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Abstract: The DC–DC dual active bridge (DAB) converter has become one of the essential units for
bidirectional energy distribution and connecting various renewable energy sources. When it comes
to regulating the converter’s output voltage, integrating an extended state observer (ESO) offers
the advantage of eliminating the need for a current sensor, thereby reducing system costs. The ESO
with a high observer bandwidth tends to acquire a faster system convergence and greater tracking
accuracy. However, its disturbance suppression performance will become poor compared to the ESO
with a low observer bandwidth. Based on this, the adaptive ESO (AESO) is proposed in this study to
make a compromise between tracking performance and disturbance suppression. When the system
is subjected to a high voltage error, the observer bandwidth will increase to improve the tracking
performance and decrease to enhance the disturbance suppression. In order to demonstrate that the
proposed method is effective, it is compared to the ESO with a fixed observer bandwidth and the
improved model-based phase-shift control (MPSC). These comparisons are made through simulation
and experimental results in various operation scenarios.

Keywords: extended state observer; dual active bridge converter; DC–DC converter; disturbance
suppression

1. Introduction

In recent years, the DC–DC dual active bridge (DAB) converter has received increasing
interest due to the development of new technologies such as energy storage systems (ESSs)
and electric vehicles (EVs). In comparison to other converters, the DAB converter is widely
used in new energy vehicles, DC distribution networks, and DC power sources (solar
photovoltaics and fuel cells), as well as the high penetration of DC loads (light-emitting
diodes, computation devices, and motor drive systems) and other industrial fields. That
is because of the DAB characteristics, such as the symmetrical topology, wide voltage
conversion range, bidirectional power transmission, high power density, galvanic isolation,
and a wide range of soft switching. Moreover, because of these benefits, the DAB converter
can perform the following functions: (1) ensure that the voltage of the power sources is
effectively matched to accommodate changes in various operating conditions; (2) reduce
the amount of electromagnetic interference (EMI) that is coming from the outside and steer
clear of the EMI that is coming from the inside that is created by the high-frequency pulse
width modulation (PWM) voltage pulse; and (3) prevent the device loss that results in
energy loss and the device’s heating [1–6].

There are many advanced control methods presented for controlling the DAB converter,
such as linearization control [7], output current feedforward control [8], virtual direct power
control [9], moving discretized control set model predictive control [10–14], feedforward
current control [15], predictive current control [16,17], sliding mode control [18–20], and
model-free data-driven model [21]. However, they primarily require much measurement
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information to control the output voltage while achieving a high dynamic performance and
low computational burden. In [22], a wise combination of model-based control with the de-
sign of feedback regulators and load current feedforward regulators has a high-bandwidth
control performance over the entire transmission power range without changing the con-
troller parameters online compared to the conventional model-based control. However, it
also requires information from the output current. Moreover, when many DAB converters
are connected in parallel, in series, or as modules, having as many current sensors as the
number of converters is necessary. This results in a significant increase in the cost of the
system. Based on this, constructing an observer is a promising solution that can receive
information regarding the output current of the DAB converter if the current is considered
an external disturbance or observed state. The disturbance observer, the perturbation ob-
server, the equivalent input disturbance-based estimation, and the extended state observer
(ESO) are similar methods presented until this point [23]. According to [24,25], the ESO
requires the smallest amount of system information. Moreover, it also allows for estimating
the total disturbance, which considers internal model uncertainties, unmodeled dynam-
ics, parasitic resistance, the tolerant drift of the inductor or capacitor, and external noises
such as electromagnetic interference produced by the semiconductor switching action
during operation.

However, even though the ESO is considered one of the most robust controllers
with high steady-state and dynamic performance, the order of the system model is of
great concern. Thus, when the system model order grows, it results in a correspondingly
increased level of observer complexity. Consequently, designing the observer is a significant
problem that must be overcome regarding multimodule systems. Clearly, all disadvantages
mentioned above mainly come from the bandwidth of ESO.

