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Abstract: Diabetes mellitus (DM) is a persistent metabolic disorder associated with the hormone
insulin. The two main types of DM are type 1 (T1DM) and type 2 (T2DM). Physical activity plays a
crucial role in the therapy of diabetes, benefiting both types of patients. The detection, recognition,
and subsequent classification of physical activity based on type and intensity are integral components
of DM treatment. The continuous glucose monitoring system (CGMS) signal provides the blood
glucose (BG) level, and the combination of CGMS and heart rate (HR) signals are potential targets
for detecting relevant physical activity from the BG variation point of view. The main objective of
the present research is the developing of an artificial intelligence (AI) algorithm capable of detecting
physical activity using these signals. Using multiple recurrent models, the best-achieved performance
of the different classifiers is a 0.99 area under the receiver operating characteristic curve. The
application of recurrent neural networks (RNNs) is shown to be a powerful and efficient solution
for accurate detection and analysis of physical activity in patients with DM. This approach has great
potential to improve our understanding of individual activity patterns, thus contributing to a more
personalized and effective management of DM.

Keywords: type 1 diabetes mellitus; recurrent neural network; artificial intelligence; physical
activity; heart rate; continuous glucose monitoring

1. Introduction

Diabetes mellitus (DM) is a persistent metabolic disorder associated with the hormone
insulin. Type 1 DM (T1DM) is an autoimmune condition that can develop suddenly and
may be caused by genetics and other unknown factors. Type 2 DM (T2DM) generally
develops over time, with obesity and a lack of exercise being major risk factors. Often,
T2DM goes undiagnosed for an extended period, with patients commonly diagnosed due
to the manifestation of malady-related side effects [1].

Physical activity plays a crucial role in diabetes therapy, benefiting both T1DM and
T2DM patients. In the case of T1DM, incorporating daily exercise leads to improved
glycemic control [2]. The intensity of the exercises is also very important in this type of
patient. High-intensity interval exercise and training has proved to be safer than continuous
exercise due to the reduced risk of hypoglycemia [2].
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However, unplanned exercise could be dangerous if neglected while receiving insulin
therapy. In particular, insulin overdose can occur in individuals who do not account for
exercise events when determining the necessary insulin doses or who neglect to include
exercise in insulin pump settings during pump therapy, potentially resulting in episodes
of severe hypoglycemia [3]. For diabetics, hypoglycemia is a very serious condition since
falling glucose levels can cause ketoacidic situations, which can result in a coma in the
short term or even death. Thus, it is essential to carefully consider physical activity during
daily living, particularly in semi-automated therapies like insulin pump applications [4].

When it comes to automatic glucose control, control algorithms must take into account
the physical activity of the patient. Subroutines with the ability to detect exercise events are
essential to prevent hypoglycemic episodes despite possible misreporting or miscalculations
of the patients. Reduced blood glucose (BG) levels induced by exercise occur with a slight
delay, but the effects of physical activity on the regulation of BG levels persist for up to 48 h
after the exercise, depending on the intensity and extent of the exercise, as discussed in [5,6].

Recognition of the influence of different physical activities will allow for timely inter-
vention in the control of blood glucose.

An important obstacle facing researchers is the creation of algorithms that can identify
unexpected physical activity that can be used to improve decision making and improve
treatment in partially automated blood glucose (BG) control systems. The challenge of
these developments comes from the fact that the available data are limited and usually
patient cooperation cannot be expected. However, there is a strong need from patients
and the industry to realize good quality physical activity detection systems to support
high-quality decision making, especially int case of insulin pump therapy. Modern insulin
pump systems follow the artificial pancreas (AP) concept, consisting of three main parts:
continuous glucose monitoring system (CGMS) for monitoring BG levels, an insulin pump
for administering insulin, and sophisticated control algorithms. Typically, AP systems
integrate these elements [7,8].

In the event that there are no extra sensors present (which is one of the aforementioned
challenges), like body-worn activity trackers or integrated accelerometers (IMU, which stands
for Inertial Measurement Unit, comprising accelerometers along with other motion sen-
sors)/heart rate (HR) sensors in the CGMS or insulin pump, the only method to identify
physical activity in users of these systems is through the CGMS signal. Nevertheless, the pri-
mary difficulty is the lag time between the manifestation of the exercise impact in the CGMS
signal. To overcome this constraint, IMU and HR signals can act as beneficial supplements to
CGMS signals as they can precisely signify exercise [9,10].

Identifying, acknowledging, and categorizing physical activity according to its type
and level of intensity are essential elements of high-quality management of T1DM. Various
solutions exist in this domain, particularly leveraging Inertial Measurement Unit (IMU)
sensors, as discussed in [11]. A recent development involves the use of IMUs specifically
for detecting and classifying physical activity in diabetic patients, as highlighted in [12].
The presence of IMUs is beneficial, especially when taking into account the existence of
cardiac autonomic neuropathy (CAN) in individuals with diabetes, which is marked by
dysfunction of the autonomic nervous system (ANS) and an increased resting heart rate
(HR) [13].

Cardiac autonomic neuropathy (CAN), a frequent long-term complication in individu-
als with diabetes, could reduce the predictive accuracy of the heart rate signal in patients
with type 1 diabetes mellitus (T1DM) [14]. However, the correlation between CAN, blood
glucose (BG) levels, BG variability (BGV), and HR variability (HRV) in the short and medium
term is not fully elucidated. Furthermore, some studies suggest that the relationship between
CAN, HR, and HRV warrants further investigation [15].

Most wearable activity monitors currently available on the market do not provide
users with the ability to access raw IMU data, as noted in [16]. While some devices, such
as the Empatica E4, provide access to raw IMU data, their higher prices (approximately
USD 1000) limit their accessibility for the diabetic population. On the other hand, wearable
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sensors that provide heart rate (HR) data with a sampling time basis of at least 5 min
are more affordable and provide convenient access to data either from the device itself or
via activity tracking apps, as highlighted in [16]. The utilization of sampled HR data in
conjunction with CGMS signals as a measure of physical activity is made possible by the
5 min sampling basis.

