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Abstract: The trajectory prediction of a vehicle emerges as a pivotal component in Intelligent Trans-
portation Systems. On urban roads where external factors such as intersections and traffic control
devices significantly affect driving patterns along with the driver’s intrinsic habits, the prediction
task becomes much more challenging. Furthermore, long-term forecasting of trajectories accumu-
lates prediction errors, leading to substantially inaccurate predictions that may deviate from the
actual road. As a solution to these challenges, we propose a long-term vehicle trajectory prediction
method that is robust to error accumulation and prevents off-road predictions. In this study, the
Transformer model is utilized to analyze and forecast vehicle trajectories. In addition, we propose an
extra encoding network to precisely capture the effect of the external factors on the driving pattern by
producing an abstract representation of the situation nearby the driver. To avoid off-road predictions,
we propose a post-processing method, called link projection, which projects predictions onto the road
geometry. Moreover, to overcome the limitations of Euclidean distance-based evaluation metrics in
evaluating the accuracy of the entire trajectory, we propose a new metric called area-between-curves
(ABC). It measures the similarity between two trajectories, and thus the accordance between the two
can be effectively evaluated. Extensive evaluations are conducted using real-world datasets against
widely-used methods to demonstrate the effectiveness of the proposed approach. The results show
that the proposed approach outperforms the conventional deep learning models by up to 65.74%
(RMSE), 60.13% (MAE) and 91.45% (ABC).

Keywords: intelligent transport system; situation-aware transformer; predictive model; trajectory
prediction; deep learning

1. Introduction

In the era of Intelligent Transportation Systems (ITS) [1–3] illustrated in Figure 1, accu-
rate prediction of vehicle trajectories will play an important role in many cutting-edge
applications [4], such as self-driving, platooning, collision prediction and smart traffic
services. Inaccurate location estimations of vehicles can significantly degrade the quality
of the applications and pose risk to both drivers and pedestrians. It is worth noting that
the primary factors contributing to the risk of accidents include pedestrians, vehicles, road
infrastructure and other factors on/nearby the road. Driving patterns are generally abstract
descriptions of a driver’s vehicle manipulation [5] caused by the driver’s intrinsic driving
habits, and it can be significantly influenced by diverse range of factors including even the
ones that the driver cannot control. Therefore, learning drivers’ patterns to make accurate
predictions can become much challenging especially in the complex urban road networks.

Figure 2 illustrates two common difficulties in vehicle trajectory prediction studies.
Let us assume that the car moves from left to right, and the solid and transparent cars
correspond to the ground truth and predicted locations of the car, respectively. While the
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first, leftmost prediction deviates from the ground truth by only a small distance, it falls
outside of the road boundaries, rendering it unsuitable for safety-critical applications such
as self-driving or platooning. Furthermore, with an extended forecasting horizon (i.e.,
multi-step prediction), the accumulated error becomes more pronounced, leading to the
following predictions significantly deviating from the ground truth.

Roadside Unit

V2P 
Communication

V2I 
Communication

V2V 
Communication

Figure 1. An illustration of smart city with intelligent transportation systems highlighting the
communication-related core components, i.e., V2X communication and roadside units.

Figure 2. An example of the ground truth and predicted trajectory shown in solid and transparent
cars, respectively, illustrating two major challenges in trajectory prediction research: (i) a small
prediction error may result in off-road predictions, and (ii) the error may accumulate as the forecasting
horizon increases.

Vehicle trajectory prediction is a learning task that involves generating possible future
locations for a target vehicle by analyzing a time series dataset [6] containing past locations
and/or other related information, such as velocity, acceleration and wheel control. In the
general time series analysis tasks, conventional statistical approaches such as ETS and
ARIMA have been widely employed to date [7]. However, recent advances and successes
in deep learning have revealed that deep learning models can outperform the conventional
approaches in complex domains [8–10]. In particular, recurrent neural network (RNN) [11]
and their variants such as long short-term memory (LSTM) [12] and gated recurrent unit
(GRU) [13] have been widely adopted in time series forecasting problems. Additionally,
recent studies have shown that the Transformer model which was initially proposed to
handle a large language model can forecast time series data with high accuracy [14].
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Several state-of-the-art approaches have been proposed to forecast the vehicle trajecto-
ries under different scenarios [15–19], and they have achieved high accuracy in recognizing
driving patterns and forecasting future trajectories. Despite such advancements, a signifi-
cant challenge to overcome for it to be considered practical is off-road prediction [10]. It is
common to leverage the geographic coordinate system (GPS)-based coordinates for training
and inferring the vehicle locations. However, due to the scale of values involved, even a
minor error in prediction can lead to substantial errors. For instance, the euclidean distance
between two points, (40.500, 170.0) and (40.501, 170.0), corresponding to (40°30′00.0′′ N,
170°00′00.0′′ E) and (40°30′03.6′′ N, 170°00′00.0′′ E), respectively, is only 0.001. However,
the physical distance between the two points in the real world amounts to 0.11 km, which
is sufficient for a predicted point to deviate significantly from the actual road.

