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Abstract: With the widespread adoption of modern RGB cameras, an abundance of RGB images is
available everywhere. Therefore, multi-view stereo (MVS) 3D reconstruction has been extensively
applied across various fields because of its cost-effectiveness and accessibility, which involves multi-
view depth estimation and stereo matching algorithms. However, MVS tasks face noise challenges
because of natural multiplicative noise and negative gain in algorithms, which reduce the quality
and accuracy of the generated models and depth maps. Traditional MVS methods often struggle
with noise, relying on assumptions that do not always hold true under real-world conditions, while
deep learning-based MVS approaches tend to suffer from high noise sensitivity. To overcome these
challenges, we introduce LNMVSNet, a deep learning network designed to enhance local feature
attention and fuse features across different scales, aiming for low-noise, high-precision MVS 3D
reconstruction. Through extensive evaluation of multiple benchmark datasets, LNMVSNet has
demonstrated its superior performance, showcasing its ability to improve reconstruction accuracy
and completeness, especially in the recovery of fine details and clear feature delineation. This
advancement brings hope for the widespread application of MVS, ranging from precise industrial
part inspection to the creation of immersive virtual environments.

Keywords: multi-view stereo; RGB 3D reconstruction; depth estimation

1. Introduction

With the widespread adoption of modern RGB cameras throughout society, a vast
amount of RGB imagery is easily captured in our daily lives. Compared with profes-
sional 3D scanning devices, RGB sensors are more economical and ubiquitously available,
thereby democratizing 3D reconstruction technologies and advancing their development
and application. Multi-view stereo (MVS) 3D reconstruction presents a promising method
for reconstructing indoor and outdoor scenes from multiple viewpoints. Central to 3D
reconstruction, multi-view depth estimation and stereo matching algorithms perform the
task of feature matching across multiple images given known camera intrinsic and extrinsic
parameters. Here, each pixel in the reference image searches along the epipolar line in
the target image, transformed by homography, and the best depth is estimated using the
cost volume generated by the lowest matching cost, thus recovering the 3D model of the
reconstructed scene.

MVS has garnered significant interest in various fields such as industrial applications,
architectural reconstruction, entertainment, and augmented and mixed reality. In the in-
dustrial sector, autonomous vehicles and robots utilize MVS technology to understand
their surroundings [1,2]. Through 3D reconstruction, they can better recognize obstacles,
navigate, and plan routes. In the medical field, MVS technology assists in reconstructing
three-dimensional models of human organs from medical images taken from multiple
angles, proving invaluable for surgical planning and disease diagnosis [3]. Moreover, MVS
is utilized for precisely capturing and reconstructing the 3D shapes of complex industrial
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parts for product design, quality inspection, and reverse engineering [4]. For urban re-
construction, MVS is employed in urban planning and architecture for creating detailed
3D models of buildings and cityscapes, aiding in the planning, design, and visualization
of new projects. Additionally, MVS can reconstruct 3D models of ancient buildings and
artifacts [5], aiding in preservation, research, and display. This technology can assist in the
restoration and conservation of historical sites, offering possibilities for reconstruction even
when they are damaged or destroyed. In entertainment and augmented reality, MVS is
often used to create high-quality 3D characters and scenes or in AR and VR [6] applications
to create realistic 3D environments and objects, offering immersive experiences as well as
healthcare applications.

In MVS 3D reconstruction tasks, the process involves capturing scenes from multiple
viewpoints to reconstruct their three-dimensional structure. This task often encounters
challenges posed by noise interference, stemming from the sensor’s sensitivity to various
factors [7], such as changes in ambient lighting, inconsistencies in camera quality, and
motion blur. Noise can not only degrade the quality of the 3D model but also lead to
erroneous estimations during the reconstruction process. High-resolution, smooth, and
low-noise 3D reconstruction results and depth maps are crucial for ensuring the quality of
the reconstruction. Noise interferes with the feature extraction and matching process in
images, leading to mismatches and inaccurate depth estimations. This interference reduces
the geometric accuracy of the 3D model, causing the reconstructed results to deviate from
the true shape of the object. In industrial design and manufacturing, the accuracy of 3D
models is critical to ensuring the quality and safety of components. Reduced precision
may lead to inaccurate component dimensions, affecting assembly and performance and
potentially causing product failures or even safety incidents. Similarly, the low precision
induced by noise also poses safety risks in medical applications and autonomous driving,
where reduced reconstruction quality can lead to misjudgments.

To compensate for the impact of outliers and noise, algorithms require additional steps
to identify and filter out mismatches caused by noise, or to perform post-processing such
as smoothing, denoising, and hole-filling. This not only increases computation time but
may also require more computational resources.

Many existing methods, while suppressing noise, are still limited in recovering fine-
scale details and sharp features. In traditional MVS 3D reconstruction methods [8,9], the
approaches often rely on assumptions based on geometric and photometric constraints,
such as scene geometric continuity and photometric consistency. In the real world [10,11],
these assumptions may not always hold, especially in scenes with complex geometric
structures or varying lighting conditions. Traditional MVS methods typically compute cost
volumes to represent the confidence level under different depth hypotheses. These cost
volumes are usually constructed by comparing image regions from different viewpoints,
relying on pixel similarities or consistencies. However, significant errors in cost calculation
can arise if there are drastic changes in the frequency domain signals in images, such as
changes in lighting, variations in material reflections, or sensor thermal noise.

For learning-based MVS reconstruction methods, the information aggregated using
3D CNNs is theoretically highly sensitive to noise in the input data and inaccuracies in
feature matching. Particularly in areas where feature matching is challenging (e.g., low-
texture or repetitive texture regions), errors may be amplified because of gain calculations.
Pixel-wise MVS 3D reconstruction methods tend to model noise as outliers. To address
these limitations, this paper proposes a deep learning network called LNMVSNet, which is
designed to enhance local feature attention and enable the fusion of features at different
scales for low-noise MVS 3D reconstruction.

