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Abstract: For the development of an idyllic rural landscape, an accurate survey of rural buildings
is essential. The extraction of rural structures from unmanned aerial vehicle (UAV) remote sensing
imagery is prone to errors such as misclassifications, omissions, and subpar edge detailing. This
study introduces a multi-scale fusion and detail enhancement network for rural building extraction,
termed the Multi-Attention-Detail U-shaped Network (MAD-UNet). Initially, an atrous convolutional
pyramid pooling module is integrated between the encoder and decoder to enhance the main
network’s ability to identify buildings of varying sizes, thereby reducing omissions. Additionally, a
Multi-scale Feature Fusion Module (MFFM) is constructed within the decoder, utilizing superficial
detail features to refine the layered detail information, which improves the extraction of small-sized
structures and their edges. A coordination attention mechanism and deep supervision modules are
simultaneously incorporated to minimize misclassifications. MAD-UNet has been tested on a private
UAV building dataset and the publicly available Wuhan University (WHU) Building Dataset and
benchmarked against models such as U-Net, PSPNet, DeepLabV3+, HRNet, ISANet, and AGSCNet,
achieving Intersection over Union (IoU) scores of 77.43% and 91.02%, respectively. The results
demonstrate its effectiveness in extracting rural buildings from UAV remote sensing images across
different regions.

Keywords: deep learning; U-Net; unmanned aerial vehicle remote sensing images; rural buildings

1. Introduction

The construction of beautiful rural areas is a significant aspect of China’s rural re-
vitalization strategy. Accurate surveying and investigation of rural buildings facilitate
more effective rural planning and the development of livable and productive, beautiful
rural areas [1]. The primary methods for extracting buildings from high-spatial-resolution
remote sensing images are categorized into classical computer vision methods and ma-
chine learning methods. Classical computer vision methods, such as edge detection [2]
and region-based segmentation algorithms [3], primarily extract buildings by analyzing
intuitive features like shape, spectrum, and texture in remote sensing images. Meanwhile,
machine learning methods, including random forests [4] and support vector machines
(SVMs) [5], automatically identify buildings by learning complex features from image data.
While these methods can effectively identify and learn from large datasets, their success is
highly reliant on domain expertise in remote sensing and extensive practical experience
in feature selection. With high-spatial-resolution remote sensing images becoming ever
more complex and detailed, both classical computer vision and machine learning meth-
ods encounter significant challenges in enhancing extraction accuracy, automation, and
processing speed [6].
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In recent years, deep learning algorithms have gained prominence in applications such
as image classification, object detection, and semantic segmentation [7]. Their powerful
feature extraction and recognition capabilities have led to revolutionary progress in the
automatic extraction of ground information from remote sensing images. In 2015, Long
et al. [8] introduced a seminal work in the field of semantic segmentation with the Fully
Convolutional Network (FCN), which replaced the fully connected layers in traditional
Convolutional Neural Networks (CNNs) with convolutional layers, achieving pixel-level
classification of images. The field has since seen the emergence of a series of classic net-
works, such as U-Net [9], PSPNet [10], and the DeepLab series [11–13]. These networks
can autonomously learn complex spectral and texture features in remote sensing images
and automatically extract features of buildings, roads, and other targets [14]. They have
improved segmentation accuracy through various means, including the skip-connection
structure in U-Net that retains details, the pyramid pooling structure in PSPNet that aggre-
gates contextual information at multiple scales, and the Atrous Spatial Pyramid Pooling
(ASPP) module in DeepLab V3+, which uses atrous convolution to expand the receptive
field [15]. Numerous scholars have built upon the design concepts of these traditional
networks and proposed new network architecture modules to enhance semantic segmen-
tation performance for specific tasks. Gong et al. [16] designed a context-aware module
that captures long-range dependencies between building locations using a self-attention
mechanism while extracting multi-scale building features, thus enhancing the model’s
capacity to represent building features. Yu et al. [17] introduced an attention gate module
added to the skip-connection structure of U-Net, which suppresses irrelevant features
and noise in the input image, emphasizing the primary features of buildings. Further
developing U-Net, Yu et al. [18] created the CC-Net module to connect the encoder and
decoder, capturing essential building features, adding multi-scale semantic information to
the network, and using multiple attention gates to model global dependencies between
buildings. Wang et al. [19] presented a global feature information perception module that
addresses the semantic gap between low-level and high-level features and utilizes a spatial
attention mechanism, improving the model’s interpretation of spatial feature information.
Compared to the CNN-based methods, Transformer-based methods are more adept at
handling long-range dependencies in images. Gibril et al. utilized the self-attention mech-
anism in Transformers, which allows the model to consider information from the entire
image when processing each image patch, effectively capturing global dependencies [20].
Chen et al. proposed a Transformer-based dual-branch network called ADF-Net, which not
only enhances the recognition of building features and the expression of spatial informa-
tion but also captures global dependencies between buildings effectively [21]. Although
Transformer-based methods have shown strong performance in image segmentation tasks,
they generally require more computational resources and larger training datasets to achieve
optimal performance. Therefore, when selecting a suitable method for a specific remote
sensing image processing task, it is important to consider the model’s complexity, training
cost, and execution efficiency comprehensively. Future research could explore combining
Transformers and CNNs and finding ways to reduce their computational demands while
maintaining model performance. This will be crucial for achieving efficient and accurate
surveying of rural buildings.