In addition, forecasting trajectories based on the learned driving pattern of a specific
user requires extra attention. Common approaches involve learning the past trajectory
to predict the future locations, which can be effective when the target area and road
are already exposed to the model during training. However, if this is not the case, the
trained model relies solely on the driving patterns latent in the past trajectories. It is
important to note that driving pattern can also be influenced by external factors other than
the driver’s intrinsic driving habits such as traffic control devices (e.g., traffic lights and
speeding cameras), intersections and crosswalks to name a few. Thus, as pointed out in [19],
high-precision trajectory forecasting becomes increasingly challenging. Although applying
sophisticated models, such as hidden Markov models, artificial neural networks, Bayesian
inference models, and machine learning, can enhance the prediction accuracy to some
extent, capturing the nuanced patterns of minor vehicle movements with high accurately
proved difficult. In a nutshell, such approaches facilitate the analysis of macroscopic
trends within traffic flows, while achieving high-precision trajectory predictions from a
microscopic perspective remains elusive. A recent study reported in [19] applied generative
adversarial network along with a vehicle turning model to make predictions on complex
urban roads. However, it does not take account for the external factors. Furthermore,
limiting the performance evaluation metrics only to the Euclidean distance-based ones may
overlook the possibility that the predicted trajectory falls outside the real road.

In this paper, we study and propose a multi-step vehicle trajectory forecasting scheme
designed to be robust against error accumulation, preventing off-road prediction, and
considering both the target driver’s driving pattern and the dynamic road situations
such as traffic lights and speeding cameras. Compared to a single-step prediction, multi-
step trajectory forecasting is challenging because the error accumulates as the forecasting
horizon becomes longer. In addition, such errors can easily result in off-road predictions
which makes the prediction less impractical. To address these two critical challenges, we
propose a combined approach using the Situation-Aware Transformer (SAT) model fol-
lowed by a link projection algorithm as a post-processing method. The Transformer model
has demonstrated success in time series predictions, and in this study, we demonstrate
its applicability in predicting multi-step vehicle trajectories with the aid of additional
environment-encoding network. Additionally, the proposed link projection projects the
predictions onto the actual road to further reduce the prediction errors.

Although the Transformer-based approach excels at capturing a particular user’s
driving pattern, its application to the areas and roads encountered for the first time may
not yield a realistic trajectory. One contributing factor is the presence of the diverse road
structures and traffic control devices. To recognize the surrounding situations of an assumed
driver and to produce realistic trajectory in response to such external factors, we propose to
enhance the Transformer by adding an encoder network that abstracts the situations in the
vicinity of the assumed driver. Finally, we propose a new performance evaluation metric
tailored for long-term vehicle trajectory prediction. In general, the distance-based metrics
such as root-mean-square error (RMSE) and mean absolute error (MAE) have been widely
used to evaluate the performance in the trajectory prediction tasks. However, given the
presence of the roads that vehicles must follow, two predicted locations yielding the same
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error distance may need to be taken differently depending on whether they are placed on
the road or not. Also, the error measured in sample-by-sample manner, where a sample
corresponds to a location of vehicle, does not fully capture the trajectory-wise accuracy,
i.e., whether the predicted trajectory overlaps with the ground truth trajectory. In this
regard, we propose a new metric that evaluates how much the line formed by the predicted
trajectory deviates from the line drawn by the ground truth.

The summary of the contributions we make in this paper is as follows.

• We propose a long-term vehicle trajectory prediction method for complex urban roads.
The proposed approach is robust to error accumulation and capable of capturing
the driver’s driving pattern. To validate its effectiveness, we conduct comprehensive
evaluations and performance comparison using the real-world vehicle trajectories.

• We propose an enhanced Transformer model to precisely forecast long-term trajectory
of a vehicle. In particular, to capture the changes in the driver’s driving pattern
in response to the external factors (e.g., traffic control devices), we propose to add
an encoder network to the Transformer model which abstracts the situation nearby
the driver.

• To assure the predicted trajectory lies on (or does not deviate from) the actual road,
we propose a link projection scheme to project the prediction onto the link geometry.

• We propose a new performance evaluation metric tailored for vehicle trajectory pre-
diction applications, called area-between-curves. It considers the similarity of the
predicted trajectory to the ground-truth trajectory, gauging the agreement between
the two patterns.

The remainder of this paper is organized as follows. In Section 2 we discuss the
advantages and limitations of the related articles. In Section 3, we present the assumed
system model and the proposed Situation-Aware Transformer model for the long-term
vehicle trajectory prediction. In Section 4, we introduce the details about the dataset used
in this study and the evaluation results. Finally in Section 5 we conclude this paper.

2. Related Work

The research on the vehicle trajectory forecasting has been carried out from diverse
angles by using different approaches. In this section, we review the related studies that
leverage deep learning models. Among the distinctive characteristics of the vehicle trajec-
tory dataset, the most prominent feature is the temporal correlations among the consecutive
data. Thus, the recurrent neural network (RNN) model and its variants, such as long
short-term memory (LSTM) and gated recurrent unit (GRU), have been widely utilized in
research for their strength in handling time series data.