In summary, our contributions are as follows:

1. We propose LNMVSNet, a network with low sensitivity to noise, through the in-
troduction of a multi-level depth feature fusion mechanism and a novel attention
filtering mechanism. These innovations effectively utilize the varying sensitivities of
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multi-level features to noise and pixel weight scoring, resulting in noise being less
sensitive in the preliminary step of depth estimation in MVS reconstruction.

2. Our LNMVSNet achieved exceptional results on multiple benchmark datasets, yield-
ing smooth and low-noise depth estimates as well as reconstructed point clouds.
Additionally, we analyzed the impact of noise on reconstruction evaluation metrics
through qualitative experimental results.

2. Literature Review
2.1. Traditional Multi-View Stereo Methods

In contemporary scholarly discourse, multi-view stereo (MVS) methodologies are
stratified based on their modality of scene representation, encompassing volumetric, point
cloud, mesh, and depth map strategies.

Volumetric Methods: These methodologies [12,13] instantiate the reconstruction
paradigm by partitioning tridimensional space into a meticulously aligned grid of voxels,
each voxel being ascribed to a scalar magnitude. This magnitude quantitatively represents
the probabilistic occupancy or confidence level of the voxel within the contextual scene.
Conceptualized mathematically, volumetric reconstruction is akin to delineating a scalar
field V : R3 → [0, 1] , wherein the scalar value at each spatial coordinate conjectures the
likelihood of the scene’s surface intersecting at that juncture. Predominantly, these methods
integrate voxel fusion, spatial hashing, or octree structures to efficaciously manage spatial
data. They excel in reconstructing complex and irregular surfaces, albeit at a heightened
computational and storage cost.

Point Cloud Methods: Characterized by [14,15], these approaches derive a rudimen-
tary tridimensional structure of a scene via the extraction and juxtaposition of feature points
across multiple image vantages, subsequently transposing these points into a conglomerate
of spatial coordinates. A point cloud, thus, is denoted as P =

{
pi ∈ R3}, with each point

pi encapsulating tridimensional coordinates and potentially ancillary attributes like chro-
maticity or intensity. The primary objective is the precise restitution of sparse or semi-dense
geometric attributes of the scene, though these methods might grapple with the continuity
and integrity of surface structures.

Mesh Methods: Extensively discussed in [16–18], these techniques not only render the
tridimensional points but also articulate the topological interconnects among these points,
culminating in polygonal meshes. Formally, a mesh is represented as M = (V, E, F),
with V symbolizing the vertex set, E the edge consortium, and F the facet aggregation.
These polygons, predominantly triangular, are constituted by vertices, aiming to fabricate
continuous and sleek surface models, thereby catering to applications necessitating superior
surface reconstruction fidelity. Encompassing surface reconstruction, mesh optimization,
and refinement, these methods endeavor to augment the accuracy and aesthetic appeal of
the model.

Depth Map Methods: Elaborated in [8,9,19], these techniques revolve around the
estimation of per-pixel depth information from multifaceted viewpoints. Each depth
map correlates with a specific vantage point, depicting the distance from that point to
various loci on the scene’s surface. Expressed mathematically, a depth map can be artic-
ulated as a function

(
D : Ω ⊂ R2 → R

)
, with D(u, v) signifying the depth of the scene

point corresponding to the image plane coordinates (u, v). Emphasizing pixel-wise depth
continuity, these methods typically employ cost aggregation and global optimization to
curtail disparity errors and reconstruction noise. For instance, COLMAP [8] integrates the
estimation of pixel-centric view selection, depth maps, and surface normals, harnessing
photometric and geometric precepts. Depth-based approaches demonstrate enhanced
adaptability in sculpting the tridimensional geometry of scenes. ACMM [9] introduces
innovations like multi-scale geometric consistency, adaptive checkerboard sampling, and
a multi-hypothesis joint view selection mechanism. Given their structural consonance
with the original 2D image data, depth map methods exhibit computational efficiency,
particularly for extensive scenes and high-resolution imagery. Furthermore, the resultant
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output seamlessly integrates with extant 2D image processing paradigms, facilitating post-
processing activities like depth map fusion, filtering, and optimization. Hence, this paper,
in consideration of the deployability and efficacy of MVS methods in practical applications,
adopts a Learning-Based Depth MVS baseline as its foundational strategy.

2.2. Learning-Based Multi-View Stereo Method

While traditional MVS methods have yielded impressive outcomes, their reliance on
manually engineered features renders them suboptimal for non-Lambertian surfaces. The
conventional paradigm’s assumption of photometric consistency is particularly unreliable
in areas with low or no texture. Recent strides in MVS research have moved beyond
traditional handcrafted image features, embracing deep learning (DL) to achieve enhanced
reconstruction precision and completeness. Like their traditional counterparts, DL-based
methods can also be categorized based on different scene representation techniques.

In volumetric methods, solutions like SurfaceNet [20] and LSM [21] construct a cost vol-
ume using multi-view images and employ 3D CNNs for regularization and voxel inference.
However, because of the inherent limitations of volumetric representations, SurfaceNet and
LSM are confined to small-scale reconstructions, with limited computational capabilities for
larger scenes. In contrast to SurfaceNet and LSM, depth-based MVSNet [22] has improved
MVS reconstruction performance through depth map estimation. MVSNet, processing
a reference image along with multiple source images, extracts depth image features and
encodes camera geometry within the network through a differentiable unit, constructing a
three-dimensional cost volume. To mitigate the substantial memory consumption of MVS-
Net, several variants have been proposed and categorized into multi-stage and recursive
methods. CasMVSNet [23], CVP-MVSNet [24], EPP-MVSNet [25], and PatchmatchNet [26]
adopt a coarse-to-fine strategy, initially predicting low-resolution depth maps with large
depth intervals and iteratively upsampling and refining depth maps with narrower depth
ranges. Although the coarse-to-fine architecture successfully reduces memory usage, it is
not conducive to high-resolution depth reconstruction because of potential inaccuracies in
coarse-level depth predictions. Consequently, recursive methods such as R-MVSNet [27]
and D2HC-RMVSNet [28] have been proposed. They sequentially regularize cost maps
along the depth dimension with a cyclical network, inferring depth maps across a vast depth
range. Recognizing the smooth nature of cost volume regularization by 3D CNNs, [29]
introduced an Edge-Preserving Multi-view Stereo Network (EPNet) for practical depth
estimation, reinforcing the edges in depth estimation.

