the data, with values
closer to 1 signifying a stronger predictive power.

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 , (3)

where ȳ represents the mean of the observed values across all data points. Together, these
evaluation metrics offer a comprehensive assessment of CNN regression models, enabling
researchers to gauge their accuracy, reliability, and generalization capabilities in predicting
continuous outcomes.

3. Results and Discussion
3.1. Exploratory Cotton Yield Analysis

The irrigation treatment played a vital role in cotton growth, and its impact on cotton
yield was evaluated based on the cotton harvest weight (Figure 4). To perform exploratory
data analysis (EDA) for the provided row cotton yield data, the authors first observed that
the data were structured in rows representing different conditions: “rainfed”, “percent
deficit”, “time delay”, and “fully irrigated”. Each condition had corresponding mean yield
values (in pounds), standard deviation values (in pounds), and counts of observations
(Table 1). Significant variations could be observed in the mean cotton yield under different
conditions. The “fully irrigated” cotton had the highest mean cotton yield at 58.68 pounds,
with a standard deviation of 9.31 pounds, indicating considerable variability within the
data. “Time delay” conditions exhibited the next highest mean yield of 38.57 pounds with
a standard deviation of 2.89 pounds, suggesting a relatively lower variability compared to
fully irrigated conditions. “Rainfed” conditions had a mean yield of 19.92 pounds and a
standard deviation of 2.66 pounds, showing the lowest mean yield among the conditions
with moderate variability. Notably, the “percent deficit” cotton yielded a mean cotton yield
of 34.26 pounds with a standard deviation of 5.72 pounds, indicating intermediate levels of
yield and variability.
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Figure 4. The violin plot illustrates the distribution of row cotton yield data across four different
irrigation treatments. Each violin represents the probability density of yields within a specific
treatment group, with wider sections indicating higher density regions.

Table 1. Summary of the cotton yield at different field scale and irrigation treatments.

Data Treatment Mean (lb) Std (lb) Count

Grid yield

Rainfed 0.36 0.14 1344
Percent deficit 0.61 0.17 1344

Time delay 0.72 0.16 1344
Fully irrigated 1.02 0.12 1344

Row yield

Rainfed 19.92 2.66 24
Percent deficit 34.26 5.72 24

Time delay 38.57 2.89 24
Fully irrigated 58.68 9.31 24

To test the performance of the CNN models at a smaller field scale (grid level), the au-
thors divided the large-scale UAV cotton image into smaller scales, resulting in a total of
5376 images. Generating grid cotton yield data involves creating a spatially distributed
dataset that represents cotton yield across the field. To realize it, a linear regression model
was employed to elucidate the relationship between blue band reflectance data derived
from UAV RGB images and cotton yield obtained from row cotton yield measurements.
Then, a quantitative regression model between the blue band reflectance from the cotton
canopy cover and grid cotton yield was established (Figure 5).

The grid yield dataset offered a robust depiction of cotton yield dynamics within
various irrigation treatments. Each treatment configuration was characterized by its mean
yield, standard deviation, and observation count, providing a comprehensive understand-
ing of cotton productivity across distinct agricultural regimes (Table 1). Noteworthy was
the discernible variation in mean yield levels and standard deviations across treatments,
with “fully irrigated” conditions exhibiting the highest mean yield of 1.02 pounds and
the lowest standard deviation of 0.12 pounds, indicative of optimized agricultural man-
agement practices. Conversely, “rainfed” conditions manifested the lowest mean yield at
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0.36 pounds, accompanied by a standard deviation of 0.14 pounds, implying heightened
yield variability and potential vulnerability to environmental stressors (Figure 6).

Figure 5. The regression analysis of blue reflectance and grid cotton yield.

Figure 6. The violin plot illustrates the distribution of grid cotton yield data across four different
irrigation treatments. Each violin represents the probability density of yields within a specific
treatment group, with wider sections indicating higher density regions.

