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Abstract: Aiming at the problems of target detection models in traffic scenarios including a large
number of parameters, heavy computational burden, and high application cost, this paper introduces
an enhanced lightweight real-time detection algorithm, which exhibits higher detection speed and
accuracy for vehicle detection. This paper considers the YOLOv7 algorithm as the benchmark model,
designs a lightweight backbone network, and uses the MobileNetV3 lightweight network to extract
target features. Inspired by the structure of SPPF, the spatial pyramid pooling module is reconfigured
by incorporating GSConv, and a lightweight SPPFCSPC-GS module is designed, aiming to minimize
the quantity of model parameters and enhance the training speed even further. Furthermore, the
CA mechanism is integrated to enhance the feature extraction capability of the model. Finally, the
MPDIoU loss function is utilized to optimize the model’s training process. Experiments showcase that
the refined YOLOv7 algorithm can achieve 98.2% mAP on the BIT-Vehicle dataset with 52.8% fewer
model parameters than the original model and a 35.2% improvement in FPS. The enhanced model
adeptly strikes a finer equilibrium between velocity and precision, providing favorable conditions for
embedding the model into mobile devices.

Keywords: artificial intelligence; object detection; YOLOv7; lightweight

1. Introduction

With the continuous growth of the public’s travel demand, the rate of automobile
ownership has steadily increased in recent years, leading to increases in traffic accidents
and congestion [1]. If accidents and congestion are not handled in a timely manner, they
will seriously threaten the personal safety of the public. In traffic situations, the speed and
precision of vehicle detection are pivotal factors influencing traffic management. With the
popularity of surveillance cameras and the significant development of Intelligent Traffic
System (ITS), the expedient utilization of computer technology for the rapid processing of
video and image data from road surveillance has emerged as a paramount imperative for
actualizing ITS objectives [2,3].

Machine vision technology has a powerful video data processing capability, from
which it can extract key information, such as vehicle color, model, brand, and license plate
number [4–6]. This information enables the transportation department to grasp the road
conditions in real time, e.g., the supervisory department can use this information to accu-
rately identify various sorts of motor vehicles on the road, thus enhancing the monitoring
of dangerous vehicles. In addition, machine vision technology can help accurately identify
and locate these specific vehicles, providing strong support for the prevention of traffic
accidents or criminal behavior.

In pursuit of more insightful insights, a multitude of researchers have employed
various methodologies for vehicle detection and classification. Traditional vehicle detection
methods traverse and scan the image through a fixed window and determine whether
the current window contains the target vehicle based on manually designed features and
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classifiers, such as those proposed by Wang et al. [7], who utilized a pseudo-visual search
mechanism to eliminate environmental interference in the image. Additionally, they inte-
grated directional gradient histograms with local binary pattern fusion to enhance vehicle
feature extraction capabilities. However, the process of manually annotating features is
complicated and lacks real-time performance. As deep learning continues to advance, nu-
merous researchers have employed deep learning techniques within the domain of vehicle
detection. Currently, target detection based on deep learning can be categorized into the
following two types: two-stage detection algorithms and single-stage detection algorithms.
Most of the two-stage detection algorithms rely on the region candidate network to generate
candidate frames, and feature extraction of the candidate frame target is carried out by a
convolutional neural network [8]. For example, for a traditional deep learning network in
which the feature information transfer process lacks interdependence, Ke et al. [9] proposed
a dense attention network structure through the introduction of dense connections as well
as an attention module that enhances the detection ability of the model. Gu et al. [10]
introduced an enhanced Faster RCNN vehicle detection algorithm that aims to enhance
the detection accuracy of various vehicle types by developing distinct scales of receptive
fields for concurrent detection of image targets. Such algorithms demonstrate elevated de-
tection accuracy but show limitations in real-time performance. The single-stage detection
algorithms, on the other hand, discard region selection and directly recognize the target
to be detected in the image; representative algorithms include the Single-Shot MultiBox
Detector (SSD) [11], the You Only Look Once (YOLO) series [12–14], and EfficientDet [15].
In contrast to two-stage detection algorithms, single-stage detection algorithms exhibit
superior real-time performance, but the detection accuracy is slightly lower [16].