It is important to note that the measured voltage will be affected by measurement
noise, which will be amplified using a high-observer-bandwidth ESO. For this reason,
the bandwidth of the ESO is typically limited to a specific value to reduce the amount
of amplified measurement noise. Thus, when the conservative design is implemented,
the convergence speed of the ESO is sacrificed to some degree, and the system perfor-
mance in terms of disturbance suppression is reduced. The cascaded ESO was taken into
consideration in [26–28] in order to reduce the noise that was caused by high-frequency
measurements. However, the cascaded structure also makes it more difficult to tune
the parameters. Moreover, the converter often operates in various scenarios, including
variations in load, reference voltage, and input voltage. As a result, the controller’s per-
formance is limited because the observer bandwidth is tuned and selected empirically
at only one operation point of the converter. Several control strategies are presented to
overcome the limitation of a fixed gain controller. In [29], a high-performance adaptive
controller for the uncertain model of hypersonic flight vehicles has been proposed. In [30],
an adaptive ESO (AESO) is used to mitigate the effects of the motor frequency varia-
tions in an interior permanent-magnet synchronous motor. There is a novel data-driven
AESO-based model-free disturbance rejection control architecture for the output voltage
regulation of DC–DC converters, according to [31], without any model prior knowledge of
the plan. Another wise way is to combine the advantages of the sliding mode control adap-
tively and ESO in [32,33] for optoelectronic systems and permanent magnet synchronous
motors, respectively.

Motivated by the challenges above, this study proposes the AESO to balance the
tracking performance and disturbance suppression. When there is a disturbance in the
system or a change in the operation scenario, the observer bandwidth of the AESO will
automatically increase to improve the tracking performance. On the other hand, when the
system is in a steady state, the observer bandwidth will automatically decrease to improve
the disturbance suppression. The primary contributions of this study are listed as follows:

• Compared to the existing model-based method for the DAB converter, the proposed
AESO method can reduce the number of current sensors, thus significantly reducing
the system cost;



Sensors 2024, 24, 2397 3 of 23

• The proposed AESO method effectively balances the tracking performance and dis-
turbance suppression compared to a fixed-bandwidth ESO. Consequently, the AESO
streamlines the parameter design process for the controller.

The rest of this article is organized as follows: Section 2 introduces the ESO with a fixed
observer bandwidth for the DAB converter. Section 3 describes the principle of operation
of the proposed AESO. Section 4 implements the proposed AESO through simulations and
experiments to verify its effectiveness. Moreover, the proposed AESO is compared with
other methods in various operation scenarios. Finally, Section 5 concludes this study and
shows future works for the subsequent studies.

2. ESO with a Fixed Observer Bandwidth for DAB Converters

Figure 1a shows the typical DAB converter. Two active bridges are connected through
an inductor L and a transformer. The capacitors C1 and C2 on the side of the converter are
responsible for the input and output, respectively. The waveforms of the DAB converter are
shown in Figure 1b. d represents the phase-shift ratio between the primary and secondary
bridges. Every switch operates under the switching frequency f and Th = T/2 = 1/(2 f )
represents the half-switching period.
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Figure 1. DAB converter: (a) topology; and (b) waveforms. 
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According to [3], it has been proven that the reduced-order model is more effective
than other models in terms of complexity and precision. Thus, the reduced-order model
will be applied in this study to illustrate the proposed idea thoroughly. As a result, the
secondary side current of the DAB (is) can be determined in the following manner:

is =
nv1

2 f L
d(1 − d) (1)

When the value of d is in the range of [0~1], power is transmitted from the left bridge
to the right bridge with a maximum value at d = 0.5. However, to simplify the analysis, the
phase-shift ratio d is 0 ≤ d ≤ 0.5. Based on (1), the dynamic equation of the output voltage
(v2) is as follows:

.
v2 =

is − i2
C2

=
nv1

2 f LC2
d(1 − d)− i2

C2
. (2)

Rewriting (2), we obtain
.
v2 = αud + F (3)

where
α =

nv1

2 f LC2
(4)

ud = d(1 − d) (5)

F = − i2
C2

. (6)
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Rearranging (3) into the form of state-space, we obtain{ .
z1 = z2 + αud.
z2 = h

(7)

where {
z1 = v2
z2 = F.

(8)

In (7), h is the derivative of the lumped disturbance, which is bounded [34].
From (7), the ESO with a fixed observer bandwidth is constructed where v2 and F are

regarded as the state variables, as follows:
ev = z1 − ẑ1.
ẑ1 = ẑ2 + αud + β1ev.
ẑ2 = β2ev.