Previous works have made significant contributions in terms of high-resolution and
efficient utilization of computational power. With the recent advancements in deep learn-
ing for 2D and 3D depth estimation from RGB sensor data [30–33], depth map methods
have demonstrated more robust performance compared with other MVS reconstruction
approaches, particularly in handling complex scenes and challenging lighting conditions.
NTPP-MVSNet [34] explored the specific role of depth sampling in MVS reconstruction
networks by utilizing the normal and depth information of adjacent pixels to propagate tan-
gent planes, highlighting the significant role of depth information in the 3D reconstruction
process. However, depth map methods, calculating depth for each pixel, are generally more
sensitive in capturing scene details, especially surface textures and edges, compared with
point cloud or volumetric methods. Previous works focused on the precision of per-pixel
level operations yet overlooked the converse aspect: undesired, random, or systematic
errors introduced during the acquisition and processing stages are also modeled by depth
estimation networks. EPP-MVSNet also pointed out that real-world MVS reconstruction
is challenging because of noise. These errors may originate from various factors such as
inherent noise in image sensors, changes in environmental lighting, reflective properties,
limitations of imaging equipment, and inaccuracies in feature extraction and matching
algorithms. Noise ultimately manifests as random fluctuations in image data or discordant
points in 3D reconstruction results, affecting the accuracy of depth estimation and the
quality of the final 3D model. Some works have implemented modest measures to reduce
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noise, such as MVSNet, which further suppresses reconstruction noise by determining the
visible views for each pixel in the depth map to 3D point cloud conversion process and
averaging all reprojected depths, and PatchmatchNet, which has attempted to incorporate
anti-noise training strategies to combat the impact of noise; however, these actions that do
not qualitatively analyze and eliminate noise do not fundamentally alter the sensitivity
of depth map MVS three-dimensional reconstruction to noise. A low-noise MVS depth
estimation and reconstruction network is urgently needed to address the high precision
requirements of industrial production.

3. Motivation and Contribution

To address the limitations of previous works, it is imperative to precisely define
noise and identify its underlying causes. The models generated during 3D reconstruction
typically manifest several characteristic noise features. Initially, outliers, a prevalent phe-
nomenon, manifest as isolated points distinctly separated from the main structure, either
appearing singly or forming scattered clusters. Moreover, the reconstructed surfaces may
exhibit surface roughness, leading to uneven elevations in areas that should be smooth.
Furthermore, the reconstruction models may suffer from the loss of surface detail, wherein
subtle surface features fail to be accurately reconstructed. Ghost structures, another com-
mon occurrence, are structures that do not exist in the original scene but appear in the
reconstruction model because of occlusion or mismatching. Holes, generally forming in
areas with poor observational conditions or missing data, reflect information loss during
the reconstruction process. Lastly, the issue of inconsistent density in point clouds is mani-
fested by a significant disparity in the distribution density of points across different areas.
The presence of these noise features significantly constrains the quality and accuracy of the
reconstructed models.

Noise sources in 3D point clouds encompass sensor noise stemming from inherent
defects in imaging sensors to noise in depth maps predicted through multi-view depth
estimation. In the source image segment, unavoidable quantization steps in the digital
imaging process introduce quantization errors, and geometric distortions caused by lens
optical characteristics also pose challenges to the reconstruction process. Variations in
illumination and shadow effects can cause significant visual discrepancies among different
images, thus disrupting feature matching. The reflective and transmissive errors generated
by objects with complex reflective properties during imaging, as well as color distortions
resulting from inaccurate camera color calibration or changes in environmental light sources,
impact the accuracy of feature extraction.

In MVS 3D reconstruction methods based on depth maps, the noise directly affects the
quality of the final 3D point cloud, as the reconstruction of point clouds entirely utilizes the
depth map to supplement the three-dimensional coordinates for each pixel of the 2D image.
The noise in depth maps, which is shown in Figure 1, as an example, primarily manifesting
as inaccurate depth values, leads to incorrect spatial positioning when converted to 3D
point clouds, thereby generating noise points. The noise in source images, blurriness, or
low contrast can affect the accuracy of depth estimation, leading to deviations between the
actual points in the image and their predicted projection positions in three-dimensional
space. Image quality issues like noise, blurriness, or low contrast in the source images
directly impact the accuracy of depth estimation. Accurately estimating disparity in areas
lacking texture or with complex regions is exceptionally challenging, often leading to noise
in depth estimation. Different lighting conditions and surface reflective properties can also
cause appearance variations in the same object under different viewpoints, increasing the
errors in depth estimation.

Thus, inspired by the deficiencies and strengths in prior research, we pose the follow-
ing research question: “How can we effectively reduce the noise in MVS depth estimation
and enhance the accuracy and quality of 3D reconstruction models?” In our paper, we
introduce a low-noise MVS depth estimation and reconstruction network named LN-
MVSNet and employ the following three solutions to achieve low-noise depth maps and
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point clouds, obtaining outstanding results on the DTU [10] and Tanks and Temples [11]
benchmark datasets. The core solutions are as follows:

1. We incorporated a mechanism for the fusion of depth map features at different scales,
effectively diminishing the influence of noise on the final reconstruction results. Fea-
tures at varying scales have their respective advantages in handling noise; by inte-
grating these features, we achieve complementarity and reduce error propagation,
making the overall reconstruction process more robust.