Many scholars have conducted extensive and in-depth research in the field of lightweight
networks and vehicle detection [17–19]. Chen et al. [20] proposed an efficient detection
network that achieves three times the detection speed of YOLOv3 by fusing the advantages
of densely connected networks and separable convolutions. Dong et al. [21] devised
an advanced approach for vehicle detection, leveraging the C3Ghost module within the
YOLOv5 neck network to streamline model parameters. Additionally, they bolstered
detection accuracy through the integration of CBAM attention mechanisms and optimized
the loss function to expedite model training. Zhang et al. [22] enhanced the YOLOv8
model by augmenting its feature fusion capabilities through multi-scale fusion within
the backbone network. Additionally, they introduced a TA attention mechanism in the
feature extraction phase to bolster model accuracy. Luo et al. [23] introduced an enhanced
real-time detection model based on YOLOv5s to address the challenges posed by the high
complexity and computational demands of vehicle detection models. This was achieved by
incorporating a large-scale convolution function to amalgamate information from various
feature images and optimizing the original spatial pyramid structure to bolster the model’s
information extraction capabilities. However, as model accuracy increased, detection time
also saw a gradual rise.

The above research has promoted the development of vehicle detection. However, the
demanding real-time constraints within traffic scenarios pose a challenge, as existing algo-
rithms struggle to strike a balance between detection speed and precision. To address this
issue, the present paper introduces an enhanced real-time detection algorithm utilizing You
Only Look Once version 7 (YOLOv7). This algorithm effectively reduces model parameters
while ensuring recognition accuracy, thereby enabling deployment on edge devices.

The primary advancements delineated in this paper include the following:

➢ Lightweight Modules: This paper employs the lightweight MobileNetV3 architecture
to replace the backbone network of YOLOv7 and modifies the spatial pyramid parallel
pooling structure to serial pooling to speed up the detection rate. Furthermore,
inspired by the Generalized Sparse Convolution (GSConv) module, it utilizes GSConv
to replace the standard convolution in the neck network. This neck network, in
combination with the Spatial Pyramid Pooling Fast Cross-Stage Partial Channel
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(SPPFCSPC) module, forms the SPPCSPC-GS module, aiming to reduce the number
of parameters in the model.

➢ Attention Mechanisms Module: Aiming at the problem of decreasing feature ex-
traction ability after the model is lightweighted, this paper enhances the detection
accuracy of the model without substantially escalating the number of parameters by
incorporating the coordinate attention (CA) mechanism in different feature layers.

➢ Minimum Point Distance Intersection over Union (MPDIoU) Loss Function: In order
to refine the detection speed of the model and reduce the bounding-box regression
loss, the initial complete intersection over union (CIoU) loss function is substituted
with the MPDIoU loss function.

2. Materials and Methods

In recent years, all kinds of image detection algorithms have performed extremely
well on the metric of accuracy but have neglected the problem of model parameterization.
Aside from accuracy, real-time performance is also a significant metric for evaluating
models. Overly complex network models are hard to deploy on mobile devices with
restricted computational resources and are also difficult to apply to scenarios with high
real-time requirements. This paper aims to devise a lightweight and readily deployable
network model, prioritizing the reduction in model parameters while preserving the
algorithm’s accuracy.

2.1. YOLOV7 Network Structure

After multiple iterations of updates, the YOLO network model has given rise to the
YOLOv7 model, which primarily comprises the following three modules: input, backbone,
and head modules. The input module resizes the input image to a specified dimension to
align with the input criteria of the backbone network. The backbone incorporates a CBS
module, E-ELAN module, and MPConv module. E-ELAN is an efficient layer aggregation
network that continuously improves the model’s learning ability without changing the
structure of the transition layer. CBS convolutional layers improve the training efficiency
and performance of the model by introducing binary supervision signals, while MPConv
convolutional layers incorporate maxpool layers into their structure, forming upper and
lower branches to effectively retain the most significant features. To adapt to multi-scale
inputs, the head network uses a Spatial Pyramid Pooling (SPP) structure. To integrate
features across various levels, an aggregated feature pyramid network structure is used to
pass bottom-layer information to higher layers. Lastly, the reparameterized convolution
(REPcon) structure modifies the channel counts of features at varying scales, enabling
efficient feature representation.

