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Abstract: The various applications of bearing-only sensor networks for detection and localization
are becoming increasingly widespread and important. The array layout of the bearing-only sensor
network seriously impacts the detection performance. This paper proposes a multi-strategy fusion
improved adaptive mayfly algorithm (MIAMA) in a bearing-only sensor network to perform layout
planning on the geometric configuration of the optimal detection. Firstly, the system model of a
bearing-only sensor network was constructed, and the observability of the system was analyzed based
on the Cramer–Rao Lower Bound and Fisher Information Matrix. Then, in view of the limitations of
the traditional mayfly algorithm, which has a single initial population and no adaptability and poor
global search capabilities, multi-strategy fusion improvements were carried out by introducing Tent
chaos mapping, the adaptive inertia weight factor, and Random Opposition-based Learning. Finally,
three simulation experiments were conducted. Through comparison with the Particle Swarm Opti-
mization (PSO) algorithm, Mayfly Algorithm (MA), and Genetic Algorithm (GA), the effectiveness
and superiority of the proposed MIAMA were validated.

Keywords: bearing-only sensor network; state estimation; DCIF algorithm; cooperative consistency
theory

1. Introduction

With the development of wireless sensor networks, the technology for target tracking
and positioning has become increasingly prominent. Sensors can be categorized according
to their operational principles into active and passive modes. Compared with the active
mode, passive tracking does not require actively transmitting signals, but it locates by
receiving signals from the target itself or signals from the external environment [1]. In
this process, the low signal-to-noise ratio makes it difficult to distinguish signals and
noise, thereby greatly reducing the positioning and tracking performance of the system,
and thus, it exhibits highly nonlinear behavior and weak observability. This problem
widely exists in the fields of military confrontation, unmanned navigation, and mobile
robot positioning. Especially in terms of military confrontation, during the tracking and
positioning process, maneuvering targets can significantly shorten the detection distance
of active sensors through design modifications, absorbing materials, and interference
suppression technology, and lead to a sharp decline in detection accuracy. On the contrary,
bearing-only sensors that only rely on target radiation characteristics have become an
indispensable tool in the modern anti-stealth field because of their long, effective range and
strong concealment capabilities.

Passive detection with bearing-only sensors mainly refers to using angle measure-
ments containing noise to acquire a projection or approximation of the present condition of
the target, which has the characteristics of nonlinearity and weak observability. Nonlinear
problems of the system are usually solved through various filtering methods. To address
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the issue of limited observability in the system, the multi-platform collaborative detection
method is usually used to solve it [2]. The precision of positioning for the collaborative
target is influenced not only by the inherent errors in position and angle measurements of
the sensor, but is primarily impacted by the geometric arrangement between the sensor
and the target. This type of target localization error, originating from the position errors
and measurement errors of the bearing-only sensors and propagating through the relative
geometric relationship, is called the geometric dilution of positioning (GDOP) [3,4]. There-
fore, researching how to plan a rational sensor network layout to enhance the accuracy of
system state estimation has significant academic significance and indispensable practical
engineering value. This is particularly true for bearing-only sensor networks, which fea-
ture various positioning mechanisms, more complex system models, and limited existing
research. Thorough investigation in this domain can offer essential support and technical
momentum for the advancement of diverse application areas, including, but not limited to,
stealth target tracking, navigation state estimation, and mobile robot positioning.

The detection accuracy of the system is usually described by the Circular Error Proba-
ble (CEP) [5,6], GDOP, and Cramer–Rao Lower Bound (CRLB) [7–9]. The determinant of
the Fisher Information Matrix (FIM) is used to represent the observability measurement of
the system, thereby providing a usable optimization index for the detection system [10–12].
Further research found that CRLB is equal to the inverse of FIM [13,14], which unified the
positioning accuracy index and the observability index.

Consider that the efficacy of passive localization relies on the relative geometry be-
tween the sensor and the target [15]. Optimal observation geometry pertains to the rel-
ative positioning of the passive sensor and the target, aiming to maximize positioning
accuracy [16]. In [17], the optimal observation geometry was configured based on the de-
terminant that maximizes FIM, which can be applied to the deployment of passive sensors.
In [18], the impact of geometric structure on multi-sensors in array fusion performance was
explained. In [19], a distributed array configuration control scheme was proposed based on
bearing-only sensor detection. In [20], a deep learning framework for the passive sensor
detection process was also proposed; however, this method relied on datasets and had
limited real-time performance.

It is evident that there has been limited research in the field of sensor layout opti-
mization theory, specifically for the bearing-only sensor network. Furthermore, the design
of algorithmic performance metrics is often exceedingly complex, making it challenging
to meet real-time requirements and ensuring detection accuracy for practical problems.
Therefore, the optimal detection array layout for a bearing-only sensor network, which is
the central focus of this paper, remains a highly necessary and significant issue.