Artificial intelligence (AI) tools have demonstrated their effectiveness in recognizing
patterns in various applications in biomedical engineering, as evidenced by studies such
as [17–21]. Their utility extends to diabetes treatment, where AI tools have proven beneficial,
as indicated in studies like [22–25].

Effectively managing T1DM requires individual strategies in insulin treatment, dietary
choices, and physical activity. Monitoring of the latter is crucial for optimizing glycemic
control. However, conventional methods often fail to provide comprehensive insights,
prompting a search for innovative solutions. In this pursuit, recurrent neural networks
(RNNs) [26] have emerged as a highly promising tool to detect and analyze physical activity
patterns in individuals with TDM1 [27]. RNNs, specifically designed for processing sequen-
tial data, prove to be exceptionally adept at recognizing temporal dependencies in human
movement. This unique capability makes them ideal for discerning various physical activi-
ties, ranging from routine actions like walking to more complex exercises. The recurrent
nature of RNNs enables them to understand dynamic changes in activity, distinguishing
nuances between different activities with remarkable precision and, furthermore, providing
them adaptation capabilities [28]. In summary, the application of RNNs presents a powerful
and efficient solution for accurate detection and analysis of physical activity in T1DM pa-
tients. This approach holds great potential in enhancing our understanding of individual
activity patterns, thereby contributing to more personalized and effective management
of T1DM.

Based on the information presented earlier, including investigations and the literature,
it can be concluded that the CGMS signal and the combination of CGMS and heart rate
(HR) signals are potential candidates for detecting physical activity. In this research, our
objectives encompass the creation of artificial intelligence (AI) programs that can identify
physical activity by analyzing the CGMS signal alone or the combination of CGMS and HR
data in a binary manner (determining the presence or absence of physical activity). These
algorithms show great potential, particularly in closed-loop insulin delivery systems. It is
important to note that, in this initial phase of our research, the focus is on recognizing the
presence of physical activity without categorizing its type.

The aim of this research was to create models that can predict physical activity us-
ing recurrent layers. For this, a published dataset was used to provide raw data. Sev-
eral hyperparameter settings were investigated to obtain the appropriate setting. The
paper is structured as follows: Section 2 outlines the applied methodology, encompass-
ing clinical data extraction, classification methods, and the metrics employed for perfor-
mance evaluation. Section 3 presents the results derived from the utilized methods. In
Section 4, the achievements and capabilities of the involved classification models in diverse
circumstances are discussed. Finally, Section 5 provides the conclusion of the study.

2. Materials and Methods

Figure 1 explores a potential setup for utilizing the test models. Imagine a scenario where
a patient’s health is being monitored, with a particular focus on blood glucose levels. The data
are collected using a continuous glucose monitoring system (CGMS), which measures glucose
levels directly from the patient’s blood. There is also interest in collecting other physiological
data such as heart rate and step count. For this purpose, either a smartwatch or a smart
bracelet is utilized. All this collected data are transmitted to a smartphone, which serves as
a central hub for processing. Using Bluetooth technology, the smartphone can seamlessly
receive and manage the incoming data. This setup is convenient because smartphones
are ubiquitous and easily accessible to most patients. Furthermore, the smartphone can
preprocess the data and extract relevant features based on deep learning models. What
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is particularly intriguing about this setup is its flexibility. It can easily integrate multiple
deep learning models and even replace them as needed, thanks to the adaptable nature of
smartphones. The core of the proposed system lies in the deep learning model itself, which
performs the crucial task of classifying whether the patient is engaged in physical activity
or not based on the collected data. While the diagram does not explicitly show it, there is
potential for further actions with this processed data. For instance, they could be stored in
a database for longitudinal analysis, or other systems could access and use this valuable
health information.

Figure 1. Designed solution for real-life use.

2.1. Preliminary Results

In a prior investigation [29], our primary objective was to establish uncomplicated
machine learning algorithms that utilize synthetic data from a virtual patient setting in
order to create physical activity detectors. The simulated continuous glucose monitoring
system (CGMS) signal was exclusively utilized, extracting features from it. The tested
features remained consistent with the ones introduced in the present study. Notably,
various machine learning algorithms were identified, such as k-nearest neighbors (KNN),
Random Forest, and Decision Tree, which performed well in detecting physical activity.
In the present study, one of our goals is to validate the previous conclusions and findings
from [29] using real patient data.

Our other previous study [30] on detecting physical activity using machine learning
methods based on continuous blood glucose monitoring and heart rate signals yielded
promising results. The researchers found that incorporating heart rate (HR) features
alongside continuous glucose monitoring (CGM) data significantly improved the detection
of physical activity. Specifically, the addition of HR-based features raised the achievable area
under the curve (AUC) values from 0.65 to 0.91 for the Ohio T1DM dataset and from 0.72 to
0.92 for the D1namo dataset. The study identified several machine learning algorithms that
performed well in detecting physical activity. The Logistic Regression, AdaBoost, Random
Forest, and Multi-Layer Perceptron models with ReLU and Tanh activation functions were
among the top-performing models. These models provided better or comparable results
to those reported in similar studies, showcasing their effectiveness in accurately detecting
physical activity based on CGM and HR signals. Moreover, the research demonstrated the
robustness of the developed models when tested on different datasets (Ohio T1DM and
D1namo). By training the models on one dataset and testing them on another, the study
showed that the models maintained good performance across diverse populations, clinical
trials, and sensor types. This cross-dataset testing highlighted the potential applicability
of the models to various patient populations and sensor configurations, emphasizing the
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versatility and effectiveness of the developed machine learning algorithms for physical
activity detection in individuals with diabetes.