2.2. YOLOV7 Improvements

The original model’s backbone network utilizes the DarkNet53 architecture, incor-
porating numerous residual structures that may escalate the model’s complexity and
computational demands. Consequently, to address the issue of high parameter count and
computational complexity in the original YOLOv7 network, which hinders deployment
on terminal devices, this study undertakes a lightweight redesign of the network archi-
tecture [24]. The lightweight MobileNetV3 backbone network is employed instead of the
DarkNet53 network to extract feature information from input images efficiently. Drawing
inspiration from the Spatial Pyramid Pooling-Fast (SPPF) concept, the SPP module in the
neck network is enhanced by adjusting the number of specified convolutional kernels. The
original parallel pooling structure is transformed into a serial pooling structure, accelerat-
ing data processing and enhancing model training speed and feature extraction capability
while keeping the sensory field intact. Furthermore, the conventional 3-convolutional
kernel layer in SPPFCSPC is replaced with a lightweight GSConv layer, thereby forming the
Spatial Pyramid Pooling Fast Cross-Stage Partial Channel-Generalized Sparse Convolution
(SPPFCSPC-GS) module to further refine the model’s real-time performance. To counteract
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potential accuracy loss resulting from lightweight modifications, the CA mechanism is
integrated into various feature extraction layers. The MPDIoU loss function is employed to
refine the model’s representation of target features and enhance target detection accuracy.
Figure 1 illustrates the enhanced architecture of the YOLOv7 network.
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2.2.1. Lightweight MobileNetV3 Module

MobileNet is a series of Convolutional Neural Network (CNN) architectures for image
classification proposed by a team of Google researchers [25]. Through the introduction
of different versions, MobileNet introduces a series of innovative concepts with the main
goal of decreasing the number of model parameters to increase operational efficiency on
mobile devices while maintaining high classification accuracy. MobileNetV3 not only
retains the inverted residual module and depth-separable convolution of MobileNetV1
and MobileNetV2 to optimize the network parameters but also introduces the Squeeze-
and-Excite (SE) structure. It replaces the original swish activation function with the h-
swish activation function to decrease the number of operations and optimizes the network
structure to enhance model performance. The structure of the bneck module for the
MobileNetV3 model is presented in Figure 2.

Figure 3 shows the structure of depth-separable convolution, which consists of depth-
wise (DW) convolution and pointwise (PW) convolution. DW convolution is a single-
channel computation method, while PW convolution extracts the features of each element
after DW convolution using a 1 × 1 convolution kernel. The relationship between its
parameter calculation and ordinary convolution is shown below.

Dk × Dk × 1 × M × DF × DF + 1 × 1 × M × N × DF × DF
Dk × Dk × M × N × DF × DF

=
1
N

+
1

D2
k

(1)
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where M is the number of channels, Dk × Dk is the convolution kernel size, N × DF × DF is
the dimension of the output feature map, Dk × Dk × 1 × M × DF × DF is the computation
of a single ordinary convolution, and 1 × 1 × M × N × DF × DF is the computation of PW.
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Figure 3. Depth-separable convolutional architecture diagram.

According to Equation (1), when the convolution kernel is 3 × 3, the number of param-
eters in ordinary convolution is nine times greater than that of depth-separable convolution.
This substitution not only decreases storage space and computational requirements but
also lowers the hardware demands of the algorithm.

2.2.2. SPPFCSPC-GS Module

The SPPFCSPC module draws inspiration from the concept of SPPF [26,27], which
structurally reduces the number of times the convolution kernel size needs to be specified.
While SPP requires specification of the dimensions of the convolution kernel three times
to pool and splice the data from the CBS module, SPPF only requires specification of one
convolution kernel. Additionally, each pooling operation’s output is utilized as the input
for the subsequent pooling, accelerating data processing. This allows the model to enhance
feature extraction from the data while keeping the receptive domain unchanged. Simulta-
neously, due to the depthwise-separable convolution’s channel-by-channel convolution, it
loses plenty of information, which leads to low feature extraction ability. Therefore, this
paper introduces a lightweight convolution layer, GSConv, which can effectively decrease
the model parameters without affecting detection precision by fusing depthwise separable
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convolution with ordinary convolution, further improving the generalization ability of the
model. Figure 4 illustrates the structure of the SPPFCSPC-GS.
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In the figure, the GSConv module [28] splits the number of C1 channels in half by
performing a 1 × 1 convolution on the input image and subsequently performs a 5 × 1
depth-separable convolution on the feature image so that the number of output channels
remains half of the total number intended for the final output. Ultimately, it obtains a
feature image with C2 output channels by integrating and rearranging the feature image.
Figure 5 illustrates the architecture.
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If the lightweight GSConv replaces all the ordinary convolutions in the model, it will
increase the number of network layers of the network, exacerbate the resistance to data flow,
and affect the inference speed of the model. While the neck network channel dimension is
maximized and no transformation is needed, in this paper, the ordinary 3 convolutional
kernels in the neck network are replaced with the lightweight GSConv convolutional layer,
which lowers the computational burden and further enhances the generalization capacity
of the model.
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2.2.3. CA Module