The main innovative contributions are summarized as follows:

1. The first aspect is to construct an observation model based on a bearing-only sensor
network, and the optimal detection array of the system is theoretically analyzed based
on CRLB and FIM theory. More importantly, the problem is abstractly simplified into
a mathematical model that is tractable for engineering;

2. The second aspect is to consider the problems of the mayfly algorithm with poor
global search ability, small population diversity, and weak adaptive ability; the multi-
strategy fusion improved adaptive mayfly algorithm (MIAMA) is proposed based on
a reverse learning mechanism, chaotic mapping, and nonlinear inertia weight factors;

3. The last aspect involves applying the proposed method to the system model of the
bearing-only sensor network and verifying the effectiveness and superiority of this
solution for the optimal detection array layout problem through simulation experiments.

The remainder of this paper is organized as follows: Section 2 constructs a system
model for locating and tracking the target through angle of arrival (AOA) via a bearing-only
sensor network and performs the systematic observability analysis. In Section 3, by deriving
the FIM and CRLB of the system model, the optimal detection geometry configuration
in the bearing-only sensor network is analyzed. Section 4 introduces the MIAMA, which
optimizes and solves the problem based on the objective function of geometric accuracy



Sensors 2024, 24, 2415 3 of 16

dilution. Section 5 presents the verification of the effectiveness and superiority of the
proposed MIAMA through several sets of simulation experiments. Finally, the research
content and future work directions of this paper are summarized.

Notation: This paper employs bold letters to signify vectors or matrices. We define
γi ∈ (−π, π]. tr(·) and det(·) as the trace and the determinant of the matrix enclosed
within the brackets, respectively. diag[·] denotes the diagonal matrix with the elements of a
vector as diagonal elements. ()T and ()−1 represent the transpose and inverse of a matrix,
respectively. E(·) denotes expectation.

2. System Model

In the observation model of the bearing-only sensor network, each sensor can inde-
pendently measure the elevation and azimuth angles to the target, and two sensor nodes
and the target form a triangular geometric relationship for tracking and localization. The
target position is determined by the intersection point of the lines of sight (LOS) from the
sensor node to the aiming target [21]. This method of target tracking and positioning is
based on the principle of AOA measurement.

The communication topology of the bearing-only sensor network is an undirected
connected network G(N, R). N = {1, 2, · · ·, N} is the set of sensor nodes. R denotes the
set of connections between nodes. An edge (i, j) ∈ R indicates that node i can receive
information from node j. For each node i ∈ N, if node j is included in its neighbors,
Ni = {j|(i, j) ∈ R}, otherwise Ni\{j} [22].

In a 3D coordinate system, the geometric relationship between the bearing-only sensors
and the target is shown in Figure 1. The elevation angle and azimuth angle measured by
bearing-only sensor Si are θi and φi. Similarly, the two angles measured by Sj are θj and φj.
The coordinates of target T are (xt, yt, zt)

T.
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Figure 1. Bearing-only detection model.

The vectors of the bearing-only sensor node pair and the target are
−→
OSi = (xi, yi, zi)

T,
−→
OSj = (xj, yj, zj)

T, and
−−→
OST = (xt, yt, zt)

T. According to the elevation and azimuth angle
measured by the bearing-only sensors Si and Sj, the position coordinates of the target can
be obtained through the triangulation positioning method.
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

xt = xi +
(yj − yi) cos φj cos φi − (xj − xi) sin φj cos φi

sin(φi − φj)

yt = yi +
(yj − yi) cos φj sin φi − (xj − xi) sin φj sin φi

sin(φi − φj)

zt = zi +
(yj − yi) cos φj sin θi − (xj − xi) sin φj sin θi

cos θi sin(φi − φj)

(1)

When θi = θj and φi = φj, the target line-of-sight of the sensor node pair coincides,
and the system of equations has no solution.

In the observation model of the bearing-only sensor network, two sensor nodes and the
target form a triangular geometric relationship for state estimation, as shown in Figure 2.
The distance from Si to T is Ri, and the distance from Sj to T is Rj. Rij represents the
distance between Si and Sj. γij represents the line-of-sight (LOS) separation angle between
Si and Sj. γi is the angle between Si and T. Similarly, the meaning of γj can be obtained.

Figure 2. Geometry of the bearing-only sensor node.

Analyzing intuitively from the perspective of space geometry, the three typical geomet-
ric configurations are the γij < 90◦ , γij = 90◦ , and γij > 90◦ scenarios. The propagation of
the angular measurement error of the bearing-only sensor through the geometric structure
will form a probability area surrounding the positioning error around the target. The true
coordinates of the target may exist anywhere within this overlapping area. Obviously,
when the probability area of the positioning error is larger, it indicates that the positioning
accuracy of the system is smaller.