(9)

In (9), ev is the state observer error, and β1 = 2ω, β2 = ω2, and ω are the observer
bandwidth [35–37]. Meanwhile, the characteristic equation of the ESO with a fixed observer
bandwidth can be deduced as follows:

λ(s) = (s + ω)2. (10)

On the other hand, to implement the system model dynamically into the digital signal
processor (DSP) efficiently, the first-order forward approximation can be utilized because it
is one of the most straightforward approximation methods. Thus, the first-order forward
approximation is used to discretize (3) at the (k + 1)th sampling cycle and v2 is set to the
reference value (v2re f ); the value of ud can be calculated as follows [11]:

ud[k] =
v2[k + 1]− v2[k]

Tα[k]
− F̂[k]

α[k]
=

v2re f − v2[k]
Tα[k]

− F̂[k]
α[k]

. (11)

Accordingly, the phase-shift ratio d at the kth sampling cycle can be directly obtained
as follows:

d[k] =
1
2
−

√
1
4
− ud[k]. (12)

Based on this, the ESO with a fixed observer bandwidth can be implemented, as shown
in Figure 2. First, the input and output voltages are measured. After that, α is calculated
from (4). The ESO with a fixed observer bandwidth is calculated according to (9), resulting
in the observer value F̂ can be obtained. Subsequently, ud and d can be obtained from (11)
and (12), respectively. Finally, a pulse width modulation is implemented through a gate
driver to control the converter.

Obviously, according to (9)–(10), the observer bandwidth ω of ESO must be suitably
selected to achieve system stability and robustness. As a result, the dynamic performance
is limited because the converter will operate in various scenarios with various disturbances
and noises. Therefore, in order to analyze and discuss the impact of the observer bandwidth
accurately, the transfer functions in the Laplace transform are derived from (9), as follows:

ẑ1(s) = v2(s)
β1s + β2

s2 + β1s + β2
+ x(s)

s
s2 + β1s + β2

(13)

ẑ2(s) = v2(s)
β2s

s2 + β1s + β2
− x(s)

β2

s2 + β1s + β2
(14)

where x = αud.
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Figure 2. Flowchart of the conventional ESO.

ẑ1(s) = v2(s)
β1s + β2

s2 + β1s + β2
+ x(s)

s
s2 + β1s + β2

(13)

ẑ2(s) = v2(s)
β2s

s2 + β1s + β2
− x(s)

β2

s2 + β1s + β2
(14)

where x = αud.
From (13) and (14), the following transfer functions can be obtained:

H1(s) =
ẑ1(s)
v2(s)

∣∣∣∣
x(s)=0

=
β1s + β2

s2 + β1s + β2
(15)

H2(s) =
ẑ2(s)
v2(s)

∣∣∣∣
x(s)=0

=
β2s

s2 + β1s + β2
(16)

H3(s) =
ẑ1(s)
x(s)

∣∣∣∣
v2(s)=0

=
s

s2 + β1s + β2
(17)

H4(s) =
ẑ2(s)
x(s)

∣∣∣∣
v2(s)=0

= − β2

s2 + β1s + β2
(18)

where H1(s) and H2(s) are the transfer functions of the observer states z1(s) and
z2(s) against measurement noise, respectively. On the other hand, H3(s) and H4(s) are the
transfer functions of the observer states z1(s) and z2(s) against total disturbances, which
consider internal and external model uncertainties, respectively.
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3. Proposed AESO

In order to overcome the limitation of the ESO with a fixed observer bandwidth, as
analyzed and discussed in Section 2, this section presents a detailed analysis of the AESO,
which shows how the observer bandwidth can be adjusted automatically to improve the
performance of the AESO in the transient progress and steady state. Moreover, the stability
of the proposed method is analyzed.

3.1. Principle of AESO

Based on the ESO with a fixed observer bandwidth, the AESO is configured as follows:{ .
ẑ1 = ẑ2 + αud + β1Aev.
ẑ2 = β2Aev

(19)

where β1A = 2ωA, β2A = 2ω2
A, and ωA is the observer bandwidth of the AESO, expressed

in (20):

ωA = ωA,min + (ωA,max − ωA,min)
2
π

atan(γ|ev|) (20)

where γ is the positive coefficient. The observer bandwidth ωA is adjusted between their
limitations ωA,min and ωA,max.