Altché et al. [20] proposed an LSTM-based model for predicting vehicle trajectories.
Their research utilizes a dataset collected from high-speed highways, and proposed method
predicts vehicle trajectories for the next ten seconds. The average RMS error of the prediction
is reported to be approximately 70 cm, surpassing the state-of-the-art techniques. However,
the dataset used therein comprises highway segments, which are much different from the
urban roads with complex traffic systems such as signal configurations. While LSTM neural
networks exhibit strength in learning time-series data, there is a need for improvement to
mitigate the accumulation of prediction errors, which may lead to trajectories deviating
from actual roads or generating inaccurate predictions. Ip et al. [21] also conducted research
using LSTM-based neural networks for predicting vehicle trajectories, but their approach
differs from the general trajectory prediction. Instead of focusing on predicting the exact
trajectory coordinates, they propose a method where the map centered around the vehicle
is divided into specific-sized cells. Their research goal is to predict the next cell that the
vehicle will visit. This approach aims to prevent the accumulation of errors in the overall
trajectory by predicting the cells with potential drivability. Despite the advantages in
avoiding cumulative errors, the possible limitation of this work is it cannot accurately
predict the exact position of the vehicle.
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While LSTM neural networks excel in handling long-term dependency in data, the
capacity to retain information diminishes as the sequence length increases, resulting in
the possible loss of data patterns. According to a research by Gers et al. [22], there is an
indication of a linear increase in the cell states of LSTM networks during the processing
of long-term sequence data, leading to inherent performance degradation issues. Long
sequence time-series forecasting (LSTF) problems involve enhancing prediction capac-
ity in response to longer sequences. Recently, Transformer models have shown superior
performance in capturing long-range dependencies compared to RNN-based approaches,
presenting significant potential for addressing LSTF problems. Accordingly, our study
constructs a Transformer-based artificial neural network to address the issue of vehicle
trajectory prediction. We introduce research related to vehicle trajectory prediction based
on Transformer models, emphasizing their potentials in handling long-range dependencies
and LSTF problems [23].

Quintanar et al. [24] conducted research on vehicle trajectory prediction by utilizing
Transformer networks in various urban traffic scenarios, including intersections, highways,
rotaries, etc. Experimental results showed that linear trajectories are correctly predicted
but their proposed approach exhibited inaccuracies in circular intersection segments. This
discrepancy appears to stem from both error accumulation and unawareness regarding the
road, leading to incorrect predictions. While learning driving patterns for both rotational
and straight segments is the primary goal in their research, the lack of solution to error
accumulation in specific patterns is considered a limitation. Identifying a remedy for the
accumulation of errors related to certain patterns remains unresolved. Some specific pat-
terns of vehicle trajectories, such as turning segments and deceleration phases, have been
identified as instances requiring overfitting, leading to generalization errors. However, if er-
roneous predictions persist even after learning linear segments preceding specific patterns,
it may result in the accumulation of errors in the prediction, leading to further inaccuracies.
Given the diverse driving patterns inherent in vehicle trajectories, addressing overfitting
issues and error accumulation is crucial for a model to be robust. The accumulation of data
based on various driving styles in vehicle patterns necessitates robust solutions to mitigate
overfitting and error accumulation challenges.

Zhang et al. [25] proposed the Gatformer model based on the Transformer for pre-
dicting vehicle trajectories by considering the spatial-temporal interactions among traffic
agents. In their model, images of traffic scenes are learned and encoded to perform predic-
tions using the Transformer encoder-decoder. Experimental results using the Lyft dataset
demonstrate superior performance in terms of prediction accuracy and inference time
compared to the models under comparison. While the Gatformer is shown to be useful
for multi-vehicle trajectory prediction, a limitation of this study is its applicability to long-
range trajectory prediction. The model may not be suitable for predicting long-distance
trajectories as it primarily learns vehicle patterns from dash cam footage, which may not
capture the necessary information for long-range predictions such as the precise coordinate
of the vehicle. Despite the overarching challenge of trajectory prediction, the diverse traffic
environments and variations in road traffic systems across countries may pose difficulties
in learning robust patterns.

In this study, we take the Transformer model as a basis for making multi-step trajectory
predictions. To minimize the error accumulation and to avoid off-road predictions, we
propose a link projection algorithm to project the predicted coordinate on to the nearest
link geometry. In addition, to capture the extra factors affecting the user’s driving pattern,
we propose to put an encoder network on top of the Transformer that abstracts the traffic
situation surrounding the driver.

3. Proposed Idea

In this section, we introduce the proposed high-precision vehicle trajectory predic-
tion method in detail. In particular, Section 3.1 introduces the proposed SAT model, and
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Section 3.2 explains the proposed link projection algorithm which effectively reduces the
error accumulation in the long-term trajectory prediction.

3.1. Situation-Aware Transformer

The goal of the proposed trajectory prediction model is to make realistic and precise
vehicle trajectory prediction with a specific emphasis on minimizing multi-step prediction
errors and capturing the user’s driving pattern changes caused by the various elements of
the traffic system installed on the roads. The proposed model, called SAT, is an enhanced
Transformer model, particularly designed to achieve the goal. The proposed design of the
model is visualized in Figure 3, consisting of the following blocks.

• Encoder block reads the past vehicle trajectory of which length, called look-back
window size, is Nlb. This block encodes the recent trajectory of the target vehicle to
extract the driving pattern. The encoded pattern is passed to the following decoder
block to generate the future trajectory.