Although numerous researchers have investigated the semantic segmentation of
buildings in high-spatial-resolution remote sensing images and have achieved favorable
results in urban building extraction, there is limited research on the extraction of rural
buildings in different provinces of China, which feature various construction styles [22].
Compared to urban areas, rural buildings in different regions exhibit diverse backgrounds,
and building structures and layouts can vary significantly due to differences in geographical
landscapes and cultural practices. This variation presents challenges in automatic building
extraction [23,24] and may lead to issues such as omissions, incorrect extractions, and
unclear boundaries between buildings [25]. To address these issues and challenges, this
study proposes an improved network based on U-Net, the Multi-attention-Detail U-shaped
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Network (MAD-UNet), which integrates multi-scale contextual information with detail
feature enhancement through the design of Multi-scale Fusion Modules and Detail Feature
Extraction Modules (DFEM). This integration optimizes the extraction of building edges
and addresses the issue of building boundary adhesion in the extraction of rural buildings
across different regions. Additionally, a pyramid pooling structure with atrous convolution
is introduced to enhance the feature extraction ability of the backbone network. A Cascade
Multi-Scale Coordinate Attention (CMSCA) module is designed to enhance attention to
multi-scale semantics and spatial information, thereby reducing the occurrence of missed
and incorrect segmentations during the extraction of rural buildings in various regions.
Furthermore, deep supervision is proposed, supervising different levels of features within
the decoder to improve the model’s robustness. This approach makes the model more
suitable for tasks such as building recognition and segmentation in high-spatial-resolution
drone remote sensing images with a spatial resolution of 0.5 m. The main contributions of
this research can be summarized as follows:

(1) We constructed a building image dataset for typical rural areas in China, encompassing
complex extraction scenarios across multiple provinces and various types of buildings
with different layouts;

(2) A novel skip connection structure, CMSCA, has been proposed. This structure extracts
building features from different layers at multiple scales and enhances the global relevance
of the model. It more effectively captures the dependencies between different positions
within the input feature map, emphasizing the model’s focus on crucial information;

(3) A new method for detail feature enhancement has been proposed, involving the reuti-
lization of shallow detail features from the U-Net encoder and the fusion of them with
edge information extracted using the Sobel operator in the decoder. This enhances the
model’s ability to acquire knowledge about edges and detailed information;

(4) MAD-UNet has been tested on a proprietary unmanned aerial vehicle dataset and
the publicly available Wuhan University (WHU) Building Dataset, demonstrating
the rationality and effectiveness of the improved algorithm. The study provides a
scientific reference for extracting rural buildings from high-spatial-resolution remote
sensing images.

The main sections of this article are arranged as follows: Section 2 provides a detailed
introduction to the overall architecture of the MAD-UNet network, the design of the
Multi-scale Feature Fusion Module (MFFM), the design of the CMSCA module, and the
incorporation of the ASPP module and deep supervision mechanism. Section 3 describes
the collection and construction of experimental data and the selection of evaluation metrics.
Section 4 presents the experimental parameter settings, displays the experimental results,
and provides a comparative analysis. Section 5 summarizes the advantages of the network
and prospects for future work.

2. Materials and Methods
2.1. MAD-UNet Network Architecture

The MAD-UNet, building on the U-Net architecture, comprises a multi-scale fusion
module, a detail feature enhancement module, a CMSCA module, and a deep supervision
module. The overall structure of the network is depicted in Figure 1. The multi-scale fusion
module is designed to integrate feature information from various scales and levels, enabling
a more refined abstraction of building features. The detail feature enhancement module
uses the Sobel operator and a gated unit mechanism to extract and refine building edge
information, thereby improving the network’s ability to capture detailed building informa-
tion. Furthermore, the CMSCA module replaces U-Net’s original skip connection structure,
aiming to extract multi-scale information from feature maps and establish long-range
dependencies between feature map pixels. This aids the model in better understanding
pixel relationships.
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Figure 1. MAD-UNet structural diagram.

MAD-UNet comprises two parts: an encoder and a decoder. The encoder uses ResNet50
as the backbone feature extraction network, with the initial 7 × 7 convolution, max pooling,
and the final global average pooling and fully connected layers removed. The first encoding
layer is typically responsible for capturing certain local detail features of buildings, such
as edges, textures, and colors. To enhance the local detail feature information of buildings
and improve the edge extraction effect, MAD-UNet introduces a detail feature enhancement
module. This aims to reuse local feature details from shallow feature layers and fuse them with
certain deep features. Due to repeated downsampling operations, the feature map’s receptive
field increases, but many feature details are lost, and it is difficult to recover global semantic
information using upsampling alone. Therefore, in the skip connections, MAD-UNet employs
a CMSCA module to enhance the model’s semantic expressive capacity for feature extraction,
optimize the semantic differences between shallow and deep feature maps, suppress the
introduction of noise information, and minimize misclassification during multi-scale building
extraction. Lastly, to address the insufficient modeling of building semantic information and
multi-scale information in U-Net, the common ASPP structure is added between the encoder
and the decoder. This addition augments the extraction of multi-scale feature information of
buildings in the backbone feature extraction network. Specific parameters of MAD-UNet are
shown in Table 1.

Table 1. Comprehensive parameter of MAD-UNet model.