On the basis of spatial geometric analysis, the problem is numerically analyzed. When
a pair of pure orientation sensor nodes detects a target, three spatial coordinates determine
a plane, which is defined as the observation plane. In the positioning triangle ∆SiTSj of
this plane, there is 

Ri =
sin γj

sin γij
Rij

Rj =
sin γi

sin γij
Rij

γij = π − (γi + γj)

(2)

The partial derivative of the distance Ri of sensor node i is expressed as

δRi =
sin γj

sin γij
δRij +

Rij cos γj

sin γij
δγj −

Rij cos γij sin γj

sin2γij
δγij

=
1

sin γij
{sin γjδRij − Rij sin γj cot(γi + γj)δγi + Rij[cos γj − sin γj cot(γi + γj)]δγj}

(3)

According to the analysis results, the error in the estimation of Si for the distance
is related to δRij, δγi, and δγij. When the LOS separation angle γij = π/2, there is the
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smallest error in distance estimation. When the LOS separation angle reaches 0 or π, the
distance estimation error reaches ∞ .

At this moment, the sensor nodes are aligned in a straight line, the observation model
degenerates into a single-sensor detection problem, the target observability is reduced, and
the distance estimation cannot be achieved [23]. This is consistent with the conclusion of
the previous Equation (1) analysis.

Therefore, in order to ensure that the bearing-only sensor can conclude the estimation
process for the target, the triangular geometric relationship between the sensor node pair
and the target must be satisfied. The quantity of nodes in the sensor network is N, (N ≥ 2).
When the LOS separation angle is closer to γij = π/2, the distance estimation effect
is better.

3. Analysis of Optimal Detection Array

Different array layouts in bearing-only sensor networks can significantly impact detec-
tion performance [24]. Therefore, to address the issue of optimal detection array planning,
it is necessary to analyze the positioning theory of the bearing-only sensor network.

3.1. CRLB and FIM

In this paper of a constructed system model of a bearing-only sensor network, the
measurement of sensor i is

m̂i(T) = mi(T) + ei = [θi(T), φi(T)]
T +

[
eθi, eφi

]T (4)

where eθi and eφi are components of the measurement error vector ei.
θi(T) = arctan

xt − xsi
yt − ysi

φi(T) = arctan
zt − zsi√

(xt − xsi)
2 + (yt − ysi)

2

(5)

The set of measurement values of N sensors is

M̂ = M(T) + e =
[
mT

1 , mT
2 , · · · , mT

N

]T
+ e =

[
eT

1 , eT
2 , · · · , eT

N

]T
(6)

Utilize R to symbolize the covariance matrix of ei.

R = diag [Ri]2N×2N (7)

where Ri = diag
(

σ2
θ , σ2

φ

)
.

For an unknown state parameter T, CRLB is the minimum variance achievable by an
unbiased estimator T̂ under regularity conditions, and it is equivalent to the inverse of the
FIM [25]. FIM is used to evaluate the uncertainty of position estimates. In the bearing-only
sensor network, the measurements are the AOAs of the target relative to each sensor. The
elements of FIM provide covariance information of the position coordinates to describe the
uncertainty of the parameter estimates [26].

The Cramer–Rao inequality is

E
[
(T̂ − T)(T̂ − T)

T
]
≥ F−1(T) ≜ CRLB (8)

where F(T) is FIM. In general, if F(T) is non-singular, a partial estimator of T with finite
variance exists theoretically. FIM quantifies the amount of information about T carried by
the measurement set. The detF(T) is inversely proportional to the uncertainty area of T.

For a measurement set M̂ of the network system model, FIM is

F(T) = ∇TM(T)TR−1∇TM(T) (9)
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When N = 1, FIM can be expressed as:

F(T) =



cos2β1

σ2
βr2

1cos2 φ1
+ sin2β1sin2 φ1

σ2
φr2

1
− sin β1 cos β1

σ2
βr2

1cos2 φ1
+

sin β1 cos β1sin2 φ1

σ2
φr2

1
− sin β1 sin φ1 cos φ1

σ2
φr2

1

− sin β1 cos β1

σ2
βr2

1cos2 φ1
+

sin β1 cos β1sin2 φ1

σ2
φr2

1

sin2β1

σ2
βr2

1cos2 φ1
+

cos2β1sin2 φ1

σ2
φr2

1
−cos β1 sin φ1 cos φ1

σ2
φr2

1

− sin β1 sin φ1 cos φ1

σ2
φr2

1
−cos β1 sin φ1 cos φ1

σ2
φr2

1

cos2 φ1

σ2
φr2

1


(10)

When detF(T) = 0, there is no unbiased estimator for T. By analogy, when N ≥ 2, we
can obtain ∀i, j ∈ {1, 2, · · ·, N}, ri = ∥ri∥ is a scalar, we have ri = ∥si − T∥ = ∥s′ i − T∥, and
the bearing-only sensor i moving from si(xsi, ysi, zsi) to s′ i(2xT− xsi, 2yT − ysi, 2zT − zsi)
will not change the value of the FIM determinant, which means that there may be multiple
optimal geometric configurations. Next is the analysis of space geometry based on the
non-unique theory of optimal geometric configuration.