2.2. Development Environments

In this study, the Python 3.10 language is employed within a hosted cloud environment.
The platforms and libraries utilized include Tensorflow 2.13.0 [31], Scikit-learn 1.2.2 [32],
Numpy 1.25.2 [33], and Pandas 2.0.3 [34]. The implementation is being carried out using
the Jupyter Notebook development user interface. The hosted cloud environment is being
used by Google’s CoLaboratoryTM (referred to as “Colab”), utilizing the hosting provided
by Google, which is free of charge by default. The dedicated resources on the platform vary
but typically include around 12.69 GB VRAM, 107.79 GB VSPACE, and 4 VCPUs provided
by a Python 3 Google Compute Engine server.

2.3. Datasets
OHIO T1DM Dataset

The OHIO T1DM dataset is a collection of data that is available to researchers interested
in improving the health and well-being of people with type 1 diabetes. The OHIO T1DM
dataset contains 8 weeks worth of data for each of the 12 individuals with type 1 diabetes
who participated in the study. The dataset includes various types of data related to blood
glucose levels and insulin usage, such as continuous glucose monitoring (CGM) blood
glucose levels recorded every 5 min. The dataset also includes blood glucose levels obtained
by periodic self-monitoring of blood glucose using fingersticks. The dataset also contains
information on insulin doses (both bolus and basal), self-reported meal times accompanied
by carbohydrate estimates, and self-disclosed details about exercise, sleep, work, stress,
and illness. Additionally, physiological data collected from fitness bands and environmental
information are part of the dataset. The individuals in the dataset are anonymous and
are referred to by unique identifiers to protect their privacy. The OHIO T1DM dataset
was initially made available to participants in the first and second Blood Glucose Level
Prediction (BGLP) Challenge in 2018 and 2020 [35].

In the pursuit of our research objectives, a comprehensive approach was adopted,
entailing the utilization of three methodologies. To support these investigative efforts,
relevant data types were systematically extracted from the dataset, which encompassed
essential physiological parameters, such as glucose level, heart rate, and steps. The glucose
level data comprise continuous glucose monitoring (CGM) measurements recorded at
five-minute intervals. Heart rate information is aggregated in five-minute increments and
is exclusively accessible for individuals who utilized the Basis Peak sensor band. Similarly,
step count data, aggregated at five-minute intervals, are restricted to individuals who wore
the Basis Peak sensor band.

• glucose_level: The glucose data comprise continuous glucose monitoring (CGM)
measurements in milligrams per deciliter (mg/dL), with corresponding timestamps
recorded at five-minute intervals. The timestamp format follows the DD-MM-YYYY
HH:MM:SS pattern.

• basis_heart_rate: Heart rate information is aggregated in five-minute increments and
is exclusively accessible for individuals who utilized the Basis Peak sensor band. Heart
rate recordings include timestamps, denoting the date and time (in DD-MM-YYYY
HH:MM:SS format), along with corresponding heart rate data measured at five-minute
intervals (in beats per minute).

• basis_steps: The dataset comprises step counts aggregated every 5 min in the DD-MM-
YYYY HH:MM:SS format. These data are also exclusively accessible for individuals
using the Basis Peak sensor band.

Table 1 provides a summary of glucose data, indicating the patient whose information
was analyzed in the first row and the corresponding duration of glucose data collected
in hours in the second row. In the initial phase of data preprocessing, our focus was
on the systematic refinement of the original dataset through a rigorous application of



Sensors 2024, 24, 2412 6 of 18

specific criteria. The primary criterion involved a meticulous examination of missing
values, particularly within the heart rate and step data fields. Strict scrutiny was observed
to ascertain the absence of any missing entries within these parameters. Upon detecting
any instances with missing values for heart rate or step data, it was decided to exclude the
entire corresponding row from the CSV dataset.

Table 1. Glucose hours by patients.

540 544 552 559 563 567 570 575 584 588 591 596

1242 1115 960 1115 1228 1112 1148 1213 224 1290 1138 1140

Furthermore, temporal analysis was performed on the glucose measurements to
discern temporal discontinuities. Specifically, an intricate examination of the temporal
intervals between consecutive glucose measurements was carried out. In adherence to a
predefined temporal threshold, if the duration between a given glucose measurement and
its antecedent exceeded a predefined threshold of five minutes, the dataset was reorga-
nized. This involved fragmenting the dataset and treating each such instance of temporal
disjunction as a distinct and autonomous dataset. By treating these instances as discrete
datasets, the aim was to preserve the temporal coherence of the entire dataset, thereby
increasing the fidelity of subsequent analyses.

As previously elucidated, our research undertakings were characterized by a tripartite
methodological framework, necessitating the formulation of three distinct dataset structures:

(i) The first dataset structure exclusively comprised glucose data. This univariate config-
uration allowed for an in-depth analysis of glucose dynamics, unencumbered by the
influence of additional physiological variables.
In this case, the data record for each patient in this dataset had the following structure:
[Date stamp (DD-MM-YYYY), Time stamp (HH:MM:SS), Blood glucose level from
CGMS (concentration)].

(ii) In the second dataset structure, our analytical scope expanded to encompass the
dynamic interplay between glucose levels and heart rate. This bivariate approach
facilitated a more nuanced examination by integrating heart rate data, also aggregated
at five-minute intervals. Importantly, this dataset structure was specifically tailored
for individuals who wore the Basis Peak sensor band, ensuring methodological con-
sistency and uniformity in data acquisition practices.
In this case, the data record for each patient in this dataset had the following structure:
[Date stamp (DD-MM-YYYY), Time stamp (HH:MM:SS), Blood glucose level from
CGMS (concentration), HR value (integer)].

(iii) The third dataset structure extended the integrative paradigm by pairing glucose
data with step information. Similar to the previous approach, the aggregation of data
occurred at five-minute intervals, and exclusivity was maintained for individuals
employing the Basis Peak sensor band.
In this case, the data record for each patient in this dataset had the following structure:
[Date stamp (DD-MM-YYYY), Time stamp (HH:MM:SS), Blood glucose level from
CGMS (concentration), Step value (integer)].

In essence, the delineation of these three distinct dataset structures reflects a deliberate
and strategic approach to research design. By systematically varying the combinations of
physiological parameters, the aim was to uncover patterns and relationships within the
data, thereby contributing to a richer understanding of the complex interdependencies
among glucose levels, heart rate, and step count.