Stage Template Output Size

Input 3 × 256 × 256

1
1 × 1Conv + BN + ReLU

64 × 256 × 2563 × Res-Block
CMSCA

2
4 × Res-Block

128 × 128 × 128CMSCA

3
6 × Res-Block

256 × 64 × 64CMSCA

4
3 × Res-Block

512 × 32 × 32CMSCA

Bridge ASPP 1024 × 16 × 16

5
Upsampling

512 × 32 × 32Concat + 1 × 1Conv + BN + ReLU
MFFM1

Deep supervision 3 × 3Conv + BN + ReLU + 1 × 1Conv 2 × 32 × 32
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Table 1. Cont.

Stage Template Output Size

6
Upsampling

256 × 64 × 64Concat + 1 × 1Conv + BN + ReLU
MFFM2

Deep supervision 3 × 3Conv + BN + ReLU + 1 × 1Conv 2 × 64 × 64

7
Upsampling

128 × 128 × 128Concat + 1 × 1Conv + BN + ReLU
MFFM3

Deep supervision 3 × 3Conv + BN + ReLU
2 × 128 × 1281 × 1Conv

8
Upsampling

64 × 256 × 256Concat + 1 × 1Conv + BN + ReLU
MFFM4

Prediction
3 × 3Conv + BN + ReLU

2 × 256 × 2561 × 1Conv
Note: CMSCA represents skip-connection structure; MFFM denotes Multiscale Feature Fusion structure; Conv
indicates convolution operation; BN stands for Batch Normalization; Concat stands for the concatenation operation.

2.2. ASPP Structure

In remote sensing imagery, the variance in building sizes can lead to the omission of
small buildings during semantic segmentation. To improve the model’s ability to recognize
buildings of varying scales, an ASPP module is incorporated between the encoder and de-
coder. Atrous convolution is employed to expand the convolution kernel’s effective field of
view [26], while parallel multi-branch structures enhance contextual semantic information,
thus improving segmentation performance [27]. However, overly large atrous rates may
lead to the loss of local feature information [28]. Consequently, smaller atrous rates (1, 3,
5, 7) were selected for the atrous convolutions to better capture building features across
different scales and enhance the network’s contextual awareness. Drawing inspiration from
the residual structure of ResNet [29], a residual structure has been incorporated into the
ASPP, as illustrated in Figure 2. This approach allows the network to learn new features
while preserving low-level information, preventing the loss of bottom-layer features and
reducing the risk of exploding or vanishing gradients during the training of deep networks.
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2.3. MFFM Module

In the U-Net encoder, multiple pooling operations are used to expand the receptive
field, which enhances the model’s capability to represent global features and semantics.
However, these operations also reduce the spatial resolution of the image. Consequently,
effectively recovering the spatial information lost during the downsampling process is
difficult when relying solely on upsampling in the decoder [30,31]. To improve U-Net’s
ability to reconstruct the local structure and fine details of buildings during the upsampling
process, an MFFM and a Detail Feature Extraction Module (DFEM) have been designed.
With the exception of MFFM1, which retains only the skip-connection part, the overall flow
of a single MFFM is shown in Figure 3. Here, Ei, where i ∈ (2, 3, 4), represents the features
from the 2nd, 3rd, and 4th layers of the encoder. Di, where i ∈ (2, 3, 4), corresponds to
the decoder feature layers associated with Ei, and Fi, where i ∈ (2, 3, 4), denotes the detail
features extracted from Ei. Ei and Di are linked by skip connections, then multiplied and
added to Fi. The optimized features then proceed to the next MFFM module.
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To enhance the model’s learning capability for building boundaries and local texture
features, a Detail Enhancement Module was designed to amplify the detail features from
the shallow layers in the encoder and to integrate these optimized features with the features
from various levels within the decoder. The workflow of the Detail Enhancement Module
is depicted in Figure 4, comprising two branches. The shallow features within the encoder
capture the most basic details, such as edges, textures, and colors. In the first branch,
the first-layer feature E1 of the encoder is processed through three sets of convolutions of
different sizes to extract multi-scale detail features. The feature map E1 first goes through a
5 × 5 convolution to obtain feature F1, which is then added to E1 and further processed
through a 3 × 3 convolution to obtain feature F2. Subsequently, F2 is added to F1, and the
result undergoes a 1 × 1 convolution in the third branch, resulting in feature F3. Features
F1, F2, and F3 are concatenated to obtain the multi-scale detail features F4. Finally, F4 is
processed through convolutional layers consisting of a set of three 3 × 3 convolutions,
two sets of double 3 × 3 convolutions, and three sets of triple 3 × 3 convolutions, to yield
features Mi, where i ∈ (1, 2, 3). The specific calculation process is as follows:

F1 = Conv5 ×5(E1) (1)

F2 = Conv3×3(E1 + F1) (2)

F3 = Conv1×1(F + F2) (3)

F4 = Concat(F1 + F2 + F3) (4)
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where Conv represents the convolution operation and Concat represents the concatena-
tion operation.
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Due to the Sobel operator also extracting edge information of ground objects other than
buildings, a gate unit is introduced to adjust the threshold value θ, which filters out weaker
edge information as shown in Equation (5), resulting in edge features G. Following the same
computational process used for extracting feature map E1, multi-scale edge features F5 are
obtained. F5 is then processed in parallel through a set of three 3 × 3 convolutions, two sets
of double 3 × 3 convolutions, and three sets of triple 3 × 3 convolutions to produce features
Ni, where i ∈ (1, 2, 3). Subsequently, the corresponding dimensional features Mi and Ni are
multiplied and then added together, before being concatenated along the channel dimension
to produce three sets of detail features with different dimensions. Finally, three groups of 1 × 1
convolutions are applied to adjust the number of channels, thereby outputting the enhanced
edge detail features Di, where i ∈ (1, 2, 3), as shown in Equation (6).