2. During the cost volume regularization process, we utilized an attention-based filter
with a noise-aware mechanism for selecting and emphasizing important features while
suppressing irrelevant or noisy components. Through this weighted allocation, the
network can focus more on significant signals, thereby reducing the impact of noise.
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4. Method

This section describes the detailed architecture of the proposed LNMVSNet. Herein,
we employ the representative MVSNet [22] and CasMVSNet [23] as backbone networks
and adopt a cascaded cost volume for multi-view stereo and stereo matching. Figure 2
illustrates the architecture of LNMVSNet. For the task of MVS reconstruction, the core
objective is to obtain a high-quality depth map. Our depth estimation network is divided
into the following five parts: multi-view image feature extraction, cost volume construction,
cost volume regularization, probabilistic cost volume, and depth regression. We emphasize
the construction of the cost volume and multi-level feature fusion to refine the entire MVS
depth estimation process and achieve low-noise reconstruction.
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4.1. Cascaded Structure

The backbone network section adopts the cascaded structure proposed by CAS-
MVSNet. The method CAS-MVSNet employs for implementing cascading operations
involves constructing a multi-stage network architecture, refining depth (or disparity)
estimation at each stage. Initially, a coarse depth map is estimated using a smaller cost
volume, which allows for a reduction in the hypothesis space for depth at the current
resolution based on the depth map output from the preceding level. Our LNMVSNet
employs a three-level cost volume hierarchy for depth map estimation, which includes two
intermediate results and one final depth output. The working mechanism is detailed as
follows: At stage k, the network defines a depth (or disparity) hypothesis range Rk. This
range is computed based on the output of the previous stage, which is:

Rk+1 = Rk · wk (1)

where wk < 1 and represents a factor reducing the hypothesis range.
Compared with traditional single-level cost volumes, the initial hypothesis plane

interval Ik is set larger, generating a coarse depth (or disparity) estimation. In subsequent
stages, finer output is produced by refining the hypothesis plane interval:

Ik+1 = Ik · pk (2)

where pk < 1 and is reducing factor of hypothesis plane interval.
Then, at stage k, the number of hypothesis planes is determined by dividing the

hypothesis range Rk by the hypothesis plane interval:

Dk = Rk/Ik (3)

The spatial resolution at each stage is doubled from the previous one, achieved by
doubling the resolution of input feature maps. Therefore, the total resolution is defined as

W × H
2N−k (4)

where N is 3 in multi-view stereo tasks and 2 in stereo matching tasks.
A warping operation applies the cascaded cost volume computation to map the

disparity learned at stage k + 1, formulated as:

Hi

(
dk+1

m

)
= K′

i · R′
i ·
(

(1 − ti) · m′

dk
m + ∆mk+1

)
· RT

k · K−1
i (5)

where dk
m represents the predicted depth of the mth pixel at stage k, K′

i means the trans-
formed version of intrinsic matrix K, and R′

i represents the updated version of rotation
matrix R of ith step. ti is a transformation parameter, related to translation applied to the
image features.

Through these cascading steps, our backbone structure progressively narrows the
search range and hypothesis plane interval at each stage, ultimately producing a precise
depth map. This approach effectively reduces computational load while maintaining fine
estimation of high-resolution depth maps.

4.2. Depth Feature Sharing

Within the cascaded structure, as each level increases the spatial resolution, this implies
that any noise or errors present at the initial stages will be amplified in subsequent levels.
Moreover, each level relies on the output of the previous stage, leading to the propagation
and amplification of noise from initial estimations through the levels. To compensate,
the hypothesis depth range at each cascaded stage is reduced. This approach enhances
the accuracy of depth estimation but also implies that if the initial stage’s estimation is
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inaccurate, subsequent stages will lack the capability to correct these errors, as they search
for the correct depth within a smaller range. To mitigate the high sensitivity to noise
of the cascaded backbone structure, LNMVSNet introduces a feature fusion mechanism,
as displayed in Figure 3. In the backbone cost volume regularization part, the input
is H × W × C × D, where D is the number of depth values sampled (we use sampling
numbers of 48, 32, and 8). The cost volume, after being regularized through a 3D U-Net [35]
structure, involves intermediate processing to obtain 1/8 and 1/4 scale feature volumes,
which are then connected via upsampling to the next stage, with additional 3D convolution
layers reducing the feature channels to a fixed size. Notably, the D dimension of Feature
volumes across the three stages varies, as does the number of channels. Therefore, the
H × W × C × D features intended for concatenation are first processed through a 3D
convolution layer to align the D dimension with D1 of the next stage before concatenation.
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Figure 3. Detail structure of depth feature sharing.

In addressing noise within high-resolution feature processing, there exists a propen-
sity for such features to misinterpret noise as substantive detail, leading to the model’s
erroneous amplification of noise. In contrast, features of lower resolution, by virtue of their
encompassing global attributes, are capable of providing a stream of information that is
inherently smoother. This characteristic is instrumental in enabling the model to discount
noise. Consequently, a depth feature concatenation strategy is applied to amalgamate infor-
mation across disparate dimensions, thereby preserving detail fidelity while simultaneously
mitigating the unwarranted magnification of noise. The pre-concatenation processing of fea-
tures from distinct stages via a 3D convolutional layer—ensuring the congruence of depth
(D dimension) and channel count (C dimension) with the ensuing stage—is predicated
on the 3D convolutional layer’s inherent capacity for spatial feature extraction and data
smoothing. This capability is pivotal in attenuating or eliminating noise. Such meticulous
adjustment confers the following dual advantages: firstly, it endows the subsequent level
with a representation of features that is markedly precise; secondly, by expurgating noise,
it forestalls the compounding and escalation of erroneous signal interpretations.