3.2. Optimal Geometric Array

In the bearing-only sensor network studied in this paper, CRLB is calculated by
considering the variance of the node pair measurements and the true position of T. In the
process of system state estimation, the more reasonable the sensor target geometry has a
larger detF(T), the smaller the uncertainty range of target estimation. More importantly,
detF(T) with different geometric formations may have the same CRLB, and the optimal
geometric configuration may not be unique.

In the scenario where N bearing-only sensors track a single target T, the error in
measuring angle is σ [27]. The analysis of the optimal detection array is as follows.

1. When N = 1, there is no unbiased estimator, no triangulation model is formed, and
the target distance cannot be estimated.

2. When N = 2, R1 and R2 are fixed if and only when γ12 = π/2, it is the optimal
detection geometric configuration, and when Ri → ∞ or the two bearing-only sensors
are collinear with T, and the system cannot obtain the estimated result.

3. When N = 3, det(F(T)) can be obtained by simplifying.

det(F(T)) = ∑
1≤i<j≤3

R2
i + R2

j

σ6R4
i R4

j

(
1 − cos2γij

)
+

2
σ6R2

1R2
2R2

3
· (1 − cos γ12 cos γ13 cos γ23) (11)

The optimal geometry of the three sensor systems for collaboratively detecting a single
target appears at γ12 = γ23 = γ13 = π/2. Position three sensors at the vertices of an
equilateral triangle with side length l under the constraint of fixed distance between
adjacent sensors. The distance from T to the center of mass is l/

√
6, as shown in

Figure 3.

T

A

C

B

l

t

Figure 3. (N = 3) Optimal detection geometry under constraints.

It is assumed that the center of mass of an equilateral triangle of size l is t, and the
three bearing-only sensors are located at vertices A, B, and C, respectively [27].
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4. When N ≥ 4, the optimal detection array is not unique. Therefore, when the dis-
tance from each bearing-only sensor to the target is fixed, ∀i, j, k ∈ {1, 2, · · ·, N}, the
maximizing detection efficiency is

F(γ) = min ∑
Ω1

cos2γij + ∑
Ω2

cosγij cos γik cos γjk (12)

where Ω1 = {(i, j) | 1 ≤ i < j ≤ N}, Ω2 = {(i, j, k) | 1 ≤ i < j < k ≤ N}, |Ω2| = C3
N . The

problem is simplified to how to reasonably arrange N bearing-only sensors on the circle
where two balls intersect [27], as shown in Figure 4.

X

Y

Z

jS

iS

iR

jR

ijR

ij

T

Figure 4. Geometric analysis of the optimal detection array.

In the three-dimensional space, the spatial position of the first node Si in the sensor
network is known, with the coordinates of node Si as the center of the sphere, the fixed
adjacent communication distance as the radius, and the formed sphere is represented as
Qi . Then, take the coordinates of target T as the center and the distance from node Si to
target T as the radius, and the formed ball is represented as Qt . Sphere Qi and Qt intersect
at circle ⊙i. Now the spatial position of the second node Sj in the sensor network can be
determined to form the optimal detection geometry with node Si. But in fact, every point
on the circle ⊙i can be used as the spatial position of node Sj, thus forming an infinite point
set Φj, which makes subsequent models unable to perform effective calculations. From
the longitudinal plane and the normal plane passing through the center of the circle, four
points in Φj can be determined as the coordinates of the second node Sj. In the same way,
use the coordinates of the second node Sj as the center of the sphere to find the third node
Sk. By analogy, the geometric array of a bearing-only sensor network with a given number
of nodes can be designed in sequence.

The formation planning problem of a bearing-only sensor network is a multi-objective
optimization problem; the function cannot obtain an analytical form due to its high nonlin-
earity [27]. Intelligent optimization algorithms can meet specific performance indicators
to the greatest extent and automatically find the best solution in the search space to min-
imize or maximize the objective function. Numerical analytical methods are difficult in
obtaining optimal solutions to complex nonlinear problems. Therefore, this paper chooses
to use intelligent optimization algorithms to solve the optimal geometric formation of a
bearing-only sensor network.

At the same time, consider that the target positioning accuracy is not only related to
the observation array, but also depends on the errors of position and angle measurements
for a bearing-only sensor itself. The GDOP indicator originates from these two errors
of the sensor and propagates the error through relative geometric relationships, which
can best describe the changes in target positioning capabilities that this paper focuses on.
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Therefore, the objective function of the proposed method is to select the GDOP indicator
for iterative optimization.