G =

{
G(x, y), G(x, y) ≥ θ

0, G(x, y) < θ
(5)

Di = Conv1×1(Concat(Ni · Mi, Ni + Mi)) (6)

where θ ∈ (0, 1) represents the threshold value for the gate unit and Conv represents the
convolution operation.

2.4. CMSCA Module

U-Net uses skip connections to reuse shallow features, but this method is a simple con-
catenation that ignores the semantic differences between shallow and deep features [32,33].
Consequently, this can introduce noise interference and affect the model’s segmentation
performance. To further optimize the semantic differences between features of the same
depth, reducing misclassification and missing classification phenomena, this research de-
velops a new skip-connection structure named CMSCA. This structure extracts building
feature information from multiple scales to enhance the network’s understanding of the
data (Figure 5). By employing convolution at different scales, multi-scale feature informa-
tion of buildings in shallow features is extracted and fused incrementally, preserving the
semantic characteristics of targets at various scales more effectively. The CMSCA structure,
inspired by the coordinated attention mechanism [34], establishes long-range dependencies
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between pixels. This allows the network to comprehensively integrate multi-scale feature
information while enhancing the model’s ability to perceive key features of buildings.
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Assuming that the input feature map F has the dimensions C × H × W (Channel
× Height × Width), the feature map is processed through branch one with a 5 × 5 convolu-
tion to obtain the feature F1. After adding F1 to F, the result is passed through branch two
with a 3 × 3 convolution to obtain the feature F2. Subsequently, F2 is added to F, and this
output goes through branch three with a 1 × 1 convolution, resulting in the feature F3. The
specific calculation process is expressed as follows:

F1 = Conv5 ×5(F) (7)

F2 = Conv3×3 (F + F1) (8)

F3 = Conv1×1(F + F2) (9)

In branch four, the feature map F is first subjected to global average pooling separately
along the width and height dimensions, generating features X and Y. After X and Y are
concatenated, they go through convolution, normalization, and activation functions to
produce a new feature F4, as shown in Equation (10).

F4 = Conv[Concat( fAVG(X), fAVG(Y))] (10)

The feature F4 is split once more along the width and height to produce features X1
and Y1. These features then undergo convolution and transpose operations, followed by
channel adjustment via a 1 × 1 convolution. A sigmoid function is applied to obtain weight
information for both width and height. These weights are then utilized in a multiplication
operation with the original feature map F to produce the feature F5, which emphasizes key
information. This procedure is detailed in Equation (11).

F5 = fsigmoid[Conv(X1)]× fsigmoid[Conv(Y1)]× F (11)
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Finally, by concatenating features F1, F2, F3, and F4 and then passing them through
a 1 × 1 convolution to adjust the number of channels, the optimized output result Out
Feature is obtained. This process is described in Equation (12).

OUT_Feature = Conv[Concat( F1, F2, F3, F4))] (12)

where Conv denotes the convolution operation; Concat stands for the concatenation operation;
fsigmoid represents the sigmoid function; and fAVG signifies the average pooling operation.

2.5. Deep Supervision Mechanism

The commonly used Cross Entropy Loss Function in semantic segmentation [35] is
employed to calculate the loss between the predicted outcomes and the ground truth, as
shown in Equation (13).

Loss = − 1
N ∑

i
[yilog(pi) + (1 − yi)log(1 − pi)] (13)

where yi represents the true value of the pixel; pi indicates the predicted value of the pixel;
and N denotes the total number of pixels.

To enhance the model convergence, explore the similarities and differences between
pixels, and mitigate issues such as gradient vanishing and explosion in deep networks
when dealing with small datasets, a deep supervision mechanism [36] is introduced. This
mechanism takes different scale predictions from various stages of MFFMs (i.e., MFFM4,
MFFM3, MFFM2, and MFFM1). It employs cascading addition and upsampling operations
on the output feature maps to progressively restore the feature map to the original image
size. Namely, the feature output from MFFM4 is upsampled and then added to the output
from MFFM3, and the feature from MFFM3 is upsampled again and added to the output
from MFFM2. After restoring the final output to the original image size, the loss between
the ground truth and the labels is calculated through the cross-entropy loss function, and
the network parameters are updated through backpropagation. The specific structure of
the deep supervision module is illustrated in Figure 6.
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3. Datasets and Evaluation Metrics
3.1. Dataset
3.1.1. WHU Building Dataset