The mathematical expression for the feature fusion part is as follows:
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Let Fk represent the feature volume at stage k. In order to match the depth dimension,
we utilize a 3D convolutional layer to adjust the depth dimension Dk of stage k to Dk+1.

F′
k = 3DConv(Fk, Dk+1) (6)

where 3DConv(·) signifies the 3D convolutional processing with the target depth Dk+1. For
stage k + 1, the scale adjustment and feature fusion can be expressed as:

Fk+1_new = Concat
(

Fk+1, Upsample
(

F′
k
))

(7)

where F′
k is the feature volume processed by a 3D convolutional layer and Fk+1_new is the

feature volume at stage k+ 1 concatenated with a feature from stage k. Upsample (·) denotes
the up-sampling operation and Concat(·)d represents the concatenation operation.

Finally, the adjusted feature volume is concatenated with the feature volume of the
next stage, followed by an additional 3D convolutional layer to reduce the number of
feature channels to a fixed size:

F′
k+1_new = 3DConv(Fk+1_new) (8)

These steps articulate how the model’s performance is enhanced through the feature
fusion component on top of the original cascaded structure. This cascading and fusion
approach allows for maintaining resolution while reducing computational complexity and
increasing the accuracy of depth estimation.

4.3. Cost Attention Mechanism

LNMVSNet incorporates a unique attention mechanism after the differential deforma-
tion module to ensure that the features passed to the 3D CNN are most beneficial for the
final task. Features “noticed” through this attention mechanism are then fed into the 3D
CNN for in-depth processing. The specific module details are as shown in Figure 4.
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Perspective Mapping: The first step involves mapping from the source perspective
to the reference perspective. The purpose of this step is to align image information from
different viewpoints to facilitate the subsequent steps of effective comparison and merging
of this information. By mapping the image from the source perspective to the reference
perspective, a unified reference framework is created, allowing information from different
viewpoints to be compared and processed in the same spatial context. After the map-
ping, the model generates the warped volume and the reference volume, representing
the image features of the source and reference perspectives, respectively. This step pre-
pares for the subsequent construction of the cost volume by providing image features for
each perspective.

Group Correlation Processing: Full Correlation (FC) has been widely used to build
the cost volume. In the Cost Attention Mechanism, this is replaced with group correlation
(GC) processing. This approach aims to compare and merge image features from different
perspectives more effectively by measuring the differences between perspectives through
correlation, aiding in subsequent depth estimation. GWCNet [36] considers FC to be an
effective method for measuring feature similarity, but it loses a lot of information as it
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generates a single channel correlation map for each disparity level. In R-MVSNet [27], the
GC operation is also proven effective.

Specifically, GC works by calculating the correlation between a set of image features,
which can effectively avoid calibration error. In multi-view image processing, each view-
point provides different information about the scene. GC assesses the correlation between
image features from these different perspectives, determining which features are similar
and which are different. This comparison is achieved by calculating the correlation coeffi-
cient between features, with a high coefficient indicating high similarity, and vice versa.
The GC operation process is threefold: First, features are extracted from the image of each
perspective. These features can include the image’s color, texture, edges, etc. Secondly,
these features are grouped, each group containing features from different perspectives. The
features in these groups are then compared. Eventually, for each pair of features, their
correlation weight is calculated.

The fundamental mathematical idea of GC is to divide features into several groups
and calculate the correlation mapping for each group. The division of features into groups,
the calculation of correlation, and how to organize the correlation mappings into the shape
and size of a matching cost volume will be derived in the following sections. Specifically,
the channel count of unary features is denoted as Nc. All channels are evenly divided into
Ng groups, and along the channel dimension, each feature group thus has Nc

Ng
channels.

The g − th feature group f g
l , f g

r contains the original features fg, fr of the channel group

of
[(

gNc
Ng

, gNc
Ng

+ 1, ..., gNc
Ng

+
(

Nc
Ng

− 1
)]

. The formula for calculating group correlation is
as follows:

Cgwc(d, x, y, g) =
1

Nc/Ng

〈
f g
l (x, y), f g

r (x − d, y)
〉

(9)

In Equation (9), ⟨·, ·⟩ denotes the inner product. Note that correlation is calculated
for all feature groups g as well as all disparity levels d. Then, all correlation mappings
are packed into a matching cost volume, shaped as

(
Dmax/4, H/4, W/4, Ng

)
, where Dmax

represents the maximum disparity and (Dmax/4) corresponds to the feature’s maximum
disparity. When Ng = 1, group correlation returns back to full correlation.

Average Operation: Following the GC process, we employ an averaging approach
to process the cost volume instead of the commonly used variance mechanism. This
modification aids in reducing noise and errors, thereby making depth estimation more
precise. Averaging is typically simpler and more efficient computationally compared with
variance calculation. It also offers more stability when handling feature data from different
viewpoints. Since variance is a measure of data spread, it is highly sensitive to outliers
or noise. If an image from a certain viewpoint is affected by noise, lighting changes, or
occlusions, these outliers may be amplified in variance calculations, thus affecting the
accuracy of the final depth estimation. Moreover, variance is significantly influenced by
data distribution; large differences in image features between viewpoints can result in
high variance values, leading to instability in constructing the branch cost volume. An
unstable cost volume increases the uncertainty in depth estimation, reducing accuracy.
In terms of computational cost, variance calculation is relatively complex, requiring the
computation of each data point’s deviation from the mean, followed by the averaging of
these squared deviations. In processing large datasets, this efficiency improvement can
significantly accelerate the overall depth estimation process.