2.4. Investigated Machine Learning Methods

In this study, we began by considering general machine learning algorithms, particu-
larly recurrent neural networks (RNNs), due to their suitability for addressing time-series-
based physical activity detection problems. Given that our dataset features uniform time
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intervals, RNNs are well suited for utilization. Moreover, RNNs represent a more contem-
porary technology compared to traditional machine learning algorithms. The architectural
structures of our models were similar, with distinctions primarily lying in the recurrent
layers. These architectures are elucidated in detail. Notably, the key divergence between
the architectures lies in the utilization of either Long Short-Term Memory (LSTM) [36] or
Gated Recurrent Unit (GRU) [37] cells to construct the network. Additionally, variations
in other parameters, such as the lookback time horizon, were explored. This parameter
ranged from 3 to 24, corresponding to time horizons spanning from a quarter of an hour
to two hours, given the 5 min interval data. Furthermore, attention was paid to the size
of the feature vectors in the input layer, which is influenced by both the time horizon and
the number of sensor data points used. Our dataset comprises sensor data from blood
glucose meters, heart rate meters, and step counters. Additionally, adjustments were
made to the dropout rate, which was varied between 0, 0.2, and 0.5 to mitigate overfitting
across all layers. Another crucial parameter under consideration was the number of RNN
cells, reflecting the number of cells in the recurrent layers. This value, uniform across
all recurrent layers, ranged from 16 to 128. Additionally, the dense layer neuron count,
representing the number of neurons in the hidden layer, was consistent across all layers and
varied between 64, 128, 256, 512, and 1024. These parameters defined the configurations
of our networks, with training and testing conducted for each configuration to evaluate
performance systematically.

Our Network Proposal

The architecture of the LSTM model is shown in Figure 2 (right panel). The input
depends on two variables: how many time instants we look back and how many features
we are working with. In our case, 24 steps were looked back, i.e., two hours of data and
2 features, i.e., data from two sensors. This input layer is followed by a bidirectional
layer [38,39], which, in the case of the LSTM model, contains LSTM cells on both the
forward and backward paths. The number of pieces of these cells was a variable parameter.
In the case of the network shown in the picture, this value was 128. The RNN layer
had the return_sequences property set to true. That is, the layer returns a value at every
moment in time, not just at the last moment. Also, the dropout rate set as a parameter
was also passed to this layer to avoid overfitting. This layer was followed by a batch
normalization [40] layer to normalize the data. This was followed by a bidirectional layer
with the same parameters as the first bidirectional layer. It contained the same number of
RNN cells and had the same return_sequences parameter. Following the establishment
of the dropout rate, a batch normalization layer was introduced. Subsequently, the final
Bidirectional layer, mirroring the architecture of the initial two Bidirectional layers, was
implemented. Specifically, the RNN cell numbers were maintained consistent across these
layers. The parameters for return_sequences and dropout rate were configured. Afterwards,
a final batch normalization layer was introduced to ensure the normalization of the data.
Following this, a Global Average Pooling [41] layer is incorporated to generate a single
vector from multiple time vectors. This is achieved by computing the average. The resultant
output from this layer is then obtained. It is vectorless and its element number is equal to
the number of cells in the RNN. Then follows the first dense layer with neuron numbers set
based on the input parameter; in this case, the value in the image is 256. This is followed
by a dropout layer to avoid overfitting end with a value equal to the dropout value of
the RNN layer. Next, the second dense layer has neuron numbers equal to the first dense
layer’s value. Following this, another dropout layer is introduced, maintaining values
consistent with the other dropout layers within the network. ReLU [42] activation functions
were employed in the dense layers. Lastly, the classification layer is implemented. This
layer comprises two neurons to accommodate the two possible states. The activation
function employed is softmax [43]. For optimization, the Adam optimizer [44] is utilized,
with sparse categorical cross-entropy [45] serving as the chosen cost function.
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Figure 2. The structure of the GRU and LSTM models used. All model configurations had the same
structure, and only the values of the hyperparameters changed. The kernel is represented in the
image using a matrix of how much data it processes.



Sensors 2024, 24, 2412 9 of 18

Let us commence by presenting the architectural framework of the GRU model
Figure 2. The input, as mentioned earlier, is dependent on two variables: the number
of time instants we look back (24 steps in this case, equivalent to two hours of data), and the
number of features we are working with (2 features from two sensors). Following the input
layer, there is a bidirectional layer, typical in the GRU model, incorporating GRU cells on
both forward and backward paths. The parameter for the number of these cells, denoted as
128 in the depicted network, is variable.

The subsequent RNN layer has the return_sequences property set to true, ensuring it
returns a value at every time instant, not just the last one. Additionally, a dropout rate is set
to prevent overfitting. This layer is succeeded by a batch normalization layer to normalize
the data. A second bidirectional layer, mirroring the parameters of the first one, follows,
maintaining the same number of RNN cells, return_sequences parameter, and dropout rate.
Subsequently, another batch normalization layer follows.

The final bidirectional layer replicates the configuration of the initial two bidirec-
tional layers, maintaining consistent RNN cell numbers, return_sequences parameter,
and dropout rate. The last batch normalization layer is added for data normalization.
Subsequently, a Global Average Pool layer aggregates multiple time vectors into one by
computing the average. The output is a vector with elements equal to the number of
RNN cells.

Moving forward, the first dense layer has a neuron count determined by the input pa-
rameter, with the illustrated value being 256. A dropout layer follows to mitigate overfitting,
with the dropout value matching that of the RNN layer. The neuron count in the second
dense layer aligns with that of the first dense layer, and it is accompanied by an additional
dropout layer, maintaining values consistent with other dropout layers in the network. Relu
activation functions are applied in the dense layers.

Lastly, the classification layer comprises two neurons, reflecting the two possible states,
with a softmax activation function. The Adam optimizer is utilized, and the cost function is
sparse categorical cross-entropy. These three ( optimization, activation, and loss function)
have in general well-functioning parameters.