4. The Proposed MIAMA

Based on the constructed system model and geometric array analysis, this paper
proposes a multi-strategy fusion improved adaptive mayfly algorithm (MIAMA) to solve
the optimization problem of geometric arrays in a bearing-only sensor network.

In the classic MA, each solution is a mayfly constantly flying in space, and the flight
direction is the dynamic interaction of individual and social flight experiences. Each male
mayfly will adjust its flight direction based on its own or companionable experience, which
represents the global search and optimization ability. The female mayfly moves towards
a mate that is better than itself. If the mate is weaker than itself, it will search for itself.
Mayflies are ranked according to their fitness values and mate with each other to produce
better offspring [28].

The reason why MA is chosen to solve this problem is mainly due to its excellent
positive-feedback characteristics. This feature can quickly expand the initial difference
and guide the entire system to evolve toward the optimal solution. Not only that, but
the pairing mechanism of mayflies in the flight optimization algorithm is similar to the
characteristic that bearing-only sensors can only be observed in pairs and is very suitable
for solving the optimization problem of geometric arrays in a bearing-only sensor network.

However, traditional MA also has limitations that cannot be ignored, which are mainly
reflected in three aspects. The first aspect is that the initial population diversity is small,
and male and female mayfly individuals are derived from random distribution and are
difficult to be evenly distributed in the state space. The second aspect is that the search
has poor adaptability. In a situation involving a limited number of sensor nodes, MA
cannot adaptively adjust the local search capability. The third aspect is that in scenarios
with an extensive number of sensors, the global search capabilities of the MA may show
shortcomings and need to be strengthened to a certain extent to deal with them. Based on
the considerations of all the above factors, in order to enhance the population diversity,
adaptability, and global search capability of MA, the MIAMA is proposed. The specific
improvement measures are as follows:

Firstly, Tent chaos mapping was used to initialize the mayfly population. It enables the
population to be uniformly distributed in the solution space to avoid the population being
too concentrated or dispersed. In addition, it improves the diversity of the population,
thereby enhancing the ability to escape from local optima.

Secondly, the adaptive inertia weight factor is introduced to achieve a more effec-
tive balance between global search and local development capabilities through adaptive
dynamic adjustment, thereby improving the convergence accuracy of the algorithm.

Finally, Random Opposition-based Learning (ROBL) was adopted to enhance the
ability for global search, the stability, and the convergence speed. The flowchart of a
bearing-only sensor network layout based on the proposed MIAMA is shown in Figure 5.

This paper adopts corresponding improvement strategies to address the various limi-
tations of the algorithm one by one, and then integrates the three improvement strategies
together in a rational manner to comprehensively enhance the performance of the algo-
rithm. Importantly, we ensure that the introduced improvement strategies are decoupled
and do not interfere with each other. Specific steps of the proposed MIAMA are as follows:

(1) Tent chaos mapping initialize population
An initialization population with a uniform distribution can effectively broaden the

search range of the algorithm, thereby enhancing both convergence speed and solution
accuracy. Random Tent chaos mapping has the characteristics of randomness, ergodicity,
and regularity and is often used to optimize search problems to maintain population
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diversity and jump out of local optimal solutions. The Random Tent chaos mapping
sequence is expressed as

zn+1 =

{
zn/α + rt/m, 0 ≤ zn < 0.5
(1 − zn)/(1 − α) + rt/m, 0.5 ≤ zn ≤ 1

(13)

where rt is a random number in (0, 1), which affects the degree of chaos in two aspects.
Firstly, the equation introduces randomness into the system, ensuring that the evolution
of the system is not completely deterministic. This means that even with the same initial
conditions, the system may evolve differently over time due to different random values
of rt. In addition, there is sensitivity to initial conditions, where even small differences in
initial conditions can lead to dramatically different outcomes over time. The random term
rt amplifies this sensitivity by introducing unpredictable changes into the system. m is
the number of elements in the Tent chaos sequence. α is a random perturbation uniformly
distributed in the range (−1, 1). After generating the chaotic sequence, it is mapped to the
solution space Z.

Z = pmin + (pmax − pmin) · z (14)

where pmax and pmin are the upper and lower bounds of the solution space, respectively.
Using the spatial coordinates of the bearing-only sensor network to generate Tent chaotic
sequences according to Equation (13), we then map them to the solution space according to
Equation (14) as the initial solutions of the mayfly population [29].

(2) Calculate fitness
This paper uses the Fitness to evaluate the quality of the sensor layout. In the sensor

layout problem on the tangent circle, the minimization of the GDOP value was considered.