The WHU Building Dataset is composed of aerial and satellite datasets [37]. The aerial
imagery data are sourced from the Land Information New Zealand (LINZ) website, cover-
ing approximately 450 km2 of Christchurch, New Zealand, with around 22,000 independent
buildings. The spatial resolution is 0.3 m. Due to its wide coverage, high quality, and
substantial quantity, it has become one of the most popular datasets in the remote sensing
building extraction field. The aerial image dataset contains a total of 8189 images of size
512 × 512, including 4736 training images, 1036 validation images, and 2416 test images.
To accelerate training and improve the generalization ability of models, data augmentation
techniques are used to expand the sample size. These include horizontal flipping, vertical
flipping, horizontal and vertical flipping, random erasure, brightness transformations, etc.
Images are resized to 256 × 256 pixels for processing. A portion of the WHU Building
Dataset is illustrated in Figure 7.
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3.1.2. UAV Dataset

Unmanned Aerial Vehicles (UAVs) can swiftly and accurately capture high-resolution
remote sensing imagery of small areas. The UAV remote sensing data used in the study
were taken by a DJI Matrice 300 drone in 2022, during various seasons. Rural architecture
primarily comprises residences, granaries, and livestock sheds, which vary in shape and
material composition against a diverse background. The residences are mostly one- to two-
story brick and concrete buildings, featuring roofs covered in tiles or steel sheets. Granaries
and livestock sheds often utilize simple steel frame structures with external coverings of
steel or canvas and are irregular in shape. The imagery exhibits phenomena of the same
spectrum for different substances and different spectra for the same substance, which is
adverse for traditional remote sensing classification algorithms to extract buildings. The
experiment selected 15 scenes of 24-bit depth Tagged Image File (TIF) format images with a
spatial resolution of 0.5 m from five provinces spanning north to south China—Jilin, Hebei,
Hubei, Jiangsu, and Guangxi—encompassing a total land area of 22,036,480 m2.

To accelerate training and enhance the model’s generalization ability, data augmen-
tation techniques were employed to expand the sample set. These techniques include
horizontal flipping, vertical flipping, both horizontal and vertical flipping, random erasure,
and brightness transformation. Each image was segmented into 256 × 256 pixel tiles,
resulting in a total of 6140 images (Figure 8). Finally, the images were annotated using
Labelme (3.16.7) software to generate 8-bit depth mask images, and the samples were
divided in a 3:1:1 ratio into a training set of 3684 images, a validation set of 1228 images,
and a testing set of 1228 images.
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Compared to the WHU Building Dataset, the experimental self-constructed dataset
features a selection of rural buildings with diverse shapes, sizes, and structures. The
style and background are more in line with the architectural characteristics of China’s
rural areas. It is common to observe trees obscuring low-rise buildings, and numerous
rooftops are constructed using materials such as cement slabs and tiles, which share
spectral features similar to rural cement roads. The variety of architectural styles and
backgrounds necessitates that the building extraction algorithms possess greater specificity
and generalizability to effectively identify buildings of various sizes and to eliminate
background noise. Therefore, the remote sensing images selected for this study are close to
reality, better demonstrate the effectiveness of algorithms, and facilitate the application of
building extraction techniques in complex rural scenarios.

3.2. Evaluation Metrics

The performance of the network in extracting buildings is assessed using four common
semantic segmentation metrics: Precision, Recall, F1-score, and Intersection over Union
(IoU). Precision is the ratio of the number of correctly predicted positive samples to the total
number of samples predicted as positive. It measures the model’s accuracy in classifying
positive samples, i.e., the network’s precision in recognizing buildings. Recall is the ratio of
the number of correctly predicted positive samples to the total number of actual positive
samples, which measures the network’s ability to correctly identify buildings. The F1-score
is an indicator that takes into account both precision and recall to evaluate the network’s
overall effectiveness in building recognition tasks. IoU is the ratio of the intersection to the
union of the model’s predicted segmentation results and the actual segmentation results,
representing the degree of overlap between the predicted segmentation and the actual
segmentation. The specific formulas are as follows:

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

F1-score =
2 × precision × recall

precision + recall
(16)

IoU =
TP

TP + FP + FN
(17)

where TP (True Positive) represents the number of building pixels correctly extracted by
the network; FP (False Positive) represents the number of background pixels misclassified
as building pixels; and FN (False Negative) represents the number of building pixels
misclassified as background pixels.
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4. Discussion
4.1. Experimental Environment and Parameter Settings

The experimental environment was set up on a 64-bit Windows 11 operating system,
with a CPU of 13th Gen Intel(R) Core(TM) i7-13700KF and a GPU of GeForce RTX 4070
(with 12 GB of video memory). The programming environment was Python 3.10, mainly
utilizing open-source Python libraries such as PyTorch 11.8, NumPy, and Matplotlib.

The hyperparameter settings for the experiments are outlined as follows: The GPU’s
batch size was set to 4, with a decay strategy of cosine annealing, and the Adam (Adaptive
Moment Estimation) optimizer was used. The initial learning rate was set to 0.0001, and the
model was trained for a total of 200 epochs. Additionally, to improve training efficiency and
prevent overfitting, an early stopping strategy was introduced. This involved monitoring
the model’s performance on the validation set and halting training if the performance
evaluation index did not improve for more than 15 rounds. Lastly, we utilized color space
transformation as a data augmentation technique to improve the model’s generalization
ability and robustness.