Figures 3 and 4 show the block diagram and flowchart of the proposed AESO for
the DAB converter, respectively. First, the input and output voltages are measured. Then,
α is calculated from (4). After that, the adaptive observer bandwidth ωA is calculated
according to (20), followed by the AESO obtained from (19). Then, the observer state F̂ can
be obtained. Subsequently, ud and d are obtained from (11) and (12), respectively. Finally, a
pulse width modulation is implemented through a gate driver to control the converter.
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3.2. Stability Analysis

When assessing the quality of a controller, the stability index is a crucial aspect to
consider. Thus, in order to analyze the stability of the proposed AESO, the error equation
of the AESO is deduced as follows:

.
e=Ae + Bh (21)

where

e =
[
ev e f

]T , A =

[
−β1A 0
−β2A 0

]
, B =

[
0 1

]T . (22)

In (22), e f is the disturbance observer error, which is calculated as e f = z2 − ẑ2.
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Obviously, matrix A is the Hurwitz matrix because β1A and β2A are bounded. On the
other hand, the derivative of the lumped disturbance h is assumed to be bounded. Therefore,
the proposed AESO is asymptotically stable, according to [38]. This results in an outcome
where, whenever F̂ is obtained, the output voltage will track its references, as shown in
(11)–(12). Therefore, it is clear that the closed-loop system is asymptotically stable.

4. Simulation and Experiment Verification
4.1. Simulation

This section compares the proposed AESO to the ESOs with a fixed observer band-
width, including the low observer bandwidth (LESO) and the high observer bandwidth
(HESO). Observer bandwidths of the LESO and the HESO are chosen the same as ωA,min
and ωA,max, respectively. On the other hand, the improved model-based phase-shift control
(MPSC) performed better than the conventional model-based control, according to [22].
Thus, the proposed AESO is only compared to the MPSC. The detailed expression and
control parameters of the MPSC are designed and presented in the Appendix A. More-
over, to choose the control parameters of the AESO, the Bode diagrams for the transfer
functions of the observer state with various observer bandwidths are shown in Figure 5
according to (15)–(18). The voltage tracking performance is better if the observer operates
with higher bandwidths, as shown in Figure 5a,b. However, a higher observer bandwidth
also results in amplifying the higher measurement noise. On the other hand, as shown in
Figure 5c,d, poor disturbance suppression with a high bandwidth is present. In other words,
the disturbance suppression performance gradually weakens as the observer bandwidth
increases. Therefore, it is clear that there is a tradeoff between tracking performance and
disturbance suppression [34].
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According to (20), the function relationships of ωA according to the voltage error
ev under various values of γ are shown in Figure 6. Obviously, ev is decreased faster
with a higher observer bandwidth. That means, when the transient process is significant,
the bandwidth of the AESO is high, ensuring system convergence occurs as quickly as
possible. On the other hand, in the steady state, the disturbance sensitivity is significantly
decreased because the bandwidth of the AESO decreases. Moreover, ωA has a smooth
change within observer bandwidths ωA,min and ωA,max, resulting in the AESO achieving
the best performance in the tradeoff of tracking performance and disturbance suppression.

From the analysis above, the parameters of the DAB converter and the proposed AESO
in the simulation are shown in Tables 1 and 2, respectively.

Table 1. Simulation parameters of the DAB converter.

Symbol Description Value

v1 Input voltage 100 V
v2re f Output voltage reference 100 V

n Transformer turn ratio 1
f Switching frequency 10 kHz
L Series inductance 50 µH

C1 Input capacitance 440 µF
C2 Output capacitance 220 µF
R Resistive load 50 Ω
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Table 2. Parameters of AESO.

Symbol Description Value

ωA,min Minimum observer bandwidth 500 rad/s
ωA,max Maximum observer bandwidth 2500 rad/s