Fitness = GDOPmin (15)

where GDOP is related to the position vector X(X ∈ Rn), measurement error covariance
matrix R(R ∈ Rn), and Jacobian matrix H(H ∈ Rm×n). It is represented as GDOP =√

trace[H−1R(H−1)
T
]. n represents the sensor number indicator, and m is the number of

sensors in the optimal layout of the current sensor network [30].
(3) Iterate
The inertia weight factor h(t) plays the guiding role in the search and development

capabilities of the algorithm, reflecting the ability of the mayfly to learn from certain prior
behaviors. As h(t) increases, it enhances the global search capability. However, as h(t)
decreases, it enhances the local search capability. This paper introduces a nonlinear de-
creasing adaptive gravity coefficient to better balance global search and local development
capabilities.

h(t) = (1 − t/D)
ρ√t/D · Γ(η, 1 − t/D) (16)

where t is the current time step, D is the maximum number of iterations, and ρ = 0.8
is the control coefficient of inertia weight obtained from experience. Γ(η, 1 − t/D) is an
incomplete gamma function. η is a random variable greater than zero but less than ρ.

For each iteration, the individual in the state space is updated through the flight
strategy of the MIAMA, the fitness of the new position is computed, and then the merits of
the sensor layout are evaluated according to the objective function. The location update of
the mayfly is related to the neighborhood individuals.{

xt+1
i = xt

i + vt+1
i

yt+1
i = yt

i + vt+1
i

(17)

where xt+1
i and yt+1

i represent the individual i at the t th iteration, respectively. The flight
speed in the iteration is represented by vt+1

i .
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Figure 5. The flowchart of the mayfly optimization algorithm.

The update of velocity for a male mayfly is

vt+1
ij =

h(t) · vt
ij + a1e−βr2

B

(
Bij − xt

ij

)
+ a2e−βr2

A

(
Aij − xt

ij

)
, f

(
xt

i
)
≤ fmin

h(t) · vt
ij + d · r, f

(
xt

i
)
≤ fmin

(18)

where vt+1
ij is the speed of i in the j th dimension at step t + 1 . a1 = 1 , a2 = 1.5 are

both positive constants representing attraction forces, which are employed to measure
the influence of the individual and the optimal individual on the current flight speed,
respectively. Bij is the historical optimal position of individual i . Aij represents the optimal
value among all individuals. β = 2 represents the visibility coefficient of the mayfly,
regulating the visible range. rB represents the distance between the historical optimal value
and the current value. rA represents the distance between the optimal individual value and
the current value [31].
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∥xi − Xi∥ =

√√√√ n

∑
j=1

(
xij − Xij

)2 (19)

where xij is the j th component of the mayfly i. Xi represents the corresponding Bij and Aij.
The update of velocity for a female mayfly is expressed as

vt+1
ij =

h(t) · vt
ij + a2e−βr2

c

(
xt

ij − yt
ij

)
, f (yi) > f (xi)

h(t) · vt
ij + k · r, f (yi) ≤ f (xi)

(20)

where rc is the Cartesian distance between female individuals and male individuals, which
can be obtained from Equation (19). Male mayflies consistently engage in a courtship dance
above the water, and d is the courtship dance coefficient. k is the random walk coefficient.
The female mayflies engage in random flight when they are not attracted by the male
mayflies. r is a random number between [−1, 1] [32].

(4) Choose the optimal solution
Opposition-based Learning (OBL) is an effective optimization approach [33]. The

Random Opposition-based Learning (ROBL) strategy is built upon this foundation. Firstly,
the current solution is subtracted from the sum of the upper bound upi and lower bound
lpi to generate a reverse solution. Then, a random number is introduced. Finally, the
fitness function values of the current resolution and the inverse resolution are compared.
We include the optimal one in the subsequent iteration. This is employed to strengthen
the global search capability of MIAMA and reduce the likelihood of converging to a local
optimum and getting stuck.

Xrand = (upi + lpi)− µ × Xi (21)

where Xrand is a random reverse solution, and µ is a random number between 0 and 1.
The iteration stop condition is whether the MIAMA reaches the set number of itera-

tions, and then among all iteration results, the individual with the highest fitness is the
optimal calculation result.

5. Simulation Experiment

To validate the effectiveness and superiority of the proposed MIAMA, the three
comparative experiments were set up through a Matlab simulation. The bearing-only sensor
network tracks and locates the single target in 3D space. Assuming that all bearing-only
sensors have uniformly completed time and space registration [34], the initial simulation
parameters are shown in Table 1. Xt = (500 m, 500 m, 500 m) is the initial state of the target.
Si corresponds to the spatial position of the i th node in the bearing-only sensor network.

Table 1. Initial simulation parameters for the experiments.