4.2. Experiment Results
4.2.1. Building Extraction Results for UAV Dataset

Figure 9 shows the building extraction results of MAD-UNet on the UAV dataset.
In this study, typical images from rural areas in different provinces were selected for
testing to verify the effectiveness of MAD-UNet in extracting buildings from various rural
regions. From the (a), (b), and (c) scenarios, MAD-UNet demonstrates excellent recognition
performance for medium to large buildings, being able to extract most buildings completely
and effectively segment the gaps between buildings, while avoiding noise interference from
trees, shadows, and other elements between buildings in the background. When dealing
with small buildings, especially in dense and cluttered scenes, as shown in the (e) and (d)
scenarios, MAD-UNet can accurately retrieve the spatial location of buildings, preventing
most cases of misclassification and missed detection.

Table 2 presents the quantitative results of building extraction in rural areas by MAD-
UNet across different regions. For the evaluation, thirty images were randomly selected
from each of the five provinces—Jilin, Hebei, Hubei, Jiangsu, and Guangxi—and were
divided into five groups representing rural scenes from different geographical locations.
The average Precision, Recall, F1-Score, and IoU were calculated for images in each region
to carry out the quantitative assessment. The results indicated that the Precision metric for
all five groups tested exceeded 85%, demonstrating that MAD-UNet is capable of accurately
identifying buildings against the complex rural background. Notably, in groups 1, 3, and 4,
where the building size varied and the layout was relatively orderly, IoU surpassed 77%.
This suggests that MAD-UNet performs well in recognizing buildings of various scales. In
groups 3 and 5, the IoU metric decreased by 5%, likely because these groups had denser
building distributions with more chaotic layouts and increased noise factors. Furthermore,
the F1-score for all test data maintained above 84%, further validating the robustness and
accuracy of this method in dealing with diverse rural scenes.

Table 2. Quantitative results of the UAV dataset.

Group Precision Recall F1-Score IoU

1 88.19% 91.40% 89.77% 81.44%
2 85.32% 82.97% 84.13% 72.61%
3 86.34% 89.89% 88.07% 78.69%
4 86.81% 82.93% 84.83% 73.65%
5 89.39% 85.92% 87.62% 77.97%
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4.2.2. Building Extraction Results for WHU Building Dataset

Figure 10 displays the extraction results of MAD-UNet on the WHU Building Dataset.
Six images were randomly selected for testing to comprehensively evaluate the model’s
performance. The third column in the figure shows the predictive results of MAD-UNet,
where rows (a)–(c) illustrate that the model effectively segments medium to large buildings,
overcoming the false segmentation phenomenon of internal voids in large buildings caused
by the shadows on their rooftops. In row (c), which contains images without buildings,
MAD-UNet correctly delineates the roads and shadows that share similar spectral informa-
tion with buildings. Rows (d)–(e) showcase the extraction results for small-sized buildings.
MAD-UNet achieved satisfactory segmentation in the presence of noise factors such as trees,
shadows, and roads between buildings. In brief, these results prove that the integration of
multiple scale features in MAD-UNet significantly enhances its ability to model buildings
of various sizes and accurately extract building information amidst various noise factors.
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Figure 10. Extraction results on the WHU Building Dataset: (a,b) Images of large and medium-sized
buildings; (c) Image with trees, shadows, and roads; (d–f) Images of small buildings.

Table 3 quantitatively evaluates the extraction results of MAD-UNet on buildings of
varying sizes. According to different building scales, 30 images of large and medium-sized
buildings with open scenes, and 30 images of small to medium-sized buildings with many
tree shadows were randomly selected from the testing set. In the task of extracting large
and medium-sized buildings, MAD-UNet achieved 96.74% Precision, 96.44% F1-score, and
93.13% IoU; in the task of small to medium-sized building extraction, it achieved 95.08%
Precision, 94.59% F1-score, and 89.74% IoU. The precision of MAD-UNet exceeded 95%,
indicating that the model can accurately differentiate between buildings and non-building
backgrounds in urban areas. Moreover, for both groups of test data, the precision of
buildings was higher than 95%, and the F1-score surpassed 94%, further demonstrating
the model’s high robustness in the face of different scales and densely distributed building
scenes, showcasing its adaptability to complex scenarios.

Table 3. Quantitative results of the WHU Building Dataset.

Group Precision Recall F1-Score IoU

1 96.74% 96.14% 96.44% 93.13%
2 95.08% 94.11% 94.59% 89.74%
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4.3. Comparative Experimental Results

To further validate the capability of MAD-UNet in extracting rural buildings, a com-
parative analysis was conducted against five semantic segmentation networks, including
U-Net [9], PSPNet [10], DeepLabV3+ [15], HRNet [38], ISANet [39], and AGSCNet [18].
Brief introductions to these models are illustrated as follows:

(1) Proposed by Ronneberger et al. [9], U-Net utilizes a skip-connection structure that
links feature maps from the encoder with corresponding feature maps in the decoder. This
allows the network to utilize a richer set of low-level features. It requires less data, trains
quickly, and has been widely applied across various domains for semantic segmentation
tasks, which is why it has been selected as a benchmark model;

(2) PSPNet is a semantic segmentation network introduced by Zhao et al. [10]. Its
core concept is to incorporate a pyramid pooling module, which allows the network to
perceive image information at multiple scales, thereby enhancing its ability to understand
large-scale scenes;

(3) DeepLabV3+ [15] employs atrous convolution to obtain a larger receptive field
without increasing the number of parameters and computational cost. The decoder further
merges low-level and high-level features, effectively handling multi-scale information
while maintaining high resolution. This approach has achieved significant success in many
image segmentation tasks;

(4) Proposed by Sun et al. [38], HRNet maintains multi-scale information across
different branches simultaneously, enabling a more comprehensive understanding of details
and global structures in an image. It is widely used in tasks such as human pose estimation,
keypoint detection, and semantic segmentation;

(5) Introduced by Huang et al. [39], ISANet is aimed at reducing the computational
burden of attention mechanisms. It illustrates an Interlaced Sparse Self-Attention mechanism
that establishes long-range dependencies between pixels in an image to expand the receptive
field. Its effectiveness has been confirmed on multiple semantic segmentation datasets;

(6) AGSCNet [18] builds upon the U-Net architecture by integrating multiple attention
gate modules and a context collaboration network structure. It has achieved good results
in tasks involving the extraction of buildings in various rural areas of China.