The emergence of a few negative yield data points within the context of a linear
regression model between blue band and yield variables can stem from various sources
inherent to the data and modeling process. Negative yield predictions may arise due
to extrapolation beyond the observed range of the data, particularly when the linear
regression model attempts to estimate yield values that fall outside the bounds of the
training dataset. Additionally, statistical noise, outliers, and violations of underlying
assumptions regarding the relationship between predictor and response variables can
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contribute to negative predictions. While negative yield values may seem counterintuitive
and potentially erroneous, retaining them during the training of CNN models can offer
several advantages. First, negative yield values provide valuable diversity and richness to
the training dataset, enabling CNN models to learn and generalize across a wider spectrum
of potential scenarios and data distributions. Second, incorporating negative yield data
points into the training process helps foster robustness and adaptability within CNN
models, facilitating the extraction of intricate patterns and relationships present within the
data. Moreover, by systematically addressing and accounting for negative yield predictions
during CNN model training, researchers and practitioners can develop more resilient and
insightful predictive models that better reflect the complexities of real-world agricultural
systems. Thus, while negative yield data may pose initial challenges, leveraging them
judiciously in CNN model training can yield substantial benefits in improving model
performance and predictive accuracy. These insights elucidate the intricate interplay
between environmental factors and crop performance, offering critical foundations for
precision agriculture strategies and sustainable agricultural development initiatives.

3.2. The Performance of CNN Models at the Row Level

As mentioned previously, the study utilized a total of 96 cotton row images for each sam-
pling date: 18 August, 2 September, 9 September, and 20 September, all in 2022. To concatenate
images along the third dimension, the authors essentially stacked them together depth-wise.
Each day contributed 96 UAV RGB images, each with dimensions 32 × 32 × 3 pixels. Since
each image had three color channels (red, green, and blue), the resulting concatenated
dataset had a depth of 12, representing the three color channels multiplied by the four
sampling days. Thus, after concatenation, the new dataset had a size of 96 images with
dimensions 32 × 32 × 12. This concatenated dataset effectively combined the information
from all four sampling days into a single dataset, enabling a comprehensive analysis and
processing of the collected image data across multiple time points.

Then, the concatenated dataset was split into a training set (80%) and a testing set
(20%). The results for cotton yield prediction models indicated varying performance metrics
across different CNN architectures (Table 2 and Figure 7). Starting with the MAE, it was
observed that the customized CNN model achieved the lowest MAE of 3.08 lb, indicating
the closest average prediction to the actual yield values. Following closely was the AlexNet
model with an MAE of 4.84 lb, indicating slightly higher prediction errors compared to
the customized CNN. However, both ResNet and CNN-3D models exhibited higher MAE
values of 5.44 lb and 5.25 lb, respectively, suggesting relatively larger prediction errors
compared to the CNN and AlexNet models. The CNN-LSTM model, on the other hand,
demonstrated a significantly higher MAE of 11.97 lb, indicating considerable deviation
between predicted and observed yield values.

Table 2. The performance of CNN models at the row level.

CNN Models MAE (lb) MAPE (%) R2

AlexNet 4.84 14.4 0.84

ResNet 5.44 13.53 0.80

CNN-3D 5.25 12.08 0.76

CNN-LSTM 11.97 35.07 −0.03

Proposed CNN 3.08 7.76 0.93
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(a)

(b)

Figure 7. The training and testing performance of the CNN models with the cotton row image dataset.
(a) Training performance at the cotton row level; (b) testing performance at the cotton row level.

Moving on to the MAPE, which measures the percentage difference between predicted
and observed values, we observed a similar trend. The customized CNN model achieved
the lowest MAPE of 7.76%, indicating the smallest average percentage deviation from
the actual yield values. The AlexNet and ResNet models followed, with MAPE values of
14.4% and 13.53%, respectively, indicating relatively higher percentage errors compared
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to the customized CNN model. The CNN-3D model showed a slightly lower MAPE of
12.08%, suggesting better performance than AlexNet and ResNet but still higher than
the customized CNN. However, the CNN-LSTM model exhibited a significantly higher
MAPE of 35.07%, indicating substantial percentage deviation between predicted and
observed values, which may be attributed to its architecture’s limitations in capturing
temporal dependencies effectively. When dealing with a smaller dataset, such as the one
with only 96 row images, the CNN-LSTM model may struggle to effectively capture the
temporal dependencies present in the data, leading to suboptimal performance despite our
hyperparameter tuning efforts with KerasTuner.