Group Axis S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

1
x0
(
102m

)
9.85 9.65 9.25 9.25 9.25 9.25 - - - -

y0
(
102m

)
9.85 9.52 9.52 9.85 10.52 10.54 - - - -

z0
(
102m

)
9.85 10.31 10.75 11.25 10.78 10.36 - - - -

2
x0
(
102m

)
10.23 10.21 9.71 9.25 8.95 8.95 9.25 9.71 - -

y0
(
102m

)
10.45 10.25 9.71 9.71 10.27 10.46 10.76 10.74 - -

z0
(
102m

)
10.22 10.25 10.35 10.74 11.23 11.26 10.77 10.36 - -

3
x0
(
102m

)
9.95 9.83 9.55 9.14 8.82 8.60 8.82 9.14 9.55 9.83

y0
(
102m

)
9.95 9.71 9.55 9.55 9.71 9.95 10.34 10.55 10.52 10.36

z0
(
102m

)
9.95 10.28 10.54 10.92 11.26 11.43 11.25 10.56 10.55 10.28
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In the first set of simulation scenarios, a system network of six bearing-only sensor
nodes was set up to track and locate the target. Through MIAMA calculations, the optimal
detection array of the bearing-only sensor network was as follows: S1 (1.00 × 103 1.00 × 103

1.00 × 103), S2 (9.75 × 102 9.52 × 102 1.03 × 103), S3 (9.75 × 102 9.52 × 102 1.07 × 103),
S4 (9.36 × 102 1.02 × 103 1.10 × 103), S5 (9.05 × 102 1.05 × 103 1.07 × 103), S6 (9.05 × 102

1.05 × 103 1.03 × 103). The process of MIAMA searching for the optimal solution based on
GDOP in the solution space is shown in Figure 6a. As the simulation time increases, the
value of the GDOP objective function of algorithm gradually decreases, and the function
decreases faster and in a clearer direction. It is proved that the MIAMA can effectively
solve the optimal observation geometric formation.

The iteration curves of the proposed MIAMA with traditional MA, PSO, and GA are
compared and analyzed, as shown in Figure 6b. MIAMA can converge to the optimal
solution in 127 generations, which is superior to other algorithms. MA, PSO, and GA
terminate the optimization process at generations 223, 196, and 242, respectively. MIAMA
not only has the fastest downward trend, but also has a higher system state estimation
accuracy. The superiority of the algorithm and its optimal objective function value are
ranked as MIAMA(3.15) > PSO(3.15) > MA(3.66) > GA(3.98).
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(a)  The solution space is based on GDOP to find the optimal solution (b)  Comparison of algorithm iteration convergence

Figure 6. Results and comparison of the first set of simulation experiments.

In the second set of simulation scenarios, a system network of eight bearing-only sensor
nodes was set up to track and locate the target. Through MIAMA calculations, the optimal
detection array of the bearing-only sensor network was as follows: S1 (1.00 × 103 1.04 × 103

1.00 × 103), S2 (1.00 × 103 9.65 × 102 1.00 × 103), S3 (9.75 × 102 9.52 × 102 1.03 × 103),
S4 (9.32× 102 9.75× 102 1.07× 103), S5 (9.02× 102 1.01× 103 1.12× 103), S6 (9.04× 102 1.04×
103 1.10 × 103), S7 (9.32 × 102 1.07 × 103 1.07 × 103), S8 (9.71 × 102 1.07 × 103 1.03 × 103).
The process of MIAMA finding the optimal solution based on GDOP in the solution space
is shown in Figure 7a. The GDOP objective function value of MIAMA also decreases
progressively with simulation time, but the direction of descent for the function becomes
anisotropic. The system operation is more complex compared to scenarios with small-scale
nodes, but it can still approach the optimal solution set in a stable direction.

On this basis, the iteration curves of the four algorithms MIAMA, MA, PSO, and GA
are also compared and analyzed, as shown in Figure 7b. MIAMA can converge to the
optimal solution in 207 generations, which is significantly better than other algorithms.
Among them, MA, PSO, and GA terminate the optimization process at generations 260,
226, and 264, respectively. MIAMA not only has the fastest downward trend, but also has a
higher system state estimation accuracy. The superiority of the algorithm and its optimal
objective function value are ranked as MIAMA(5.72) > PSO(6.24) > MA(6.78) > GA(7.42).
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Figure 7. Results and comparison of the second set of simulation experiments.

In the third set of simulation scenarios, a system network of ten bearing-only sensor
nodes was set up to track and locate the target. Through MIAMA calculations, the optimal
detection array of the bearing-only sensor network was as follows: S1 (1.00 × 103 1.04 × 103

1.00 × 103), S2 (9.82 × 102 9.72 × 102 1.02 × 103), S3 (9.55 × 102 9.55 × 102 1.05 × 103),
S4 (9.12× 102 9.52× 102 1.09× 103), S5 (8.83× 102 9.72× 102 1.12× 103), S6 (8.61× 102 1.01×
103 1.14 × 103), S7 (8.82 × 102 1.03 × 103 1.12 × 103), S8 (9.10 × 102 1.05 × 103 1.05 × 103),
S9 (9.52 × 102 1.05 × 103 1.05 × 103), S10 (9.82 × 102 1.03 × 103 1.02 × 103). The process of
MIAMA finding the optimal solution based on GDOP in the solution space is shown in
Figure 8a. The GDOP objective function value of MIAMA also gradually decreases with
the simulation time. The decline of the function is similar to that of the second group. The
system operation is relatively more complex, but it can still approach the optimal solution
set with a stable direction and speed.