• Situation encoder block is the newly attached block to the Transformer model, whose
goal is to understand the situation on the road in the vicinity of the target driver. In
this study, the existence of the intersections and traffic control devices are considered
as the situation. In addition, other factors that can affect the driving pattern are also
considered. For example, in this study, the dataset we collected is the bus trajectory,
and thus the location of the bus stops is used as an input to the situation encoder
block as well. This entails a preselection of elements that influence the driver’s driving
patterns, and the information is conveyed to the situation encoding block in vector
form. Each element is assigned to a specified position within the vector, reflecting
the presence of elements. Considering the heading direction of the target vehicle, the
existence of a traffic light, traffic enforcement camera, intersection, and bus stop within
the range of R meter is binary encoded, and then passed to the situation encoder block.
If there are multiple instances of the same element, the nearest one will be processed
first. In this study, a multi-layer perceptron (MLP) is used to construct the situation
encoder block.

• Decoder block receives the information regarding (i) the abstract representation of
the situation from the situation encoder block, and (ii) the encoded trajectory of the
vehicle from the encoder block, and then generates the future trajectory (i.e., loca-
tion/position of the target vehicle). The attention layer at the bottom of the decoder
block concatenates the encoded vehicle pattern and the recognized situation.
In contrast to the RNN and its variants (e.g., LSTM and GRU), the Transformer model
inherently lacks the concept of sequence or order, making it challenging to preserve
the temporal relationships of the data when processing time-series data in parallel.
Therefore, position encoding is used to preserve the spatiotemporal correlations among
the input data in our study. Additionally, the combined information considers both the
driver’s recent driving pattern and the surrounding road situation, and it is utilized to
predict a high-precision future trajectory.

The input to the proposed SAT model is the concatenation of the past history of length
Nlb and the binary-encoded vector that indicates whether or not a traffic light, intersection,
traffic enforcement camera and bus stop is located nearby in the heading direction. As
discussed in Section 1, due to the scale of the GPS coordinates, a tiny change in GPS
coordinate amounts to a large distance in meter units. Thus, as part of the pre-processing,
we applied a scaling operation on longitude and latitude separately so that the scales of the
GPS coordinates become relatively larger, making it easier to correctly predict the future
coordinates. The information regarding the road situation can be automatically retrieved if
the supporting infrastructure is provided. For example, Seoul, the city and capital of the
Republic of Korea, provides such information via the T-Data web service [26]. One can
easily access the accumulated trajectory logs, real-time driving vehicle information and
additional information regarding the situation by using a simple HTTP interaction with
the web service.
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Figure 3. The proposed situation-aware Transformer model which leverages the encoded road
information along with the recent trajectory to predict long-term trajectory with a high degree
of accuracy.

3.2. Link Projection

As long as the prediction is imperfect, which is almost always the case in practice,
prediction error occurs. One may be able to minimize the error for a single-step prediction,
but as the forecasting horizon becomes larger, the error accumulation is inevitable. Such
error accumulation not only degrades the accuracy of the predicted trajectory, but also
causes off-road prediction, which can be fatal in safety-critical applications. One may
minimize the single-step and multi-step errors by over-fitting the model, but in this paper,
we propose a general solution called link projection that effectively prevents off-road
predictions at low cost.

The link projection method is inspired by the geometric concept called perpendicular
foot which denotes the intersection point formed when a line segment, denoted as L, is
intersected perpendicularly from a vertex, P. In this study, we adopts an advanced variation
of it by proposing a novel approach of creating an intersection point. Instead of generating
an intersection point directly, the line segment L is further segmented into 1-m-interval sub-
segments to produce vertices within the road geometry. Subsequently, a perpendicular foot
is projected from each vertex to correct errors resulting from deviations outside the road
boundary. This process entails identifying the vertex closest to the projected perpendicular
foot and adjusting its position by the discrepancy measured from the original location. This
method significantly reduces prediction errors and improves the alignment accuracy of
vertices with the actual road geometry.

An illustrative description of the proposed algorithm is shown in Figure 4. The car in
the figure is assumed to be moving to the right, and the assumed task is to predict the third
and fourth position of the car. As it can be seen in Figure 4a, the first prediction (denoted
by a transparent car image) is slightly deviated from the actual location (denoted by a solid
car image. However, due to the error in the first prediction, the second prediction is further
away from the ground truth, causing error accumulation. Figure 4b,c sequentially show the
proposed link projection. When the prediction has been made by the proposed SAT model,
the link projection is invoked and it tries to project the predicted location onto the link
geometry (i.e., the actual road) with the shortest distance. Such a post-processing method
shifts the predicted location to the on-road position, and thus the prediction error can be
minimized while correctly placing the prediction on the actual road. Also, the reduced
error of the first prediction reduces the error in the following predictions as can be seen at
Figure 4c.
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(a)

(b)

(c)

Figure 4. An example scenario illustrating the link projection method we propose to prevent error
accumulation and to prevent off-road prediction. In the subfigures (a–c), transparent and solid objects
represent the predicted and ground truth locations of a vehicle, respectively. The subfigures (a–c) in
sequence demonstrate the operation and advantage of the proposed link projection.