2.5. Training and Testing

Briefly, 80% of the dataset was used for training and the remaining 20% was the testing
dataset. However, as with time series data, it is important to respect temporality. Therefore,
when splitting the two datasets, care was taken to ensure that the data were consecutive
in time. Also, there should be minimal overlap between the test dataset and the training
dataset. To this end, a cross-validation during training was also performed. For each
parameter setting, a total of five training and testing runs were performed. For the five
training runs, the testing dataset was first the first 20% of the data, and then, for the fifth
test, the last 20% of the data was the testing dataset. The remainder was always in the
training dataset. The training process consisted of 1000 epochs, with a batch size set to
256. Additionally, the model was consistently stored when there was a reduction in the
cost function value on the test dataset. Subsequently, during the testing phase, the model
with the lowest cost function value was retrieved. This step was deemed necessary due to
the imbalanced nature of classes, making accuracy a less reliable metric for assessment in
our context.

2.6. Performance Metrics

Standard evaluation metrics for de facto AI applications are considered [46–48]. TP,
TN, FP, and FN denote the true positive, true negative, false positive, and false negative
results, respectively.

• Accuracy (ACC) represents the rate of correct decisions, defined as

ACC =
TP + TN

TP + TN + FP + FN
, (1)
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• Recall, also known as sensitivity or the true positive rate (TPR), is defined as

TPR =
TP

TP + FN
, (2)

• Specificity, also known as the true negative rate (TNR), is defined as

TNR =
TN

TN + FP
, (3)

• Precision, also known as the positive prediction value (PPV), is defined as

PPV =
TP

TP + FP
, (4)

• The false positive rate, (FPR), is defined as

FPR =
FP

TN + FP
, (5)

• The F1-score (F1), also known as the Dice score, is defined as

F1 =
2 · TP

2 · TP + FP + FN
. (6)

In addition to all the above introduced statistical indicators, the AUC metric [49] based
on the ROC curve was applied in order to assess the performance of the different classifiers.

3. Results

Next, the results obtained by the models are examined. First, it is analyzed which param-
eter configuration is already sufficient to achieve the required performance. The performance
metrics corresponding to different parameters were gathered for the top 30 models and visu-
alized using box plots. The metrics used are Accuracy, Precision, Recall, and F1 score. These
metrics are numerically examined for the top 30 models for both GRU and LSTM by F1 score.
The box plots of the Accuracy, Precision, and Recall metrics are illustrated and described
in detail in the Supplementary Materials. Two tables in the Supplementary Materials are
also similarly illustrated. Table S1 shows the AUC and Precision values obtained by the
top 30 models. The Table S2 also shows the Precision and Recall values achieved by these
30 models.

3.1. F1 Score

In Figure 3, the F1 score values are analyzed in relation to the sizes of the RNN cells.
A gradient is observed, where higher RNN cell numbers correspond to higher upper-quartile
values, indicating that 25% of the models perform better. Conversely, when examining the
median values, the trend is reversed, with the lowest median values observed for the largest
cell numbers, namely 128 and 64. Based on the F1 score, models with either 64 or 128 cell
numbers are deemed the best choices. However, it is worth noting that configurations with
16 cells can also achieve scores close to 1. On average, however, models with 64 and 128 cell
counts tend to perform the best.

In Figure 4, the F1 score is examined in relation to different lookback window values.
A similar staircase pattern is observed as seen in Precision and Recall, given that the F1
score is a composite of these two metrics. The median F1 score values steadily increase
up to a 15-fold lookback window. Notably, some models achieve good performance even
with a 12-fold lookback. However, it is from the 15-fold lookback that the upper quartile
crosses the F1 score of 0.8. Until then, only the maximum of the boxplot achieves this result,
specifically for the 9-fold and 12-fold lookbacks. Examining lookback windows larger than
15, it is observed that although the median scores are smaller compared to the 15-fold
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case, the upper-quartile values are larger. Particularly, in the case of a 24-fold lookback,
the top 25% of models perform better than in the case of a 15-fold lookback. However,
the weaker median scores in larger lookback windows result from the gradient vanishing
problem. Models where this issue does not occur can outperform those with a 15-fold
lookback. However, in cases where the problem arises, performance is significantly worse.
On average, a lookback window of 15 is deemed sufficient, but a lookback window of
24 yields the best performance.

Figure 3. F1 score values for different numbers of RNN cells.

Figure 4. F1 score values for different numbers of lookbacks.

Figure 5 presents the F1 score values for different datasets. Outlier values are observed,
particularly when only blood glucose values are used as features. Although outlier models
achieve values close to 1, these instances are rare. When blood glucose and heart rate
data are included as features, the median F1 score remains below 0.2. However, the upper
quartile crosses the 0.6 value, and the maximum reaches a value close to 1. The performance
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improves significantly when using both blood glucose and step count data as input features.
In this case, the median F1 score is close to 0.6, and the lower quartile exceeds 0.8. This
highlights the enhanced performance of models when utilizing both blood glucose and
step count data. Nonetheless, it is worth noting that some models achieve good results
solely from blood glucose levels.

Figure 5. F1 score values for different data types.

Figure 6 displays the F1 score values achieved with different dropout rates. The box-
plots indicate that using dropout rates when designing models may not be beneficial. Even
with a small dropout rate of 0.2, there is a significant performance loss, indicating that
models struggle to generalize to the data. This effect is exacerbated when a dropout rate
of 0.5 is used, resulting in the worst F1 score values. In contrast, not using a dropout rate
yields promising results, with the median value of models being very close to 0.8 and the
maximum value approaching 1. Therefore, it may be advisable to avoid using dropout
rates in model design to achieve better performance.