γ Positive coefficient 0.1
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The simulation results of the step load change performed by the LESO, the HESO, and
the proposed AESO are shown in Figure 7. All three observer methods exhibit the identical
undershoot and overshoot of v2 when the output current i2 suddenly steps up and down at
0.02 s and 0.04 s, respectively. Compared to the proposed AESO and LESO, the voltage tracking
performance of the HESO is somewhat faster. However, the observed current of the HESO
fluctuates more strongly than the proposed method’s, meaning the observer performance
of the HESO is lower than that of other controllers. The reason for this is that the proposed
AESO can promptly increase the observer bandwidth in the event of a sudden change in i2,
resulting in reducing the voltage error as soon as possible while simultaneously assuring the
suppression of the total disturbances. When the voltage v2 tracks to its reference v2re f in the
steady state, the bandwidth of the proposed AESO automatically decreases to ωA,min. This
causes the observed current to track the actual current smoothly. On the other hand, compared
to the other controllers, the LESO has the worst dynamic performance, with the longest settling
time of the output voltage and the longest settling time of the observed current. However,
the observed current in the LESO provides a slight fluctuation. It also fails to achieve a fast
convergence due to the small value of the observer bandwidth. In comparison to the LESO
and HESO, it is evident that the proposed AESO demonstrates the best tracking performance
and disturbance suppression when the output current i2 suddenly changes. Moreover, it is
easy to see that the observed load currents in all methods are perfectly consistent with the
reference value (i2re f ). This is because of the ability to reject the load disturbance and the
robustness against the uncertainties of the ESO, which is regularly utilized in high-performance
applications, especially power converter control systems.

The simulation of the LESO, the HESO, and the proposed AESO is shown in Figure 8
when the voltage reference v2re f steps down and up between 100 V and 95 V. Obviously, the
undershoot and overshoot of v2 are both occurrences that can be found in the HESO. while
the LESO and the proposed AESO offer a more stable dynamic performance. In this case, the
dynamic and observer performances shown by the LESO and the proposed AESO are similar.

Figure 9 shows the simulation of the LESO, the HESO, and the proposed AESO
when changing the input voltage between 100 V and 90 V. Even though all three methods
have a dynamic performance comparable to one another, the HESO exhibits a significant
fluctuation of the observed current, showing the same phenomenon as in Figures 7 and 8.
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The results of the simulations shown in Figures 7–9 make it abundantly clear that
the observer bandwidth is adaptively adjusted between the minimum and maximum
values according to the voltage error, resulting in an improved dynamic performance under
various operation scenarios and a better disturbance suppression in the steady state. In
other words, the proposed AESO has a superior tracking performance and disturbance
suppression overall compared to both the LESO and HESO.

The simulation results of the proposed AESO and the MPSC are shown in Figures 10–12
in various operation scenarios of the DAB converter for a further comparison of the dynamic
performance. Figure 10 shows the simulation results when changing the load current. When
the load current changes, the proposed AESO shows a lower peak value of undershoot and
overshoot. Moreover, the settling times in the transient progress of the proposed AESO are
shorter than that in the MPSC. It can be seen that the proposed AESO demonstrates superior
dynamic performance compared to the MPSC. In addition, the observed current (i2obs) is
totally consistent with the value measured from the sensor (i2sen) in the proposed AESO.
Figures 11 and 12 demonstrate simulation results similar to those in Figure 10 when changing
the voltage reference and the input voltage, respectively.

To further validate the robustness of the proposed AESO against the strong influence
of the mismatched system parameters, the simulation comparison should be expanded to
include the scenarios in which the parameters are mismatched. Notable with regard to that,
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the simulations presented above indicate that the effects of changing the voltage reference
and the input voltage situations are comparable to those of changing the load current.
Consequently, the case of changing the load current is utilized as a typical representation
for comparison in the following simulations.
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On the other hand, the inductor is no longer incorporated following the AESO prin-
ciple, which is demonstrated in (19). Additionally, the proposed AESO that has been
presented can compensate for the voltage error that occurs in the steady state. In addition,
according to [39], the ESO and the parameter identification technique use the output voltage
error. This leads to a conflict and a decline in performance if the ESO and the parameter
identification technique are utilized simultaneously. The consequence is that this study
does not consider the effect of the inductor mismatch. According to [40], the value of the ca-
pacitor may experience slight variations over time due to temperature drift, manufacturing
tolerance, age, and operating circumstances. Consequently, a variation of 20% of parameter
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mismatches may occasionally be detected [41,42]. Therefore, the simulation results that
occur when C2 varies by ±20% are utilized to demonstrate the comparability.