4.3.1. Comparison Experiment on UAV Dataset

Figure 11 displays the extraction results from seven different semantic segmentation
models on the private UAV dataset. The analyzed regions are marked by rectangular boxes
in the images, where red boxes signify misclassification issues, yellow boxes point to omis-
sion problems, and blue boxes emphasize unclear demarcations of building boundaries.

Located in northeastern China, Jilin Province endures harsh winters with significant
snowfall, requiring specific architectural adaptations for rural buildings. To prevent snow
accumulation, these structures often have sloping roofs made of corrugated steel, a material
chosen for its durability and ease of maintenance. However, this design leads to a dense
array of similar roofs that, along with the shadows they cast, complicates the delineation
of individual building boundaries. In Figure 11, the blue rectangular box highlights the
issue of unclear building boundaries, with PSPNet demonstrating the poorest performance
in discriminating shadows between buildings. U-Net, DeepLabV3+, HRNet, ISANet,
and AGSCNet show commendable capabilities in distinguishing shadows in larger gaps
between buildings. However, their performance declines with the identification of shadows
in densely spaced buildings.

In northern China’s Hebei Province, rural buildings predominantly feature roofs made
of brick and tile, which present a gray-white hue that resembles the spectra of roads and
courtyard surfaces. This similarity often leads to misclassification errors when distin-
guishing these structures from their surroundings. In Figure 11, the red rectangular box
indicates misclassification issues, with PSPNet, DeepLabV3+, HRNet, ISANet, and AGSC-
Net often mistaking the roads for buildings. While U-Net is proficient at differentiating
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roads from buildings, it may struggle to classify courtyard surfaces accurately within a
quadrangle-style layout, potentially leading to classification errors.
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Central China’s Hubei Province is home to rural buildings with roofs primarily made
from brick and tile. These buildings are typically arranged in a courtyard-style layout,
sparsely distributed across the landscape, and exhibit significant variation in size. The
spectral similarity between the roofing materials and the surfaces of roads or bare ground
often results in misclassification issues. In Figure 11, the red rectangular box depicts
these misclassification issues, with U-Net, DeepLabV3+, HRNet, ISANet, and AGSCNet
incorrectly identifying roads. Additionally, the considerable differences in building sizes
can lead to omissions, as shown in Figure 11, where the yellow rectangular box indicates
that PSPNet, U-Net, DeepLabV3+, HRNet, ISANet, and AGSCNet all show varying degrees
of omission, especially for smaller buildings.

In the eastern coastal Jiangsu Province and the southwestern Guangxi Province, both
of which experience a rainy climate, rural buildings are designed with sloping roofs to
facilitate water runoff. These buildings tend to be smaller and densely clustered, which
often results in omission issues. For scenes in Jiangsu and Guangxi (Figure 11), the yellow
rectangular box points to omission problems where PSPNet, U-Net, DeepLabV3+, HRNet,
ISANet, and AGSCNet all exhibit varying degrees of omission for small and densely
grouped rural buildings.

Table 4 presents the accuracy results of building extraction for the seven networks.
MAD-UNet achieved the highest precision across all four evaluation metrics: Precision, Re-
call rate, F1-score, and IoU, with scores of 88.39%, 86.19%, 87.28%, and 77.43%, respectively.
When compared to the baseline network U-Net, these scores represent improvements of
0.2%, 2.95%, 2.12%, and 2.4%, respectively. This demonstrates that the improved methodol-
ogy proposed in this study effectively enhances model accuracy.
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Table 4. Accuracy comparative results of the UAV dataset.

Model Precision Recall F1-Score IoU

PSPNet 66.51% 45.09% 43.24% 37.51%
HRNet 77.75% 67.03% 63.23% 56.24%

DeepLabV3+ 73.49% 61.90% 67.20% 50.60%
ISANet 75.75% 67.23% 71.24% 55.32%

AGSCNet 86.32% 77.16% 81.49% 68.76%
U-Net 88.19% 83.24% 85.16% 75.03%

MAD-UNet 88.39% 86.19% 87.28% 77.43%

Synthesizing the aforementioned quantitative and qualitative results, in the task of
extracting rural buildings from different areas, MAD-UNet effectively mitigates the influ-
ences of different land covers and shadows, ameliorating misclassification and omissions,
and achieving superior boundary integrity compared to other networks. PSPNet and
DeepLabV3+, using feature pyramid-based approaches aimed at processing features of
varying scales, lacked precision in local information, leading to information loss when ad-
dressing small targets. Therefore, they demonstrated the poorest performance in extracting
small-scale objectives. U-Net and HRNet had fewer omissions and misclassifications in
their extraction results but faced issues with edge adhesion, which blurred boundaries
between adjacent buildings. It is hypothesized that the extensive use of convolutions and
pooling operations in U-Net and HRNet hinders the networks’ ability to accurately restore
the original spatial structure, leading to blurred and adhesive building boundaries. ISANet,
designed to reduce the computational burden of attention mechanisms while establishing
long-range relationships between pixels, excessively focuses on edge connectivity at the
expense of clear delineation between buildings, resulting in boundary adhesion. AGSC-
Net’s CC-Net adopts atrous rates of (1, 6, 12, 18) within ASPP, which for rural small-sized
buildings may be overly large, prompting the model to focus too much on contextual
information and thus neglecting the details of small-scale targets, causing omissions.