The integration of lightweight modules like MobileNetV3 in the model reduces the
computational load and parameter count, albeit at the cost of decreased feature extraction
capability. To amplify the network’s feature extraction prowess, an attention mechanism
module is incorporated into the convolutional network. Among the commonly used
lightweight attention mechanisms are SE and the Convolutional Block Attention Module
(CBAM). While the SE mechanism focuses solely on channel attention, it neglects spatial
dimensions, whereas the CBAM mechanism contemplates attention in both spatial and
channel dimensions [29]. However, CBAM’s practical application complexity and computa-
tional resource consumption are relatively high [30]. Hence, when selecting an appropriate
attention mechanism, it is essential to strike a balance based on specific task requirements
and resource constraints.

In order to amplify the original model structure’s ability to perceive the target locations
within the feature map, this study employs the CA mechanism to strengthen the detector’s
feature extraction aptitude for vehicles [31]. This is achieved by embedding position
information into the channel attention as a means of attaining lightweight global attention.
Figure 6 illustrates the architecture.
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As shown in the figure, the CA mechanism first performs global pooling of the input
feature map along the two directions of height and width. This leads to a feature map
measuring H in height and W in width, where each channel is encoded. Subsequently,
the feature maps from the two distinct directions are concatenated together. Then, a
1 × 1 convolution is applied to downscale the feature maps to C/r, and the downscaled
feature maps are batch-normalized. After applying the Sigmoid activation function, we
obtain a set of feature maps with dimensions of C/r × 1 × (W + H). Next, the feature map
undergoes segmentation along the spatial dimension, and an additional 1 × 1 convolution
is employed to derive weights in both directions. Ultimately, the attention weights are
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applied to the original image features via the activation function, yielding the final output
feature map.

By generating weights in different directions for the feature map, the CA mechanism
can focus on more important feature information. It not only grasps positional details
across channels but also extracts position-specific information, assigning higher weights
to significant pixel coordinates. This approach is instrumental in enhancing the precision
of detection.

2.2.4. MPDIoU Loss Function

The loss function serves to quantify the disparity between predicted and actual values
of a model, with a lower value indicating greater robustness of the model. The initial
YOLOv7 architecture employs the CIoU loss function, an extension of the Distance Inter-
section over Union (DIoU) loss, to gauge the loss associated with box scaling [32,33]. This
method considers the overlap area, distance from the center point, and aspect ratio of the
three geometric parameters, aiming to refine box predictions to values closer to actual
dimensions. However, it fails to address the challenge of balancing between complex and
straightforward samples. This potentially results in increased computational overhead
during training and slows down the model’s convergence speed. The CIoU calculation
formula is as follows:

CIoU = IoU −
(

ρ2(b, bgt)
c2 + αν

)
(2)

ν =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(3)

α =
ν

(1 − IoU) + ν
(4)

where α and ν denote the aspect ratio; w and h denote the width and height of the prediction
frame, respectively; wgt and hgt denote the width and height of the real frame, respectively;
and ρ2(b, bgt) represents the Euclidean distance between the prediction frame and the
center point of the actual frame.