The Algorithm 1 describes the overall procedure of the proposed approach with link
projection. There are three input arguments to the algorithm: T, the past trajectory with a
length of Nlb (i.e., the look-back window size), N is the forecasting horizon length, and L is
the set of the road segments. The proposed algorithm maintains a queue internally to store
both the past and predicted trajectory, which is initialized with T (line:1). For each iteration
(lines:2–6), SAT is called to make a single-step prediction (line:3). The predicted location is
then projected onto the nearest road, and pushed to the tail of the queue (lines:4–5). The
proposed algorithm returns the predicted trajectory of which size is N. The first prediction
is completely based on the past trajectory. On the other hand, the second and the following
predictions are partially based on the predicted values. Due to the proposed link projection
method, the prediction error is diminished on each iteration and thus, the accumulated
errors in the following predictions are also reduced.
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Algorithm 1: Link Projection-Based N-Step Trajectory Predictions

input : T := Past trajectory with look-back window size |T| = Nlb
input : N := number of samples to predict
input : L := Geometry (link) set
output : P[Nlb + 1 : Nlb + N] := Predicted Trajectory

1 P← Queue(T) // create a queue with initial values

2 for t = 1, 2, · · · , N do

3 p← SAT (P[t : t + Nlb]) // make a prediction

4 l← getMinDistLinkIndex (L, p) // find the nearest link

5 P[t + Nlb + 1]← linkProjection (l,p) // project onto the link and put it back

6 end

3.3. Overall Procedure

Figure 5 illustrates the overall procedure of the proposed approach. After gathering
the information which is the concatenation of the Nlb number of past trajectory data points
and the extracted situation information, the min-max scaling operation is carried out on
the input data during pre-processing. The processed information is then passed to the SAT
to make an accurate prediction on the future trajectory data points. To further enhance the
prediction accuracy while guaranteeing the on-road prediction, link projection is carried
out as a post-processing method. The procedure is repeated N times to generate N data
points as a future trajectory.

Real-time Trajectory
Extraction

Pre-Processing
(scaling)

Proposed Situation-
Aware-Transformer

Post-Processing
(Link Projection)

Surrounding Situation
Information Gathering

Raw
features

Scaled
features

Initial
prediction

Adjusted
prediction

1-Step Prediction

Repeat N times to
make N-step prediction

(x1,y1;t1)

(x2,y2;t2)

(x3,y3;t3)

Figure 5. Illustration of the overall procedure proposed in this paper where (xi, yi; ti) corresponds to
x and y coordinate collected at time ti. The procedure repeats N times to make N-step prediction.

4. Evaluation

In this section, we discuss the details about the dataset in Section 4.1, the applied
evaluation metrics in Section 4.2, and the evaluation and comparison results in Section 4.3.

4.1. Dataset

One of the widely used datasets for the vehicle trajectory prediction studies is
NGSIM [27]. However, it primarily focuses on highway scenarios, which is different from
the present study. Therefore, it can be used to learn the driving patterns on low-complex
roads, given its highway-centric nature [28]. However, due to the high complexity of the
urban scenarios caused by the complex structure of the road (e.g., rotational segments and
intersections) and the traffic systems, NGSIM has limitations in learning complex driving
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patterns on urban roads. The Republic of Korea, with its relatively small territory consider-
ing its population, features a variety of urban road scenarios with diverse road shapes and
patterns. This characteristic offers an advantage in evaluating the performance of the trajec-
tory prediction models under complex scenarios. In this study, the real-time bus trajectory
of a particular bus operating in the Seoul city [29] was collected and used for performance
evaluation. The bus dataset includes the speed, direction (i.e., wheel angle), altitude, etc.
with GPS coordinates based on the EPSG:4326 coordinate reference system [30].

In addition, as mentioned earlier, learning driving patterns solely from the vehicle
trajectory is challenging because of the external factors affecting the driving patterns such
as traffic control devices. Therefore, we have incorporated such features into our training
set, which will also be passed to the proposed SAT. The utilized data includes the location
information of traffic signals, traffic enforcement cameras, intersections, and bus stops.
The reason for using such data is its significant impact on vehicle deceleration. When
a driver slows down the vehicle by encountering such elements, the intervals between
consecutive data points in the trajectory become narrower. On the other hand, when the
driver accelerates the vehicle, the intervals are expected to widen [31]. On a linear segment
of the road, the intervals will remain almost constant in general. The presence of such
dynamic or slight changes in data intervals can have a significant influence on driving
patterns, which is why the external factors are considered in this study to generate the
realistic trajectories.

The utilized dataset consists of route trajectories recorded by an operating bus be-
tween 1:00 PM and 2:00 PM on 1 October 2023. The average time interval between the
two consecutive data samples is approximately fifty seconds. The vehicle trajectory dataset
includes 526 data points of vehicle coordinates, which were then split into an 80:20 portion
for training and test, respectively.