Figure 6. F1 score values for different numbers of dropout rates.
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In Figure 7, the F1 score values are presented, showing that the neuron numbers used
in the dense layer have minimal impact on model performance. While median values of the
boxplots are slightly more prominent for 1024 and 512 neuron counts, the difference is not
substantial. Interestingly, even for the smallest neuron count of 64, some models demon-
strate very good performance, suggesting that this configuration may still be worthwhile.
Nevertheless, it appears that neuron numbers of 256, 512, and 1024 offer slight advantages,
as indicated by the larger upper-quartile values compared to the 64- and 128-neuron-count
cases. This implies that the top 25% of models may achieve slightly better results with these
neuron numbers, albeit minimally.

Figure 7. F1 score values for different numbers of dense neurons.

3.2. Analyzation of the Best 30 Models

In this subsection, the top 30 best F1 score models are ranked, as the F1 score criterion
provides a robust evaluation metric that balances Precision and Recall, ensuring that the
selected models exhibit strong performance across both aspects of classification accuracy.
As the table would be too large to show all metrics, we had to split it into three tables.
However, the ranking of the scores based on which the top 30 models were selected is based
on the median F1 score for the five test cases. This sort order has been split up in Table 2,
where the F1 score values are shown. In the Supplementary Materials are presented two
more tables. One shows the AUC and ACC results. The other one shows the Precision and
Recall values of the tested models.

The F1 score values, arguably the most crucial metric, are presented in Table 2. Notably,
upon reviewing the median F1 score, it becomes apparent that all models in our dataset
consistently achieve scores above 0.98. Even when considering the mean score, only one
configuration among the top thirty models falls short of reaching a score of 0.98. Moreover,
the variance among the models is exceptionally minimal, further underscoring the robustness
of our results.
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Table 2. The 30 best model F1 scores.

Modell Data Type Look Back Dropout Rate RNN Cells Dense Neuron Number F1 Score
Mean Median STD

LSTM Glucose and HR 24.0000 0.0000 32.0000 64.0000 0.9843 0.9884 0.0063
LSTM Glucose and HR 21.0000 0.0000 128.0000 128.0000 0.9876 0.9875 0.0021
LSTM Glucose and HR 24.0000 0.0000 16.0000 1024.0000 0.9839 0.9869 0.0068
LSTM Glucose and HR 24.0000 0.0000 128.0000 512.0000 0.9847 0.9869 0.0052
GRU Glucose and HR 24.0000 0.0000 128.0000 1024.0000 0.9873 0.9860 0.0054
LSTM Glucose and HR 24.0000 0.0000 64.0000 64.0000 0.9835 0.9858 0.0040
GRU Glucose and HR 24.0000 0.0000 128.0000 256.0000 0.9840 0.9852 0.0045
LSTM Glucose and HR 21.0000 0.0000 128.0000 64.0000 0.9852 0.9849 0.0012
LSTM Glucose and HR 24.0000 0.0000 128.0000 64.0000 0.9856 0.9848 0.0044
GRU Glucose and HR 24.0000 0.0000 128.0000 64.0000 0.9854 0.9848 0.0033
LSTM Glucose and HR 21.0000 0.0000 128.0000 1024.0000 0.9840 0.9848 0.0051
LSTM Glucose and HR 24.0000 0.0000 64.0000 128.0000 0.9820 0.9845 0.0051
LSTM Glucose and Stpes 24.0000 0.0000 128.0000 128.0000 0.9839 0.9844 0.0038
LSTM Glucose and HR 24.0000 0.0000 16.0000 256.0000 0.9821 0.9843 0.0051
LSTM Glucose and HR 18.0000 0.0000 128.0000 256.0000 0.9843 0.9842 0.0012
LSTM Glucose and HR 24.0000 0.0000 128.0000 128.0000 0.9840 0.9841 0.0028
LSTM Glucose and Stpes 24.0000 0.0000 128.0000 256.0000 0.9835 0.9841 0.0017
GRU Glucose and HR 24.0000 0.0000 128.0000 128.0000 0.9838 0.9841 0.0031
GRU Glucose and Stpes 24.0000 0.0000 128.0000 128.0000 0.9835 0.9840 0.0053
LSTM Glucose and HR 24.0000 0.0000 64.0000 256.0000 0.9827 0.9837 0.0046
LSTM Glucose and HR 24.0000 0.0000 128.0000 256.0000 0.9839 0.9836 0.0028
LSTM Glucose and HR 24.0000 0.0000 32.0000 256.0000 0.9800 0.9835 0.0081
LSTM Glucose and HR 24.0000 0.0000 32.0000 512.0000 0.9851 0.9834 0.0048
LSTM Glucose and Stpes 24.0000 0.0000 128.0000 64.0000 0.9833 0.9833 0.0025
GRU Glucose and HR 24.0000 0.0000 64.0000 256.0000 0.9824 0.9833 0.0024
LSTM Glucose and HR 21.0000 0.0000 128.0000 512.0000 0.9786 0.9833 0.0101
GRU Glucose and Stpes 24.0000 0.0000 128.0000 64.0000 0.9823 0.9832 0.0040
GRU Glucose and HR 24.0000 0.0000 64.0000 512.0000 0.9815 0.9831 0.0040
GRU Glucose and HR 21.0000 0.0000 64.0000 1024.0000 0.9788 0.9830 0.0097
LSTM Glucose and HR 24.0000 0.0000 32.0000 128.0000 0.9826 0.9830 0.0038