Figures 13 and 14 show the simulation results when changing the load current under
the mismatch cases of C2 with +20% and −20% of the proposed AESO and the MPSC,
respectively. Obviously, these results confirm that the proposed AESO performs better than
the MPSC in mismatch cases.
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Figure 10. Simulation results when changing the load current: (a) proposed AESO; and (b) MPSC.
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Figure 11. Simulation results when changing the voltage reference: (a) proposed AESO; and (b) MPSC.
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4.2. Experiment

A hardware prototype is built to validate the effectiveness of the proposed AESO
experimentally, as shown in Figure 15. The hardware components of the DAB converter
are shown in Table 3. All actual values of the hardware components are measured by
electronic equipment in the laboratory to identify their actual values, as shown in Table 4.
The parameters of the proposed AESO in the experiment are shown in Table 2. In this
section, the performance verification of the proposed AESO is compared to the MPSC
experimentally when the load current is changed. Moreover, the cases of mismatched
capacitors are also investigated.

Table 3. Hardware components.

Component Description Value

Switching devices C3M0065090D × 8 VDS = 900 V, ID = 36 A

Input capacitors Panasonic UQ
Samyoung TDA

450 V, 220 µF
450 V, 220 µF

Output capacitors Samyoung TDA 450 V, 220 µF

Transformer TDK PQ50/50, Ferrite Core,
Litz wire 0.1 mm × 140 strands 31:31 turns

Inductor TDK EI40, Ferrite Core,
Litz wire 0.1 mm × 140 strands 24 turns

Voltage sensors LV 25-P t = 40 µs

Current sensors LA 55-P BW (–1 dB) 200 kHz
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Table 4. Experiment parameters of the DAB converter.

Symbol Description Value

v1 Input voltage 80 V
v2re f Output voltage reference 80 V

n Transformer turn ratio 1
f Switching frequency 10 kHz
L Series inductance 51 µH

C1 Input capacitance 431 µF
C2 Output capacitance 219 µF
R Resistive load 57 Ω

Figure 16 shows the experimental results when increasing the load current from 1.4 A
to 2.8 A. The observed currents (i2obs) are totally consistent with the values measured from
the sensor (i2sen) in all ESO methods, as shown in Figure 16a–c. Compared to the proposed
AESO, the performance of the HESO in terms of voltage tracking somewhat increases
with a shorter settling time. On the other hand, the observed current of the HESO, as
shown in Figure 16b, exhibits a greater degree of fluctuation than those in the LESO and the
proposed AESO, as shown in Figure 16a,c. Conversely, the LESO shows a worse dynamic
performance than the HESO and the proposed ESO, where it has the longest output voltage
settling time. However, the LESO has a very smooth observer current. That confirms the
tracking performance and disturbance suppression tradeoff, as discussed above. Obviously,
the proposed AESO shows the best tracking performance and disturbance suppression
compared to the LESO and the HESO. Moreover, as shown in Figure 16c,d, compared to the
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MPSC, it is not difficult to notice that the proposed AESO demonstrates a better dynamic
performance with a shorter settling time when the load current increases.
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On the other hand, Figure 17 shows the experimental results when decreasing the load
current from 2.8 A to 1.4 A. This scenario also shows similar performances, as shown in Figure 16.

Figure 18 shows the variations in the bandwidth of the proposed AESO when increasing
and decreasing the load current, detected under simultaneous conditions as in Figures 16c
and 17c, respectively. At the moment the load current changes, the bandwidth of the proposed
AESO automatically increases from the minimum value ωA,min in order to compensate for the
change in voltage error. After that, it decreases again to ωA,min in the steady state. The peak
value of the bandwidth in these cases is around 1600 rad/s. That confirms the effectiveness
of the proposed AESO with the same performance as shown in the simulation.

Figure 19 shows the experimental results of the proposed AESO and the MPSC when
changing the load current under a mismatch case of C2 with +20%. It is easy to see that
the dynamic performances of v2 in the proposed AESO are better than that of the MPSC.
Thus, the proposed AESO also shows better dynamics than the MPSC. In addition, the
observed load currents of the proposed AESO, in this case, are also perfectly consistent
with the values measured by the sensor.

Figure 20 shows the variations in the bandwidth of the proposed AESO under simul-
taneous conditions, as shown in Figure 19. When the load current changes, the bandwidth
of the proposed AESO automatically increases, and then decreases.