4.2. Evaluation Method

In this work, we employ three evaluation metrics, RMSE, MAE, and the Area Between
Curves (ABC), where the first two are the widely used ones for evaluating the performance
of the trajectory prediction models and the last one is what we propose in this paper. Let
z = (x, y) be the ground truth location of a vehicle, whereas let z′ = (x′, y′) be the predicted
counterpart. The widely used performance metrics, RMSE and MAE, are based on the
Euclidean distance between the two points z and z′, defined as

√
(x− x′)2 + (y− y′)2. To

be specific, RMSE and MAE are defined as follows assuming there are n number of z and
z′ pairs:

• RMSE is one of the representative standard statistical metrics indicating the difference
between predicted values and actual values, defined as follows:

RMSE =

√
1
n

n

∑
i=1

√
(xi − x′i)

2 + (yi − y′i)
2

2
(1)

• MAE is also one of the statistical metrics for evaluating the difference between pre-
dicted values and actual values. MAE is considered a robust metric, particularly in
the context of coordinate data, as it is sensitive to small decimal places. MAE is less
affected by outliers, making it a robust evaluation metric.

MAE =
1
n

n

∑
i=1

∣∣(xi − x′i) + (yi − y′i)
∣∣ (2)

Figure 6 shows an illustrative example showing the ground truth trajectory (gray
circles) and the two predicted trajectories (green and orange circles).
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Figure 6. Illustration of the ground truth trajectory (gray) and two predictions (orange and green)
with the same degree of error. The blue arrows indicate the error distance which is the same between
the two predictions. Utilizing the Euclidean distance for model evaluation may not distinguish
between the prediction with better pattern agreement (green) and the worse one (orange).

For a particular ground truth data point, its predictions are assumed to be away
from it by the same magnitude. Thus, by using the Euclidean distance-based metrics, both
predictions are considered comparable. However, if one considers ow much the predicted
trajectory overlaps with the ground truth (i.e., pattern agreement), the two predictions,
orange and green, can be treated differently. This simple example shows the limitation of
the distance-based evaluation metrics in evaluating the trajectory-wise pattern accuracy.
As a result, we propose a new performance evaluation metric in this paper, called ABC:

• ABC (Area Between Curves) algorithm is a path difference measurement technique
proposed in this paper. The path similarity cannot be measured by distance-based
metrics. However, in the case of trajectory prediction problem, it is important to
produce the trajectory that overlaps with the ground truth as much as possible to
achieve the driving pattern agreement. The proposed ABC draws a curve by the
ground truth and another by the predictions. Then, it measures the area of the closed
region formed by the two curves, which can be done by counting the number of pixels
belonging to the closed area.

The proposed ABC is not intended to be used as the sole evaluation metric for trajectory
prediction problem. However, when used with other metrics such as RMSE and MAE, ABC
can reveal additional information regarding whether or not the predicted trajectory align
with the ground truth. The prediction yielding a smaller closed area indicates better pattern
agreement. The Algorithm 2 details the procedure of the proposed ABC algorithm. Given
the set of predicted trajectory points P and the ground truth G, the ABC algorithm first
draws separate lines (lines:1–2) along the respective data points. Then, it finds the closed
regions formed by the two lines. (line:3). The closed region of the intersection area is filled
with black color and then converted into an image (line:4). The image is then converted to
a 2D array (line:5) so that each pixel in the image can be iteratively visited. For each pixel,
if its color is black, meaning that it belongs to the closed region, the counter cbp is increased
by one. The cbp is returned from the algorithm to notify the number of pixels included in
the closed region formed by the two lines.
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Algorithm 2: Area Between Curves (ABC)
input : P := set of the predicted trajectory points
input : G := set of the ground truth trajectory points
output : cbp := number of pixels in the closed region (i.e., area-between-curves)

1 lp ← drawLine (P)
2 lg ← drawLine (G)
3 intersectionArea← findIntersectionArea (lp, lg)
4 f illedImage← fillAndDrawImage (intersectionArea)
5 imageArray← convertToArray ( f illedImage)
6 cbp ← 0
7 for each pixel x ∈ imageArray do
8 if x is black then
9 cbp ← cbp + 1

10 end
11 end

In this study, we evaluate the performance of the considered models from two perspec-
tives. The RMSE and MAE metrics assess the errors in distances on the Euclidean space,
while the ABC metric evaluates the morphological similarity between the two trajectory
curves drawn by the ground truth and the predicted data. Both RMSE and MAE are used
to evaluate the errors in s sample-by-sample manner, where each sample corresponds to a
particular geographical location of the vehicle. Thus, such measures assess the accuracy of
the predicted individual locations. However, they are not suitable for assessing whether or
not the entire trajectory from predicted samples overlaps with the ground truth trajectory.
To evaluate the accuracy of the entire trajectory (i.e., driving pattern agreement), not each
individual sample, we have proposed ABC metric which counts the differences between
the two entire trajectories.

4.3. Evaluation and Comparison Results

The evaluations were carried out by measuring the performance metrics discussed in
the previous section. For the performance comparison, we have implemented and evaluated
the following models which are widely used deep learning models for trajectory/time-
series prediction. We used a common set of hyper-parameters/configurations, i.e., a look-
back window size of 8, an Adam optimizer with a learning rate 0.001, and min-max scaling
applied during pre-processing.