Branch Cost Volume Regularization: The cost volume in the attention mechanism
branch is processed using 3D CNNs, aiming to further enhance the accuracy of depth
estimation. Three-dimensional CNNs can integrate surrounding spatial information, aiding
the model in identifying and inferring continuous surfaces and object boundaries, thereby
producing smoother and more accurate results in the depth map. Our regularization
process involves applying multiple 3D convolutional layers on the cost volume. Each
layer seeks to learn and extract spatial contextual information, which helps differentiate
foreground from background, eliminate noise, and address issues like occlusions and
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texture repetition. Through regularization, uncertainties and noise in the estimation are
reduced, yielding a smoother and more accurate depth map.

Attention Map: Following the preceding steps, the system predicts the depth value for
each pixel, along with a corresponding attention weight map. After processing through the
3D CNN, the network outputs an attention weight map. This map essentially represents
the weights in the convolutional calculations, with each value corresponding to a pixel in
the input image. Each weight in the weight map signifies the importance of that pixel in
depth estimation. Regions with higher weights indicate their greater importance in depth
estimation and should be given more attention. Conversely, areas with lower weights in
LNMVSNet are, as previously defined, considered noise.

In processing the cost volume, the weight map adjusts the importance of each pixel,
essentially applying weights. The weighted cost volume is then fed into a filter, which uses
the information from the weight map to determine how to process different data points,
preserving more details in high-weight areas and smoothing low-weight areas to reduce
noise. A key feature of the attention mechanism is its dynamic adjustment based on the
input data. Thus, throughout the reconstruction process, the weight map can be real-time
adjusted according to different input scenes or data characteristics, enabling the filter to
process data more intelligently and flexibly.

The mathematical principle behind the attention mechanism lies in calculating the
attention scores ai, where i represents the index of the feature vector. Firstly, we need
to normalize these scores to ensure their sum equals 1, accomplished by using the soft-
max function:

a′i =
exp(ai)

∑
j

exp
(
aj
) (10)

The normalized attention scores a′i are then used to weight the feature vectors fi ,
resulting in the weighted feature vectors f ′i :

f ′i = a′i · fi (11)

Since the cost volume is an abstract representation obtained from 3D CNN computa-
tions, it is not possible to visualize the depth map directly. However, we will demonstrate
the effectiveness of the attention mechanism in our Experiment Section by showing the
noise metrics of our reconstructed depth maps. It is important to note that the cost volume
framework in the attention module is not the same concept as the cost volume in the
main backbone. This branch cost volume is transformed through the attention mechanism
module to act as a weight and supervise the main backbone cost volume. Similarly, the
depth map prediction within the attention mechanism serves only to form a supervisory
pattern in the sub-branch and does not have a direct connection with the main backbone’s
depth map.

4.4. Depth Map Filtering and Fusion

Upon obtaining the depth maps, these maps are leveraged for three-dimensional
reconstruction. Initially, to transmute the results into a dense point cloud, it is imperative to
sift through and eliminate anomalies found within the background and occluded regions.
In the aspect of depth map fusion, akin to various multi-view stereo methodologies, a
procedural step for depth map fusion is adopted to amalgamate depth maps from disparate
viewpoints into a cohesive point cloud representation. LNMVSNet further enhances
this process by integrating a step for edge-preserving filtration. Following the fusion of
depth maps, the use of edge-preserving filters, notably the Bilateral Filter, facilitates the
diminution in noise while concurrently preserving the acuity of image edges, thereby
augmenting the quality of the resultant 3D point cloud. The Bilateral Filter, a quintessential
non-linear filtering technique, has been substantiated to exhibit commendable efficacy in
depth map processing [37] and feature fusion contexts [38]. It contemplates the spatial
proximity and the disparity in pixel values among pixels, efficaciously smoothing the
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image whilst retaining edge integrity. The operation of the Bilateral Filter is mathematically
articulated as follows:

D′
p =

1
Wp

∑
q∈S

Gσs(∥ p − q ∥)Gσr

(∣∣Dp − Dq
∣∣)Dq (12)

In the bilateral filtering formulation (12) for depth map estimation, the following
elements are included: D′

p represents the filtered depth value at location p; Dp and Dq are
the original depth values at locations p and q, respectively; s denotes the neighborhood
centered around p; Gσs is a spatial Gaussian function, employed to gauge the spatial
proximity between locations p and q, with σs being the standard deviation of the spatial
kernel; Gσr is a range Gaussian function, used to assess the similarity between depth values
Dp and Dq, where σr is the standard deviation of the range kernel; and Wp is a normalization
factor, ensuring that the brightness level of the filtered depth map remains consistent.

This formulation allows the Bilateral Filter to reduce noise in the depth map while
maintaining the clarity of object edges, thereby providing more accurate depth information
for subsequent 3D reconstruction.

The culmination of this process involves taking the aggregate of all reprojected depths
as the definitive depth estimation for each pixel. Subsequently, the amalgamated low-noise
depth maps are directly reprojected into the spatial domain to fabricate a 3D point cloud
with low noise.

5. Experiment
5.1. Dataset Description

We conducted our experiment on benchmark datasets similar to other methods. The
DTU Dataset [10] comprises an extensive collection of MVS data, encompassing 124 dif-
ferent scenes captured from either 49 or 64 perspectives across seven distinct lighting
environments. DTU offers 3D point clouds generated through structured light sensor
technology. Every perspective is accompanied by a corresponding image and precisely
calibrated camera parameters. Conversely, the Tanks and Temples dataset [11] features a
variety of scenes, both indoor and outdoor, set under authentic lighting conditions and
exhibiting significant scale diversity. To benchmark against alternative methodologies,
LNMVSNet conducts evaluations of its outcomes on the intermediate subset of this dataset.
In our evaluation, we employed standard distance metrics, namely, accuracy (Acc.) and
completeness (Comp.), to assess the quality of reconstructed point clouds on the DTU
dataset. For the Tanks and Temples dataset, however, we utilized percentage-based mea-
sures of accuracy and completeness. The dataset score was determined by calculating the
mean of the average accuracy and the average completeness.