4. Discussion

The summary of our more than 3000 test cases is that there is a good solution to
the problem of physical activity detection. An overview of the parameters that have an
impact on the processing of this issue is also realized. Therefore, the boxplots of different
parameter settings are also examined to see which parameter has an impact to move the
results in the right direction. However, as a preliminary note, the obtained results are better
compared to previous works, where, with simple machine learning algorithms, an AUC of
0.92 was obtained. Until then, using recurrent layers, an AUC of 0.99 was obtained. In fact,
based on a better F1 score, an AUC of 0.98 was achieved. This test also proved that blood
glucose levels are not enough to achieve good performance in classification. However, it
can be said that there are cases when it is possible to perform well, but not in general. It
is quite apparent from the graphs when looking at the datasets that blood glucose levels
performed the best. However, the outlier values show that there are models that work, but
only with outlier values. It can also be seen from the pictures that the blood glucose and
heart rate data are not the best combination, although the model was able to produce good
results at the maximum value, but for blood glucose and heart rate, the upper quartile
also produced good results, unlike the blood glucose and heart rate data. Thus, it can be
said that our approach has not been the best so far to use heart rate data to detect physical
activity. A much better approach is to use the cadence. This is because the cadence is a
much better way of capturing the onset of physical activity until the blood glucose level
has adjusted to the point at which the model can infer physical activity. It is like using
a heart rate, and in the case of the heart rate, it is confounded when the patient is in a
stressful situation, and this leads the model in the wrong direction. The next cornerstone in
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training the models was the dropout rate. In the literature, it is written that in order to avoid
over-learning, the researcher should use a dropout rate to avoid over-learning. However,
too high a dropout rate is not good either, as our experiments confirm. The working model
with a dropout rate of 0.2 is still an option, but not with a dropout rate of 0.5. The best
results were obtained when no dropout rate was used in either the recurrent or dense
layers. Another parameter that is important for modeling and was investigated was the
lookback. This parameter also has a strong influence on the performance of the models. It
can be seen from the plots that the models are not able to perform well for small lookback
windows. A window of at least 15 is needed to obtain models that already perform well.
However, by further increasing the lookback window, minimal improvement can still be
achieved. However, the big change was always between 12 and 15 steps. So for models to
work well, you need at least an hour of data, and an hour and a quarter or more of data
is recommended. The change in the number of RNN cells did not necessarily affect the
performance of the models, but in terms of the accuracy graph and the table, the models
with higher cell counts performed better. You do not necessarily have to use a 128-cell
number, but you should at least use a 64-cell number. Also, interestingly, the best obtained
model had 32 cells. However, this model had a very high variance during the tests and
therefore the training was not as stable as for the second best model. Finally, the last tested
parameter was the number of neurons in the dense layer. This is the number of neurons
that has the least impact on the performance of the models. A good example of this is
the table of the top thirty models, where essentially all variations of this parameter are
included. Compared to our previous work [30], there is progress. In the article [50], several
machine learning algorithms were used to detect physical activity. The best result was a
0.92 AUC. They created models using data from the accelerometer [12]. Their LSTM model
averaged an F1 score of 0.94, while in our case, we achieved a 0.98 for the population.

5. Conclusions

In conclusion, it can be said that the imposed goals have been achieved, and we
achieved a higher F1 score of 0.9. In addition, a better result was achieved than in our
previous research. The previous results led to a maximum of a 0.92 AUC with simple
machine learning algorithms, while with the current experiments, the AUC is 0.99. It is
also a step forward that this value has been achieved by several models, proving that
multiple recurrent models can solve the physical activity detection problem. The research
also proves that recursion helps a lot in the performance of the models. In addition, several
parameter aspects that can affect the performance of the models have been investigated.
As shown in the previous tests, blood glucose levels alone are not enough to build a good
model. However, during the test, it was found that for some parameters it may be enough,
but all in all, they were exceptional cases. A more valuable result proved here is that
using heart rate is not the best solution. Instead, blood glucose and cadence should be
used. Another investigated aspect is how different sizes of lookback windows affect the
learning outcome. It was confirmed that it takes more than an hour of data to produce good
models. It is true that 15 steps does not improve the models much, but using a window
at least 15 steps long is recommended. How the dropout rate affects the performance of
the models was also investigated. Still, good results could be obtained with a dropout
rate of 0.2, but that was more of an outlier test. However, at 0.5, the results become worse.
In conclusion, it is recommended to use a dropout rate of 0. The next analysis consisted
of the examination of the number of RNN cells in the recurrent layers. It was confirmed
that it is not necessary to use more than 64. How the number of neurons in the dense layer
affects the performance of the models was also investigated and it was concluded that it
does not have a strong influence. It has a greater influence on the run time. It can also be
argued that there is not much difference between the GRU and LSTM models. As a further
development, it might be worth looking at datasets in a different form, in such a way that
blood glucose, heart rate, and step rate are all represented, and also to investigate the
results that heart rate and step rate can produce. It would also be worth using transformer



Sensors 2024, 24, 2412 16 of 18

models as well as performing a test where the training dataset would remain the OHIO
dataset but the testing dataset would be measured data.
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21. Bednár, P.; Ivančáková, J.; Sarnovskỳ, M. Semantic Composition of Data Analytical Processes. Acta Polytech. Hung. 2024, 21,
167–185. [CrossRef]

22. Hayeri, A. Predicting Future Glucose Fluctuations Using Machine Learning and Wearable Sensor Data. Diabetes 2018, 67, A193.
[CrossRef]

23. Daskalaki, E.; Diem, P.; Mougiakakou, S.G. Model-free machine learning in biomedicine: Feasibility study in type 1 diabetes.
PLoS ONE 2016, 11, e0158722. [CrossRef] [PubMed]

24. Woldaregay, A.Z.; Årsand, E.; Botsis, T.; Albers, D.; Mamykina, L.; Hartvigsen, G. Data-Driven Blood Glucose Pattern Classi-
fication and Anomalies Detection: Machine-Learning Applications in Type 1 Diabetes. J. Med. Internet Res. 2019, 21, e11030.
[CrossRef] [PubMed]

25. Contreras, I.; Vehi, J. Artificial intelligence for diabetes management and decision support: Literature review. J. Med. Internet Res.
2018, 20, e10775. [CrossRef] [PubMed]

26. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Cogn. Model. 1988, 5, 1.
27. Askari, M.R.; Rashid, M.; Sun, X.; Sevil, M.; Shahidehpour, A.; Kawaji, K.; Cinar, A. Detection of Meals and Physical Activity

Events From Free-Living Data of People with Diabetes. J. Diabetes Sci. Technol. 2022, 17, 1482–1492. [CrossRef] [PubMed]
28. Zeng, Y.; Zhang, J.; Starly, B. Recurrent neural networks with long term temporal dependencies in machine tool wear diagnosis

and prognosis. SN Appl. Sci. 2021, 3, 442. [CrossRef]
29. Dénes-Fazakas, L.; Szilágyi, L.; Tasic, J.; Kovács, L.; Eigner, G. Detection of physical activity using machine learning methods.