To accelerate the training process and enhance the model’s classification accuracy, the
CIoU is supplanted with the MPDIoU loss function [34]. MPDIoU is a comparative measure
of the similarity of the bounding box with the minimum point distance. Figure 7 illustrates
the architecture of MPDIoU. The red box indicates the actual bounding box, while the
yellow box signifies the predicted bounding box. By minimizing the distance between the
two corner points of the prediction, the loss is reduced. This method effectively resolves the
issue where the existing loss function struggles to optimize effectively when the predicted
bounding box and the ground-truth bounding box have identical aspect ratios but vastly
different length and width values. It not only covers the advantages of the existing IoU and
the paradigm loss but also makes up for the shortcomings of the existing loss, effectively
reduces the localization loss, and further improves the prediction accuracy. MPDIoU is
calculated as follows:

d2
1 =

(
xprd

1 − xgt
1

)2
+
(

yprd
1 − ygt

1

)2
(5)

d2
2 =

(
xprd

2 − xgt
2

)2
+
(

yprd
2 − ygt

2

)2
(6)

MPDIoU = IoU −
d2

1
w2 + h2 −

d2
2

w2 + h2 (7)

LMPDIoU = 1 − MPDIoU (8)

where d1 represents the distance between the predicted frame and the upper-left corner
of the actual frame, and d2 represents the distance between the predicted frame and the
lower-right corner of the actual frame.
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3. Experiment
3.1. Dataset

In this paper, the BIT-Vehicle vehicle dataset released by the Beijing Institute of Tech-
nology is used [35], which has six model categories, namely SUV, Sedan, Microbus, Truck,
Bus and Minivan. Table 1 provides the count of images in each labeling category, and the
images of the models are presented in Figure 8. The dataset comprises 9850 images, of
which 8865 are randomly selected for the training set at a ratio of 9:1, with the remaining
985 images allocated for the test set.

Table 1. Number of labels by category.

Category SUV Sedan Microbus Truck Bus Minivan

Number 1392 5922 883 822 558 476
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3.2. Experimental Environment

The experiments were conducted on a Win10 Professional operating system, using
Python3.9.11 compiled language, Pytorch1.18.1 deep learning framework, and CUDA11.8
environment architecture. The hardware environment consisted of CPU Intel(R) w-2223 and
two NVIDIA GeForce RTX2080Ti graphics cards (each with 11G video memory). During the
training process, the model underwent iterative training utilizing the stochastic gradient
descent (SGD) optimizer to optimize its parameters. A total of 200 rounds of training were
performed, with the batch size set to 16, an initial learning rate of 0.01, the weight decay
parameter set to 0.005, and a momentum parameter of 0.937.

3.3. Evaluation Metrics

To objectively and accurately assess the efficacy of the method proposed in this paper,
the algorithm is evaluated using metrics including Precision (P), Recall (R), Parameters,
mean Average Precision (mAP), and Frames Per Second (FPS), as illustrated by the follow-
ing formula:

P =
TP

TP + FP
(9)

AP =
∫ 1

0
P(R)dR (10)

mAP =
1
n

n

∑
i=1

APi (11)

R =
TP

TP + FN
(12)

FPS =
1
T

(13)

where TP represents the number of correctly predicted positive samples, FN signifies
the number of incorrectly predicted negative samples, and FP indicates the number of
incorrectly predicted positive samples; AP stands for the accuracy value of a single detected
object, while mAP denotes the average accuracy across all categories, and n denotes the
number of detected categories; T is the model preprocessing time.

4. Experimental Results and Analysis
4.1. Experimental Analysis of Adding the MPDIoU Loss Function

In this paper, the training loss of the enhanced model is contrasted with that of the
original model; the loss curve is shown in Figure 9.
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The x-axis represents the training epoch, while the y-axis represents the value of
the loss function. It is apparent from the figure that the loss value experiences a rapid
decline during the initial period. As the epoch increases, the loss value tends to stabilize.
Furthermore, compared to the loss value of the original network, the loss value of the
improved network is decreased. A lower loss value indicates a more effective model,
suggesting a smaller prediction error across the entire dataset.

Table 2 provides a more intuitive understanding of the influence of the two loss
functions on the model’s performance. The incorporation of the MPDIOU loss function
leads to an enhancement in the model’s recall, signifying an augmentation in the detection
of positive samples by the model. This illustrates that the enhanced model improves the
detection accuracy of the original model.

Table 2. Experimental results with different loss functions.

Model mAP/% FPS P R
AP/%

SUV Sedan Microbus Truck Bus Minivan

CIoU 97.9 78.7 95.3 96.2 97.3 99.4 97.2 95.3 98.7 99.4
MPDIoU 98.2 78.9 95.3 96.5 96.9 99.4 98.5 97.2 99.4 97.9

4.2. Experimental Analysis of Improved Feature Pyramid Networks

To demonstrate more intuitively the impact of the SPPFCSPC-GS module in enhancing
the detection speed of the model, comparison experiments are conducted using different
SPP modules. The experimental findings are detailed in Table 3.