5.2. Quantitative DTU Results

To explore the results, we selected mainstream traditional methods and state-of-the-art
(SoTA) deep learning approaches for a comparative evaluation against our LNMVSNet.
The performance of different multi-view stereo (MVS) 3D reconstruction networks on the
DTU dataset is showcased in Table 1. Initially, focusing on conventional MVS techniques,
such as Tola [15] and Furu [10] depicted in the table, their performance in terms of accuracy
and completeness is typically suboptimal. Despite achieving relatively favorable overall
scores of 0.766 mm and 0.775 mm, respectively, the efficacy of these methods is constrained
in complex scenes, often because of their lack of capability in effectively handling highly
nonlinear and intricate data distributions. While stable, these traditional approaches
exhibit limitations in capturing fine details and reconstructing complete structures, which
is reflected in the precision and completeness of the 3D models.
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Table 1. Quantitative comparison results of point cloud 3D reconstruction on the DTU dataset.

Methods Acc. (mm) Comp. (mm) Overall 1

Colmap [8] 0.400 0.664 0.532
Tola [10] 0.342 1.190 0.766
Furu [15] 0.612 0.939 0.775

Gipuma [19] 0.283 0.873 0.578
Colmap 0.400 0.644 0.532

MVSNet [22] 0.456 0.646 0.551
CasMVSNet [23] 0.325 0.385 0.355
EPPNet [24,25] 0.413 0.296 0.355
CVP-Net [25] 0.296 0.406 0.351
PatchNet [26] 0.427 0.277 0.352

R-MVSNet [27] 0.383 0.452 0.417
EP-Net [29] 0.299 0.323 0.311
LNMVSNet 0.305 0.311 0.308

1 Lower Acc., Comp., and Overall, by using the distance metric [mm], indicates better quality.

It is distinctly evident that deep learning methods have played a pivotal role in
enhancing the quality of 3D reconstruction. When comparing traditional techniques with
those based on deep learning, the performance of LNMVSNet across various metrics is
particularly noteworthy. A notable leap in performance is observed as we pivot to deep
learning-based approaches. LNMVSNet obtains an accuracy metric of 0.305 mm, implying
that its generated 3D models maintain low noise in complex scene reconstructions. More
crucially, LNMVSNet surpasses all other methods with an overall score of 0.308 mm,
representing the optimal balance between accuracy and completeness, ensuring that the
model captures intricate details precisely while also preserving the integrity of the whole
structure. While MVSNet and CasMVSNet serve as the foundational backbone networks
in our study, LNMVSNet significantly surpasses their performance because of its high-
efficiency denoising effects. The enhanced capability to filter out noise and artifacts in
the data contributes to the superior accuracy and completeness metrics demonstrated by
LNMVSNet, allowing it to outperform these established methods.

The visual results (Figure 5) provide intuitive evidence for our quantitative analysis.
Observing the 3D reconstruction effects of three distinct methods, LNMVSNet’s advantage
in detail is more apparent. Whether it is the clarity of the edges of building windows or
the authentic reproduction of surface textures, LNMVSNet exhibits higher quality and
coherence. Particularly in the geometric details of buildings, LNMVSNet is capable of
reconstructing smoother and more accurate surfaces, whereas the other methods experience
blurriness or fragmentation in these areas. The ability of LNMVSNet to generate models
with a low-noise profile is particularly evident in the visual outcomes, as it does not suffer
from the extensive holes and outliers that are apparent in the outputs from networks like
R-MVSNet and CasMVSNet, resulting in smoothly reconstructed object edges. It effectively
minimizes the occurrence of outliers, ensuring that the reconstructed points accurately
represent the true surface of the object without spurious data points that could potentially
distort the model. Furthermore, the presence of fewer holes indicates a more continuous
and cohesive data representation. This suggests that LNMVSNet’s sophisticated design
is effective in achieving low-noise results in MVS 3D reconstruction. Its proficiency in
handling noise and detail-rich scenes positions it at the forefront of the current 3D recon-
struction networks. These outcomes strongly suggest that LNMVSNet is a network with
significant advantages in accuracy, completeness, and visual quality, making it especially
suited for applications that demand high-quality 3D models.
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Figure 5. Visualization comparison of 3D reconstruction from different baselines on the DTU dataset.

5.3. Tank and Temple Quantitative Results

To substantiate the network’s generalizability, we also conducted quantitative experi-
ments on the Tank and Temple dataset, with the results presented in Table 2 and Figure 6.
Table 2 presents a quantitative comparison of LNMVSNet against various state-of-the-art
(SOTA) algorithms, employing a percentage metric, where higher values denote superior
quality. It is observed that LNMVSNet achieves relatively high scores across multiple
datasets, particularly notable on the “Family” and “Francis” datasets, with scores of 76.77%
and 59.95%, respectively, significantly surpassing other methods. The mean score of LN-
MVSNet stands at 60.44%, indicating its ability to maintain consistently high performance
across diverse scenarios.

Table 2. Quantitative comparison results on the Tanks and Temples dataset using percentage metric.

Method Family Francis Horse Lighthouse M60 Panther Playground Train Mean 1

COLMAP [8] 50.41 22.25 26.63 56.43 44.83 46.97 48.53 42.04 42.14
ACMM [9] 69.24 51.45 46.97 63.20 55.07 57.64 60.08 54.48 57.27

PatchNet [26] 66.99 52.64 43.24 54.87 52.87 49.54 54.21 50.81 53.15
R-MVSNet [27] 73.01 54.46 43.42 43.88 46.80 46.69 50.87 54.25 50.55

CasMVSNet [23] 76.37 58.45 46.26 55.81 56.11 54.06 58.18 49.51 56.84
Vis-MVSNet [39] 77.40 60.23 47.07 63.44 62.21 57.28 60.54 52.07 60.03

MVSCRF [40] 59.83 30.60 29.93 51.15 50.61 51.45 52.60 39.68 45.73
LNMVSNet 76.77 59.95 47.92 64.17 58.39 58.06 60.27 57.96 60.44

1 Higher value indicates better quality.
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Figure 6. Visualization results of LNMVSNet on the Tank and Temple benchmark dataset.