In Proceedings of the 2020 IEEE 20th International Symposium on Computational Intelligence and Informatics (CINTI), Budapest,
Hungary, 5–7 November 2020; pp. 167–172.

30. Dénes-Fazakas, L.; Siket, M.; Szilágyi, L.; Kovács, L.; Eigner, G. Detection of Physical Activity Using Machine Learning Methods
Based on Continuous Blood Glucose Monitoring and Heart Rate Signals. Sensors 2022, 22, 8568. [CrossRef] [PubMed]

31. TensorFlow Core v2.4.0. Available online: https://www.tensorflow.org/api_docs (accessed on 21 January 2020).
32. Scikit-Learn User Guide. Available online: https://scikit-learn.org/0.18/_downloads/scikit-learn-docs.pdf (accessed on 21 January 2020).
33. NumPy Documentation. Available online: https://numpy.org/doc/ (accessed on 21 January 2020).
34. Pandas Documentation. Available online: https://pandas.pydata.org/docs/ (accessed on 21 January 2020).

http://dx.doi.org/10.1177/1932296819869310
http://www.ncbi.nlm.nih.gov/pubmed/31409125
http://dx.doi.org/10.1007/s004210100436
http://dx.doi.org/10.3389/fphys.2019.00075
http://dx.doi.org/10.1016/j.compbiomed.2021.104633
http://dx.doi.org/10.3389/fendo.2014.00205
http://www.ncbi.nlm.nih.gov/pubmed/25520703
http://dx.doi.org/10.14797/mdcj-14-4-251
http://dx.doi.org/10.1002/dmrr.3301
http://www.ncbi.nlm.nih.gov/pubmed/32073212
http://dx.doi.org/10.3390/s21165589
http://www.ncbi.nlm.nih.gov/pubmed/34451032
http://dx.doi.org/10.1002/cnm.2827
http://www.ncbi.nlm.nih.gov/pubmed/27557429
http://dx.doi.org/10.1038/s41551-018-0304-0
http://dx.doi.org/10.12700/APH.17.3.2020.3.12
http://dx.doi.org/10.12700/APH.21.2.2024.2.9
http://dx.doi.org/10.2337/db18-738-P
http://dx.doi.org/10.1371/journal.pone.0158722
http://www.ncbi.nlm.nih.gov/pubmed/27441367
http://dx.doi.org/10.2196/11030
http://www.ncbi.nlm.nih.gov/pubmed/31042157
http://dx.doi.org/10.2196/10775
http://www.ncbi.nlm.nih.gov/pubmed/29848472
http://dx.doi.org/10.1177/19322968221102183
http://www.ncbi.nlm.nih.gov/pubmed/35703136
http://dx.doi.org/10.1007/s42452-021-04427-5
http://dx.doi.org/10.3390/s22218568
http://www.ncbi.nlm.nih.gov/pubmed/36366265
https://www.tensorflow.org/api_docs
https://scikit-learn.org/0.18/_downloads/scikit-learn-docs.pdf
https://numpy.org/doc/
https://pandas.pydata.org/docs/


Sensors 2024, 24, 2412 18 of 18

35. Razvan Bunescu, C.M.; Shubrook, J. Blood Glucose Prediction Using Physiological Models and Support Vector Regression. In
proceedings of the 2013 12th International Conference on Machine Learning and Applications, Miami, FL, USA, 4–7 December 2013.

36. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
37. Cho, K.; van Merrienboer, B.; Bahdanau, D.; Bengio, Y. Learning Phrase Representations using RNN Encoder–Decoder for

Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1724–1734.

38. Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [CrossRef]
39. Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures.

Neural Netw. 2005, 18, 602–610.
40. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015,

arXiv:1502.03167.
41. Habib, G.; Qureshi, S. GAPCNN with HyPar: Global Average Pooling convolutional neural network with novel NNLU activation

function and HYBRID parallelism. Front. Comput. Neurosci. 2022, 16, 1004988. [CrossRef] [PubMed]
42. Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375.
43. Kouretas, I.; Paliouras, V. Simplified Hardware Implementation of the Softmax Activation Function. In Proceedings of the 2019

8th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 13–15 May 2019;
pp. 1–4. [CrossRef]

44. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.
45. Gordon-Rodriguez, E.; Loaiza-Ganem, G.; Pleiss, G.; Cunningham, J.P. Uses and Abuses of the Cross-Entropy Loss: Case Studies

in Modern Deep Learning. arXiv 2020, arXiv:2011.05231.
46. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available online: http://www.

deeplearningbook.org (accessed on 1 February 2022).
47. Liu, Y.; Wang, Y.; Qi, H.; Ju, X. SuperPruner: Automatic Neural Network Pruning via Super Network. Sci. Program. 2021,

2021, 9971669. [CrossRef]
48. Koctúrová, M.; Juhár, J. EEG-based Speech Activity Detection. Acta Polytech. Hung. 2021, 18, 65–77.
49. Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent

Systems; O’Reilly Media: Sebastapol, CA, USA, 2019.
50. Czmil, A.; Czmil, S.; Mazur, D. A Method to Detect Type 1 Diabetes Based on Physical Activity Measurements Using a Mobile

Device. Appl. Sci. 2019, 9, 2555. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1109/78.650093
http://dx.doi.org/10.3389/fncom.2022.1004988
http://www.ncbi.nlm.nih.gov/pubmed/36457992
http://dx.doi.org/10.1109/MOCAST.2019.8741677
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/10.1155/2021/9971669
http://dx.doi.org/10.3390/app9122555

	Introduction
	Materials and Methods
	Preliminary Results
	Development Environments
	Datasets
	Investigated Machine Learning Methods
	Training and Testing
	Performance Metrics

	Results
	F1 Score
	Analyzation of the Best 30 Models

	Discussion
	Conclusions
	References