Table 3. Experimental findings for different pyramid pooling structures.

Model FPS Parameters mAP/%

SPPCSPC 78.7 37,304,436 97.9
SPPFCSPC 83.7 31,521,894 97.6

SPPFCSPC-GS 83.5 27,954,886 97.8

As evident from the table, integrating the SPPFCSPC module boosts the model’s
training velocity and decreases the parameter count by 15.5%. However, there is a slight
decrease in the mAP value. Subsequently, the introduction of GSConv convolution in the
SPPFCSPC module not only further decreases the number of parameters of the model by
25.1% but also compensates for the slight decrease in the mAP value. Additionally, the
convergence speed is improved compared to the original structure.

4.3. Overall Analysis
4.3.1. Ablation Experiments

To verify the efficacy of the enhancement strategy outlined in this paper on the network
model, the YOLOv7 algorithm is employed as the baseline model. Ablation experiments are
conducted using the improvement strategy on the BIT-Vehicle dataset, and the outcomes of
these trials are showcased in Table 4, where “

√
” indicates integration into the module (not

integrated into the module otherwise).
According to Table 4, using the MobileNetV3 network to replace the original backbone

network, the accuracy decreases by 0.4% compared to the YOLOv7 model, but the amount
of model parameters decreases by 32.3%, and the FPS increases up to 93.5. It shows that
the MobileNetV3 network can better balance real-time performance and accuracy, making
it easy to subsequently deploy in edge devices. Meanwhile, the neck pyramid structure is
improved, and the lightweight convolutional GSConv is incorporated to further increase
the detection rate. This leads to a 46.0% increase in FPS and a 53.7% reduction in the
number of model parameters in comparison to the primary model. With a decrease in
the number of parameters, the model’s capability to extract features from the data also
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diminishes. However, this ability is improved by incorporating the CA mechanism into
different feature extraction layers. From the group C experiments, it is evident that the
model’s accuracy is enhanced to some extent, albeit with a marginal increase in the number
of parameters. Finally, the MPDIoU loss function is incorporated to further augment the
model’s detection accuracy and enhance its generalization capabilities. Compared with the
original model, there is a minor improvement in accuracy, along with a reduction in the
number of parameters by 52.8% and a 35.2% enhancement in FPS. This not only satisfies
the stringent accuracy demands of the model but also aligns with the necessity to deploy it
on edge devices.

Table 4. Results of the ablation experiments.

Model MobileNetV3 SPPFCSPC-GS CA MPDIoU FPS Parameters mAP/%

YOLOv7 78.7 37,304,436 97.9
A

√
93.5 25,245,010 97.5

B
√ √

114.9 17,273,796 97.3
C

√ √ √
106.4 17,623,636 97.6

D
√ √ √ √

106.4 17,623,636 98.2

4.3.2. Comparison Experiments

To assess the efficacy of the proposed model, this paper conducts comparison exper-
iments with prevalent target detection models such as CenterNet, YOLOv3, YOLOv5m,
YOLOv7 and YOLOv8s. Additionally, to perform a more comprehensive analysis of the
real-time detection performance of the enhanced models, further comparison trials are car-
ried out using different lightweight backbone networks, specifically EfficientFormerv2 and
EfficientVitM0. To maintain consistency in this experiment, all experiments are performed
under identical equipment and environmental conditions, and the specific experimental
results are showcased in Table 5.

Table 5. Comparative experimental findings of different models.

Model mAP/% FPS Parameters/M
AP/%

SUV Sedan Microbus Truck Bus Minivan

CenterNet [36] 95.3 29.5 125.2 96.6 98.8 88.6 99.6 92.1 96.5
YOLOv3 [37] 97.3 78.1 61.6 97.7 99.4 95.3 94.0 98.5 98.8

YOLOv5m [38] 94.3 89.3 25.1 88.6 98.2 97.2 94.0 99.5 88.5
YOLOv7 [14] 97.9 78.7 37.3 97.3 99.4 97.3 95.4 98.7 99.4