Figure 6, on the other hand, showcases the complete reconstruction visual results of
LNMVSNet on the Tank and Temple benchmark dataset. The visualization results from the
Tank and Temple benchmark dataset reflect that the reconstructed 3D models are rich in
detail, with clear surface textures. For instance, even the smaller components on the models
of tanks and trains are precisely reconstructed, demonstrating LNMVSNet’s capacity to
preserve high-quality reconstruction effects when processing low-noise data.

In summary, LNMVSNet’s performance in low-noise multi-view stereo (MVS) recon-
struction is quite impressive. It not only provides a wealth of details and high-quality
textures in the visual outcomes but also exhibits a reconstruction quality that surpasses
other methodologies, especially in datasets of higher complexity.

6. Qualitative Analysis

In this section, we incorporate qualitative experiments to explore the specific im-
pact of noise as a factor in the network. Given that LNMVSNet is based on depth map
reconstruction in multi-view stereo (MVS) methods, we print out the depth maps from
LNMVSNet and display them in Figure 7 and calculate qualitative metric results in Table 3
for comparison with depth maps from classical depth reconstruction methods. It is evident
from the images that LNMVSNet’s depth estimation on the DTU dataset avoids most of
the voids, outliers, and edge inconsistencies. LNMVSNet ensures accuracy for the majority
of pixels in depth estimation and maintains very clear edges. In the evaluated scenarios,
LNMVSNet demonstrates the lowest average error and higher performance percentages
across all listed error thresholds, particularly excelling with a performance of 91.8% under
the error threshold of less than 8 mm2. CasMVSNet performs best at the error threshold of
less than 2 mm2, achieving 82.6%. MVSNet shows the lowest performance across all metrics.
This indicates that under these evaluation conditions, both LNMVSNet and CasMVSNet
outperform MVSNet in terms of accuracy and efficiency.
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Figure 7. Visualization results of depth map generation from different baselines on the DTU dataset:
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Table 3. Qualitative comparison results on the DTU dataset depth map by using mean error.

Method Resolution Mean Error 1 <2 mm 2 <4 mm <8 mm

MVSNet 1/4 11.63 63.1% 79.95% 87.86%
CasMVSNet 1 8.30 82.6% 86.70% 90.10%
LNMVSNet 1 6.82 77.67% 85.65% 91.8%

1 Lower mean error indicates a lower noise factor. 2 Higher percentage indicates better performance.

To quantify the noise level in depth maps, the Blockiness factor [41] is primarily used
to measure the image artifacts due to pixel and block distortions, especially in images
post-downsampling. There are various methods for calculating the Blockiness factor, a
common approach being the computation of differences in edges between adjacent blocks,
namely, calculating both Horizontal and Vertical Blockiness. The steps are as follows: firstly,
calculate the differences in edges between horizontally adjacent pixel blocks. Here, I(i, j)
represents the pixel value at position (i, j) in the image, with M and N being the image’s
height and width in pixels, respectively, and Nh is the total number of horizontal edges.

Bh =
1

Nh

M

∑
i=1

N−1

∑
j=1

|I(i, 8j)− I(i, 8j + 1)| (13)

where 8 serves as a stride or block size. In the computation of Blockiness, the analysis is
conducted by traversing and calculating the differences between adjacent pixel blocks, with
each block being approximately 8 pixels in size. The differences in edges between vertically
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adjacent pixel blocks are calculated similarly. The formula for this can be expressed as
follows, where Nv is the total number of vertical edges:

Bv =
1

Nv

M−1

∑
i=1

N

∑
j=1

|I(8i, j)− I(8i + 1, j)| (14)

The overall Blockiness factor is a combination of the Horizontal and Vertical Blockiness,
and it can be computed by taking the average of these two values. A lower value of
the overall Blockiness factor indicates fewer discordant areas in the image, signifying
better image quality. Conversely, a higher value implies the presence of noticeable noise
structures or discontinuities in edges, which typically degrade visual quality. We ultimately
normalized the Blockiness factor and presented the results in Table 4.

Table 4. Qualitative comparison results on the DTU dataset depth map by using the Blockiness factor.

Methods Blockiness Factor 1

MVSNet 0.76
CasMVSNet 0.61

LNMVSNetap 0.34
1 A lower value indicates lower noise.

7. Conclusions and Future Work

The introduction of LNMVSNet marks a significant advancement in the field of
multi-View stereo (MVS) 3D reconstruction, specifically in the effective removal of noise
and qualitative analysis within the task of MVS stereo matching depth estimation. By
employing strategies that enhance local feature attention and fuse features across different
scales, LNMVSNet successfully overcomes the limitations encountered by traditional and
deep learning-based methods in noise handling. The superior performance of LNMVSNet
is not only evident in the improved accuracy and completeness of the reconstructed models
but also in its ability to recover fine details and delineate clear feature boundaries, offering
new possibilities for MVS applications across various industries. From precise industrial
inspections to the creation of immersive virtual environments, LNMVSNet heralds the
wide-ranging application prospects of this technology, paving new paths for future research
and application.

However, despite the exemplary performance demonstrated by LNMVSNet across
multiple benchmark datasets, its generalization to real-world data of varying sources and
quality remains a challenge. Future research may need to explore ways to further enhance
the model’s adaptability to images under different environmental and lighting conditions,
along with conducting more experiments on real-world datasets. Similarly, the performance
limits of LNMVSNet under extreme noise conditions or highly complex scenarios have not
been fully explored. An in-depth investigation into the model’s robustness under extreme
conditions is a direction for future work.
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