On this basis, the iteration curves of the four algorithms MIAMA, MA, PSO, and GA
are also compared and analyzed, as shown in Figure 8b. MIAMA can converge to the
optimal solution in 224 generations, which is significantly better than other algorithms.
Among them, MA, PSO, and GA terminate the optimization process at generations 312,
296, and 319, respectively. MIAMA not only has the fastest downward trend, but also has a
higher system state estimation accuracy. The superiority of the algorithm and its optimal
objective function value are ranked as MIAMA(9.28) > PSO(9.62) > MA(10.25) > GA(10.66).
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Figure 8. Results and comparison of the third set of simulation experiments.
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Through the simulation experiments of three groups of network nodes of different
sizes, it is, firstly, verified that that the proposed MIAMA can reasonably and effectively
solve the optimal geometric configuration problem for target tracking in a bearing-only
sensor network. This is significantly reflected in the decreasing trend of the GDOP indicator
in the state solution space. Furthermore, taking a comprehensive view, from the first
simulation experiment to the third simulation experiment, the number of the bearing-
only sensor nodes gradually increased. On one hand, the convergence speed of various
algorithms for solving this problem gradually decreases. This characteristic is manifested
in the changing trend of the iteration numbers for PSO, which is 196→226→296, for MA is
223→260→312, for GA is 242→264→319, and for MIAMA is 127→207→224. On the other
hand, the fluctuation trend of the gap between the convergence results of PSO and MIAMA
is 0→0.52→0.34. The fluctuation trend of the gap between the convergence results of MA
and MIAMA is 0.51→1.06→0.97. The fluctuation trend of the gap between the convergence
results of GA and MIAMA is 0.83→1.7→1.38.

The comparison of these methods was performed in three sets of simulation experi-
ments with different numbers of nodes to avoid limitations where a certain method may
only perform superiorly in specific scenarios. Simultaneously, in the comparison and
analysis with the MA, PSO, and GA methods, the superiority of MIAMA in solving the
problem was confirmed through quantifying the iteration count and optimizing the objec-
tive function value. MIAMA demonstrated the ability to achieve better target localization
results with faster convergence speed.

In summary, the proposed MIAMA integrates the principle of the Tent chaos mapping,
adaptive inertia weight factor, and the mechanism of the Random Opposition-based Learn-
ing to solve the limitations of the traditional MA and greatly improve the adaptability and
solving capabilities of the algorithm. In the planning of the optimal detection geometric
configuration for a bearing-only sensor network, it shows the advantages of high detection
accuracy and fast convergence speed, and can best meet the requirements of the system
model. This research can also make an important technical reference for the fields of path
planning and target tracking of bearing-only sensors. It has necessary academic research
significance and engineering application value.

6. Discussion

The emergence of stealth maneuvering targets not only changes the combat mode of
modern warfare, but, more importantly, it breaks the original strategic balance, causing
modern military tactics and strategic defense systems to face unprecedented challenges [35].
The passive detection solution for a stealth maneuvering target in a bearing-only sensor
network has the irreplaceable advantages of long detection range, high concealment, and
strong anti-interference ability.

In the preliminary work on how to detect a stealth target efficiently and stably, through
investigation of the development status and theoretical analysis, we have identified that
conducting thorough research on the optimal detection geometric array in bearing-only sen-
sor networks is crucial and necessary. Here, this problem is abstracted into a mathematical
model that is convenient for engineering applications, and the MIAMA method is designed
and implemented to ideally solve this problem. Finally, through simulation experiment
scenarios of different scales, the verification of the research results in this paper under-
scores its crucial reference significance for the passive detection technology of bearing-only
sensors, and can provide theoretical and technical support for anti-stealth solutions. The
shortcoming of this research work is that there are some a priori empirical parameters in
the proposed algorithm. In future work, machine learning training should be considered to
obtain more reasonable empirical parameters of the system. Future research should also
consider testing and evaluating the proposed method using real bearing-only sensors.
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7. Conclusions

In a bearing-only sensor network, detection arrays with different geometric config-
urations will profoundly affect the detection accuracy and stability of the system. This
paper, firstly, constructs the system model for bearing-only sensor detection and analyzes
the observability of the system. Subsequently, relying on the theories of FIM and CRLB,
the optimal detection geometry formation was analyzed. More importantly, taking into
account the three limitations of the traditional MA, a multi-strategy fusion improvement
was carried out to obtain a MIAMA that is more suitable for the system model. In conclu-
sion, several groups of comparative simulation experiments were designed to validate the
effectiveness and superiority of the proposed MIAMA.
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