• Vanilla LSTM: It is well-known for effectively learning long-term patterns in se-
quential data, which can be done with a relatively simple architecture. The learned
information is stored in the cell state, and the addition or deletion of information
occurs through gates. This model has gained prominence for its ability to capture
long-term dependencies in sequences and is widely utilized in various applications
including natural language processing, speech recognition, and time series prediction.
Each LSTM unit incorporates a cell state and three gates: input, forget, and output,
effectively managing the flow of information while maintaining essential temporal
relationships within the network.

• 1D-CNN: It can efficiently capture temporal patterns, offering superior performance
in predicting the future and analyzing traffic behaviors. This approach significantly
enhances the accuracy and efficiency of vehicle trajectory prediction by enabling in-
depth time-series analysis without the need for complex feature extraction processes.
In our experiment, the 1D-CNN model was constructed with 64 convolutional fil-
ters. The resulting values were further processed by flattening the output for dense
layers, culminating in a final prediction layer with two outputs to forecast (x, y)
coordinates each.
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• ConvLSTM: It integrates spatial and temporal features to learn vehicle trajectories,
offering high accuracy in predicting future positions and recognizing behavior pat-
terns. This architecture captures subtle spatio-temporal correlations even in complex
road environments and traffic flows, significantly enhancing the reliability of vehicle
trajectory analysis. In this study, the ConvLSTM model was structured with a Con-
vLSTM2D layer utilizing 64 filters, which is followed by a sequence of flattening and
dense layers, culminating in the final layer that predicts two distinct features.

• Vanilla Transformer (Vanilla TF): With its unique attention mechanism, the Trans-
former model can effectively capture the temporal correlation among consecutive
features in vehicle trajectory, excelling in predicting future vehicle locations and recog-
nizing complex traffic patterns. This approach can outperform traditional sequence
learning methods by capturing deeper temporal dependencies, offering significant
advantages in the analysis of vehicular movements. According to recent studies, the
Transformer model was constructed using a series of normalization and attention
mechanisms, initiated by layer normalization and multi-head attention for process-
ing inputs. This configuration is enhanced by feed-forward networks comprising
Conv1D layers for further transformation, following the principle of self-attention
across multiple heads to effectively capture dependencies without the constraints of
sequence alignment.

• Situation-Aware Transformer (SAT): The Transformer-based model we propose in
this study is further enhanced to effectively adapt to dynamic road situation to pre-
cisely predict vehicle trajectories considering both the learned driving patterns and
the surrounding situation. This proposed model is based on the encoder-decoder
model of the vanilla Transformer, and then enhanced by introducing an additional
encoder for understanding surrounding road situations such as traffic control devices,
intersections, and bus stops.

• Situation-Aware Transformer with Link Projection (SATLP): The proposed SAT
model followed by the link projection operation to correct the prediction error.

The Table 1 summarizes the RMSE performance of the models considered in this paper,
where the one that outperforms most is marked bold on each row. The proposed SATLP
achieved the best performance in most scenarios. However, the proposed SATLP ranks
third in the case of the straight lane scenario, where the performance gap is negligible.
The performance enhancement of the SATLP model, particularly in non-straight scenarios,
stems from the incorporation of traffic information such as the presence of an intersection,
traffic light, bus stop, etc., suggesting that driving patterns are affected by such surrounding
situation. In contrast, the straight lane scenario typically involves more consistent driving
patterns, which can also be effectively accomplished with a simpler pattern learning model.
However, in other scenarios, the variability in driving patterns is heavily influenced by
traffic information, and there is also a cumulative error component to consider, which
justifies the enhanced performance of SATLP that employs Link Projection.

Table 1. Performance comparison with respect to RMSE measured in meters. Bold denotes the values
with the best performance in the given category.

Scenario LSTM 1D-CNN ConvLSTM Vanilla TF SAT SATLP

Intersection 0.0539 0.1060 0.0525 0.0344 0.0443 0.0315

Straight Lane 0.1433 0.1216 0.0553 0.2367 0.0710 0.0791

Curve Lane 0.0753 0.1773 0.2196 0.0606 0.0676 0.0588

Entire Trajectory 0.1302 0.1010 0.0878 0.2046 0.0748 0.0701

Table 2 summarizes the MAE performance of the considered models. Given that both
RMSE and MAE are based on Euclidean distance for measuring errors, the results reported
in the table are similar to those in Table 1. Consequently, it is observed that the outcomes of
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RMSE and MAE evaluations are closely aligned. However, among the results from RMSE
and MAE, the latter provides more intuitive outcomes that can be easily interpreted on
the real-world, meter-unit coordinate system. This is because RMSE involves squared and
square-root terms, which can obscure the intuitive understanding of the results. In contrast,
MAE calculates the error as the absolute value of the distance difference, making the error
more straightforward to understand.