EfficientFormerv2-
YOLOv7 [39] 97.8 89.6 25.9 97.9 99.3 96.9 94.4 99.0 99.2

EfficientVitM0-
YOLOv7 [40] 97.7 67.3 24.8 97.8 99.4 96.8 94.5 98.7 99.2

YOLOv8s [41] 94.8 123.3 13.2 88.9 97.7 96.4 93.8 99.5 92.6
Ours 98.2 106.4 17.6 97.4 99.3 98.3 97.0 99.1 97.8

As evident from Table 5, the single-stage unanchored frame CenterNet network has the
highest parameter quantity. The YOLO series network model has a significantly reduced
parameter quantity, but it still cannot meet the need for real-time detection. The YOLOv7
model demonstrates higher accuracy and has a lower model parameter quantity, so this
paper considers YOLOv7 as the initial model for improvement. Compared with YOLOv3
and YOLOv5m, the amount of parameters is reduced by 71.4% and 29.9%, respectively,
while the FPS is enhanced by 36.2% and 19.1%, respectively. In contrast to the most
recent model, YOLOv8s, despite having a slightly larger number of parameters, the model
introduced in this paper is more accurate and can be better applied to real scenarios.
Compared to the lightweight efficient backbone network, the enhanced model presented in
this paper demonstrates superior performance. In summary, the model presented in this
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paper showcases notable strengths in vehicle detection accuracy. The improved model not
only achieves lightweight characteristics but also enhances detection accuracy, striking a
better balance between detection precision and speed. This serves to further confirm the
efficacy and trustworthiness of the algorithm proposed within this paper.

5. Conclusions

Due to the extensive number of parameters within the target detection model and
the complexity of computations within the traffic scene, this paper proposes a lightweight
design inspired by the original YOLOv7 model. The backbone network’s lightweighting
is enhanced by incorporating the MobileNetV3 module, followed by substituting con-
ventional convolutions in the neck structure with GSConv, thereby further reducing the
model’s parameter count. To mitigate any potential decrease in model accuracy resulting
from lightweighting, the model’s feature extraction capability is optimized by integrating
the CA mechanism into the feature layer. This enhancement serves to improve the model’s
overall detection performance. The loss function CIoU is substituted with MPDIoU to
further refine the model’s training process and enhance classification accuracy. The ex-
perimental results indicate that, in contrast to the primitive YOLOv7 and other detection
models, the improved model reduces the number of parameters in the model and im-
proves the detection speed without compromising detection accuracy. The model achieves
an exceptional equilibrium between detection accuracy and speed, a trait that renders it
highly compatible for deployment in resource-limited embedded devices scenarios and
provides strong support for performance optimization in practical applications, thus laying
a foundation for the realization of intelligent traffic management.

Although the vehicle detection model designed in this paper better balances accuracy
and real-time issues, there are still some aspects to be improved. For instance, the current
dataset contains fewer vehicle categories. If an unlabeled vehicle category is detected, the
model may misjudge. Subsequent research will focus on expanding the data categories to
further improve experimental scenarios.

If the model is employed for the direction of autonomous driving, it can assist in
improving the reaction speed and accuracy of autonomous driving vehicles. However,
in actual application scenarios, there are still numerous limitations. Complex lighting
conditions, severe vehicle occlusion, and different monitoring perspectives will affect the
detection performance of the model. Therefore, it is crucial to consider a range of complex
or extreme environmental factors prior to actual deployment to ensure that the model can
better handle unexpected situations and complex traffic environments.
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Abbreviations

ITS Intelligent Traffic System
SSD Single-Shot MultiBox Detector
YOLO You Only Look Once
YOLOv7 You Only Look Once version 7
GSConv Generalized-Sparse Convolution
CA Coordinate Attention
MPDIoU Minimum Point Distance Intersection over Union
CIoU Complete Intersection over Union
SPP Spatial Pyramid Pooling
REPcon Reparameterized convolution
SPPF Spatial Pyramid Pooling-Fast
SPPFCSPC Spatial Pyramid Pooling Fast Cross-Stage Partial Channel

SPPFCSPC-GS
Spatial Pyramid Pooling Fast Cross-Stage Partial Channel-Generalized Sparse
Convolution

CNN Convolutional Neural Network
SE Squeeze and Excite
DW Depthwise
PW Pointwise
CBAM Convolutional Block Attention Module
DIoU Distance Intersection over Union
P Precision
R Recall
mAP mean Average Precision
FPS Frames Per Second
SGD Stochastic Gradient Descent
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