Finally, examining the coefficient of determination (R2), which indicates the proportion
of the variance in the dependent variable that is predictable from the independent vari-
able(s), one can observe consistent trends (Figure 8). The proposed CNN model achieved
the highest R2 value of 0.93, indicating a strong correlation between predicted and observed
yield values. The AlexNet, ResNet, and CNN-3D models exhibited progressively lower
R2 values of 0.84, 0.80, and 0.76, respectively, suggesting decreasing predictive power
compared to the customized CNN model. Notably, the CNN-LSTM model demonstrated a
negative R2 value of −0.03, indicating poor model performance and a possibly inadequate
capture of temporal dynamics, leading to predictions that were worse than simply using
the mean of the observed values.

(a) (b)

(c) (d)

Figure 8. Cont.
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(e)

Figure 8. The R2 of the CNN models for cotton yield prediction at the cotton row level. (a) The
proposed CNN model; (b) the AlexNet model; (c) the CNN-3D model; (d) the ResNet model; (e) the
CNN-LSTM model.

3.3. The Performance of CNN Models at the Grid Level

As mentioned earlier in the article, the row cotton images were further split at the
grid level. Each grid image spanned a one-square-meter area. Through a systematic con-
catenation process along the third dimension, the images were effectively consolidated into
a single dataset. Given that each image inherently encompassed three color channels—red,
green, and blue—the resultant concatenated dataset manifested a depth of 12, representing the
amalgamation of color channels across the four sampling days. As a consequence, the unified
dataset comprised 5376 images, each having dimensions of 32 × 32 × 12 pixels. The corre-
sponding yield ground truth was derived with the linear regression model described in
Section 3.1.

For the MAE, the proposed CNN and AlexNet models showcased competitive perfor-
mance with MAEs of 0.05 lb and 0.05 lb, respectively, outperforming ResNet and CNN-3D
with higher MAEs of 0.09 lb and 0.09 lb, respectively (Table 3 and Figure 9). However, CNN-
LSTM achieved comparable results to the proposed CNN with an MAE of 0.05 lb. In terms
of MAPE, both the proposed CNN and AlexNet models exhibited similar performance,
with MAPEs of 10.00% and 10.08%, respectively, outperforming ResNet and CNN-3D with
higher MAPEs of 15.61% and 14.17%. Again, CNN-LSTM demonstrated competitive results
with an MAPE of 10.46%, similar to that of the proposed CNN. Concerning R2, both the
proposed CNN and AlexNet models demonstrated superior predictive power with R2

values of 0.95 and 0.96, respectively, surpassing ResNet and CNN-3D with lower R2 values
of 0.84 and 0.85 (Figure 10). Similarly, CNN-LSTM achieved a high R2 of 0.95, comparable
to that of the proposed CNN, indicating strong predictive relationships for both models.

Table 3. The performance of CNN models at the grid level.

CNN Models MAE (lb) MAPE (%) R2

AlexNet 0.05 10.08 0.96

ResNet 0.09 15.61 0.84

CNN-3D 0.09 14.17 0.85

CNN-LSTM 0.05 10.46 0.95

Proposed CNN 0.05 10.00 0.95
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(a)

(b)

Figure 9. The training and testing performance of the CNN models with the cotton grid image dataset.
(a) Training performance at the cotton grid level; (b) testing performance at the cotton grid level.
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(a) (b)

(c) (d)

(e)

Figure 10. The R2 of the CNN models for cotton yield prediction at the cotton grid level. (a) The
proposed CNN model; (b) the AlexNet model; (c) the CNN-3D model; (d) the ResNet model; (e) the
CNN-LSTM model.