In this paper, we propose a new performance evaluation metric, ABC, to evaluate the
similarity between two trajectories. Table 3 shows the ABC performance of the considered
approaches, and the reported values are computed by comparing each predicted trajectory
with the ground truth. The ABC evaluation is conducted on images with a resolution
of 1920 × 1080, totaling 2,073,600 pixels. Please note that ABC first fills in the closed
area formed by the line drawn by the ground truth vehicle coordinates and another line
drawn by the predicted value with the black colors. Then, by counting the number of black
pixels, the level of dissimilarity is gauged. In contrast to the previous RMSE and MAE
performance, the proposed SATLP outperformed the rest across all scenarios with respect
to ABC performance metric. This shows that the predicted trajectory produced by SATLP
matches the ground truth trajectory most. Comparative analysis between the Vanilla
TF model without the situation encoder and the SAT model with the situation encoder,
indicates an approximate performance improvement of 71.76% in the Entire Trajectory
scenario. This suggests that providing the situational road information to the Transformer
model can effectively enhance the prediction performance by considering the effect of the
dynamic situation on the driving pattern. Please note that the level of the magnification of
the scene is different from one scenario to another, and thus the reported values on one row
cannot be compared to the numbers on the other rows as they are.

Table 2. Performance comparison with respect to MAE measured in meters. Bold denotes the values
with the best performance in the given category.

Scenario LSTM 1D-CNN ConvLSTM Vanilla TF SAT SATLP

Intersection 0.0368 0.0896 0.0389 0.0312 0.0374 0.0271

Straight Lane 0.1063 0.0853 0.0401 0.1721 0.0524 0.0589

Curve Lane 0.0646 0.1416 0.1954 0.0526 0.0542 0.045

Entire Trajectory 0.0988 0.0708 0.0597 0.1427 0.0617 0.0569

Table 3. Performance comparison with respect to ABC which counts the number of pixels that are
belonging to the closed area formed by the ground truth and predicted trajectories. The reported
values are the pixel count, indicating the difference between the two trajectories. Bold denotes the
values with the best performance in the given category.

Scenario LSTM 1D-CNN ConvLSTM Vanilla TF SAT SATLP

Intersection 562,145 960,666 979,646 918,796 617,366 524,391

Straight Lane 108,663 136,888 169,647 315,519 66,964 10,734

Curve Lane 1,308,515 1,462,938 1,228,900 702,028 486,265 233,317

Entire Trajectory 42,530 51,494 93,393 114,687 32,384 9804

Figure 7 depicts the location of the actual vehicle (i.e., ground truth) and the predicted
ones in a single figure. In addition to the aforementioned evaluation metrics, i.e., RMSE,
MAE and ABC, the figure visually shows if the predicted trajectory is laid on the actual
road. This visualization serves to highlight the limitations of the evaluation methods by
demonstrating the effectiveness of the proposed approach in trajectory prediction and its
practical applicability in real-world scenarios. Figure 7a illustrates the entire trajectory of
the ground truth on the map, and the individual trajectories produced by the considered
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models. Although it is difficult to differentiate one trajectory from the rest, it can be
seen from the figure that the Vanilla Transformer (red) and ConvLSTM (green) deviate
significantly from the ground truth (black) in the middle portion of the trajectory. Also, at
the end of the trajectory, both 1D-CNN (orange) and ConvLSTM (green) differ markedly
from the ground truth. Those two segments on the trajectory have relatively complex road
structure and have many traffic control devices along with intersection and bus stops. Due
to such high complexity, some models have yielded low accuracy in prediction.

(a)

(b) (c) (d)

Figure 7. Visualization of the trajectories produced by the considered models on different scenarios:
(a) entire trajectory, (b) straight lane, (c) curved lane, and (d) intersection, where blue dots correspond
to the LSTM trajectory, orange dots are for 1D-CNN, green dots are for ConvLSTM, red dots are
for Vanilla Transformer, purple dots are for SAT, brown dots are for SATLP, and black dots are the
ground truth.

As observed in Figure 7b which highlights one of the linear segments on the trajectory,
all the considered models do not significantly deviate from the road geometry and the
ground truth in straight sections due to the simplicity of the road segment. On the other
hand, Figure 7c demonstrates that errors accumulated from the previous straight line seg-
ment have resulted in a substantial deviation from the road geometry. Also, the complexity
of the road structure caused more errors. Despite such challenges, the proposed SATLP
minimizes the errors in trajectory, validating its effectiveness. The similar trend repeats in
Figure 7d as well. While all the considered models have successfully learned the driving
patterns in making turns, there still is a continuous accumulation of errors. As a result, most
of the models deviate much from the ground truth which is not the case to SATLP. Despite
the complex structure of the road or the dynamically changing driving route, the proposed
SATLP has successfully demonstrated a consistent error-minimizing performance while
overlapping its trajectory much with the ground truth and the road geometry.

5. Conclusions

In this study, we have proposed a situation-aware artificial neural network model
to predict vehicle trajectories. The latter have previously been studied using statistical
and machine learning approaches. To make accurate predictions especially on complex
urban roads, we introduced a Transformer-based approach that also considers the situ-
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ation around the driver by incorporating an additional encoder network. Furthermore,
to avoid off-road predictions, we have proposed a link projection technique that projects
the predictions onto the road geometry. To overcome the limitations of the conventional
Euclidean distance-based metrics in assessing the accuracy of the entire trajectory, we have
proposed an ABC metric that measures the similarity between two entire trajectories, thus
effectively assessing the accuracy of the entire trajectory on a macroscopic scale. Through
extensive evaluations conducted on real-world datasets, our model with link projection
has significantly outperformed conventional approaches, achieving improvements of up to
65.74% (RMSE), 60.13% (MAE), and 91.45% (ABC) on the entire trajectory scenario.
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