Similarly, Figure 21 shows the experimental results of the proposed AESO and the
MPSC when changing the load current under a mismatch case of C2 with −20%. Figure 22
shows the variations in the bandwidth of the proposed AESO under simultaneous condi-
tions, as shown in Figure 21. In this case, both methods show similar dynamic performances.
In addition, the observed load currents of the proposed AESO are also perfectly consistent
with the values measured by the sensor.
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Moreover, for synthesizing the overall performances of the proposed AESO compared
to the others, Table 5 briefly compares the significant peak values that demonstrated the
dynamic performance of the LESO, HESO, AESO, and MPSC.

Finally, Table 6 shows overall comparisons of the proposed AESO method and the
MPSC method.
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Table 5. Comparisons of dynamics performance of LESO, HESO, AESO, and MPSC.

Validation Operation Scenario
Overshoot/Undershoot Settling Time

LESO HESO AESO MPSC LESO HESO AESO MPSC

Simulation
Changing the load current 1 V 1 V 1 V 1.2 V 4 ms 3 ms 2 ms 4 ms

Changing the voltage reference 0.2 V 0.4 V 0.2 V 1.2 V 1 ms 1 ms 1 ms 4 ms
Changing the input voltage 1.2 V 1.2 V 1.2 V 1.25 V 0.1 ms 0.1 ms 0.1 ms 1.5 ms
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Table 5. Cont.

Validation Operation Scenario
Overshoot/Undershoot Settling Time

LESO HESO AESO MPSC LESO HESO AESO MPSC

Experiment Increasing the load current 2.1 V 2.5 V 2 V 2 V 1 ms 0.6 ms 0.7 ms 0.9 ms
Decreasing the load current 1 V 1 V 1 V 1.5 V 1.1 ms 0.7 ms 0.8 ms 1 ms
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Table 6. Overall comparisons.

Tasks MPSC AESO

Number of current sensors 2 0
Number of voltage sensors 2 2

Observer performance - Good
Dynamic performance Moderate Good

Robustness to parameter mismatches Moderate Good

5. Conclusions

This study proposed the AESO for the DAB converters. Effectively compromising the
tracking performance and disturbance suppression, the proposed AESO can eliminate the
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current sensor and significantly increase the dynamic performance compared to the ESO
with a fixed observer bandwidth and the MPSC in almost all matched and mismatched
capacitor cases. This is accomplished by automatically adjusting the observer bandwidth
according to the change in voltage error. Thus, the proposed AESO can balance the tracking
performance and disturbance suppression. The proposed AESO’s effectiveness was proven
compared to the ESO with a fixed observer bandwidth and the MPSC through simulations
and experiments in various operation circumstances.

In the upcoming studies, additional mathematical models of parameter sensitivity will
be carried out to demonstrate the proposed strategy’s effectiveness further. In addition,
the AESO that has been developed will be combined with other modulation techniques to
optimize the control flexibility and converter efficiency.
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Appendix A

The improved model-based phase-shift control (MPSC), according to [22], is shown in
the following.

The phase-shift ratio of the MPSC is as follows:

dMPSC =

 1
2 −

√
1
4 − ire f

k∗ 0 ≤ ire f ≤ k∗
4

− 1
2 +

√
1
4 +

ire f
k∗ − k∗

4 ≤ ire f ≤ 0
(A1)

where k∗ and ire f are calculated from (A2) and (A3), respectively.

k∗ =
n∗v1re f

2 f L∗ (A2)

ire f = i2 + ic_re f . (A3)

In (A2) and (A3), n∗ and L∗ represent the theoretical design values, v1re f denotes the
reference values of input voltage, and ic_re f is generated from the feedback control loop
with the proportional–integral (PI) control GPI(s), which is presented as follows:

GPI(s) = kp

(
1 +

1
sTr

)
(A4)

where the proportional gain kp and the integrator time constant Tr are calculated as follows:

kp = C2ωc (A5)

Tr =
tan(φm + ωcTd)

ωc
. (A6)
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In (A5) and (A6), ωc is the cutoff frequency, φm is the specified phase margin,
and Td is the control delay.

The parameters of MPSC are shown in Table A1.

Table A1. Parameters of MPSC.

Symbol Description Value

ωc Cutoff frequency 2000π rad/s
φm Phase margin 60 deg
Td Control delay 50 µs
kp Proportional gain 1.376
Tr Integrator time constant 0.7488 ms
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