The findings suggest that CNN models exhibit promising capabilities in predicting
cotton yield across different field scales. Particularly noteworthy is the performance of the
proposed CNN architecture, which demonstrated exceptional predictive accuracy across
various field scale images without necessitating extensive hyperparameter tuning efforts.
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This highlights the robustness and versatility of the proposed CNN model, which can
effectively generalize its learned representations to different field levels. Moreover, the com-
parative analysis revealed that all CNN architectures evaluated in the study exhibited
commendable performance in predicting cotton yield, indicating the presence of a robust
and reliable framework for cotton yield prediction using CNN models. This collective
success underscores the potential of CNN-based approaches in agricultural applications, of-
fering stakeholders a diverse array of models to choose from based on specific requirements
and preferences.

4. Conclusions

As agriculture strives for sustainability, effective water management remains paramount,
prompting growers to seek sophisticated methodologies for informed decision-making.
Within this context, the prediction of cotton yield emerges as a critical aspect of agricultural
planning, necessitating the utilization of cutting-edge technologies. However, conventional
methods often falter in encapsulating the nuanced intricacies of crop health and growth
dynamics. This study introduced a pioneering approach to cotton yield prediction, har-
nessing the synergy between UAVs and scale-aware CNNs. Our novel model endeavored
to exploit the inherent spatiotemporal dynamics present in high-resolution UAV imagery
to enhance the accuracy of cotton yield prediction. The research findings demonstrated the
superiority of the proposed CNN regression models over conventional CNN architectures
such as AlexNet, CNN-3D, CNN-LSTM, and ResNet. We applied a KerasTuner method
to dynamically search the best CNN model structure for cotton yield prediction. Remark-
ably, our proposed CNN model showcased state-of-the-art performance across various
image scales, boasting an impressive R-squared value exceeding 0.9. At the macro-level
of individual cotton rows, the MAE and MAPE stood at 3.08 pounds per row and 7.76%,
respectively. At the micro-level of the cotton grid, the MAE and MAPE were recorded as
0.05 pounds and 10%, respectively.

These results underscore the adaptability of our approach to the dynamic interplay
between spatial and temporal factors influencing cotton yield. In summation, the integra-
tion of UAV-derived imagery and CNN regression models emerges as a potent strategy
for advancing precision agriculture. This integration equips growers with a robust toolkit
to optimize cultivation practices, fostering enhanced cotton productivity and sustainable
agricultural outcomes. For future research endeavors, the authors plan to incorporate
the latest cotton yield data from the year 2023. By integrating this updated dataset, our
proposed CNN regression model can be subjected to testing with multiple years of data.
This expansion in the temporal scope of the study will allow for a more comprehensive
assessment of the model’s performance and robustness across varying growing seasons
and environmental conditions.

5. Research Reproducibility

All the research results in this article can be reproduced. The code is available in the
author’s Github: https://github.com/hniu-tamu/In-season-cotton-yield-prediction-with-
CNN-models, accessed on 13 March 2024.
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The following abbreviations are used in this manuscript:

ARS Agricultural Research Service
CMOS Complementary metal–oxide–semiconductor
CNN Convolutional neural network
CONUS Continental United States
CSRL Cropping Systems Research Laboratory
DFNN Deep fully connected neural network
EDA Exploratory data analysis
ETc Crop evapotranspiration
EXGI Excess green index
LST Land surface temperature
LSTM Long short-term memory
MAE Mean absolute error
MAPE Mean absolute percentage error
MDPI Multidisciplinary Digital Publishing Institute
ML Machine learning
MLP Multi-Layer Perceptron
MODIS Moderate Resolution Imaging Spectroradiometer
MP Megapixels
NDVI Normalized difference vegetation index
RFR Random forest regression
RGB Red, green, and blue
ResNet Residual network
RMSE Root-mean-square error
RNN Recurrent neural network
SGD Stochastic gradient descent
SR Surface reflectance
SVR Support vector regression
THP Texas High Plains
UAV Unmanned Aerial Vehicle
US United States
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