4.3.2. Comparison Experiment on WHU Building Dataset

Figure 12 displays the extraction results of the seven semantic segmentation models
on the WHU Building Dataset. Rows 1 to 6 are arranged in ascending order of building
sizes, and areas of interest are identified with rectangular frames—red frames for misclassi-
fication issues, yellow for omissions, and blue for unclear boundary distinctions. PSPNet,
DeepLabV3+, HRNet, ISANet, AGSCNet, and U-Net all experience a certain degree of
misclassification, omission, and unclear boundary demarcation when extracting buildings.
In the first row, buildings within the red frame share similar spectral features with the roads
in the background, leading to misclassification by all algorithms except MAD-UNet. In the
second row, which presents buildings of varying sizes, DeepLabV3+ and HRNet completely
overlook the small building within the yellow frame, while MAD-UNet exhibits a more
complete segmentation of this small building compared to PSPNet, ISANet, AGSCNet,
and U-Net. In the third row, the small building inside the yellow frame is affected by
the surrounding tree shadows, causing a certain degree of omission by all models except
MAD-UNet. For the fourth and fifth rows, MAD-UNet surpasses other models in smoothly
delineating the large building contours within the blue frames, achieving clearer boundary
demarcation between buildings.

Table 5 displays the quantitative comparison results of 10 different semantic segmen-
tation models, among which B-FGC-Net [19], AGs-UNet [17], and Chen’s model [40] are
the latest algorithmic models in the field of building extraction in recent years. MAD-UNet
achieved the optimal values in three evaluation metrics: Precision, F1-score, and IoU. The
performance enhancements of MAD-UNet relative to other models, including PSPNet, HR-
Net, DeepLabV3+, ISANet, AGSCNet, U-Net, B-FGC-Net, Chen’s model, and AGs-UNet,
are detailed in Table 6.
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Table 5. Accuracy comparative results of the WHU Building Dataset.

Model Precision Recall F1-Score IoU

PSPNet 85.48% 51.67% 58.61% 63.58%
HRNet 92.57% 88.83% 90.68% 82.31%

DeepLabV3+ 93.11% 92.99% 93.05% 85.66%
ISANet 89.23% 82.47% 75.89% 85.72%

AGSCNet 94.20% 92.94% 93.55% 87.97%
U-Net 87.39% 90.06% 91.53% 87.39%
Chen’s 93.25% 95.56% 94.40% 89.39%

B-FGC-Net 95.03% 94.49% 94.76% 90.04%
AGs-UNet 93.70% - - 85.50%

MAD-UNet 95.98% 94.64% 95.31% 91.02%
Note: “-” indicates that the original literature did not provide the data.

Table 6. Quantitative Performance Gains of MAD-UNet Over Other Models.

Model Precision Recall F1-Score IoU

PSPNet +10.5% +42.97% +36.7% +27.44%
HRNet +3.41% +5.81% +4.63% +8.71%

DeepLabV3+ +2.87% +1.65% +2.26% +5.36%
ISANet +6.75% +12.17% +19.42% +5.30%

AGSCNet +1.78% +1.70% +1.76% +3.05%
U-Net +8.95% +4.58% +3.78% +3.63%
Chen’s +2.73% −0.92% +0.91% +1.63%

B-FGC-Net +0.95% +0.15% +0.55% +0.98%
AGs-UNet +2.28% - - +5.52%

Note: “-” indicates that the original literature did not provide the data.
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A Precision of 95.98% indicates that there are fewer mistakes among pixels labeled as
buildings, an IoU of 91.02% shows that the segmentation structures match the actual real
building locations, and an F1-score of 95.31% reflects a well-balanced trade-off between
Precision and Recall rate, demonstrating high overall performance. It further validates
quantitatively the robustness of MAD-UNet, confirming its capability to handle building
extraction tasks in a variety of complex scenarios.

4.4. Melting Experimental Results

To evaluate the effectiveness of each component in MAD-UNet, ablation studies were
conducted with different combinations of modules, including DEM, MFFM, ASPP, and
CMSCA. Because MFFMs and DEMs need to be utilized together, they were grouped
into one experimental group, yielding a total of four groups for the ablation experiments.
ResNet50 served as the backbone feature extraction network for each group.

The experimental results are presented in Table 7. In Experiment 2, which incorporated
only the ASPP module, there were improvements in the Recall rate and F1-score, but
the increase in false positives resulted in a decrease in Precision and IoU. This suggests
that employing only the ASPP module has its limitations. Although ASPP can broaden
the receptive field by integrating multi-scale context information, the influx of excessive
background information caused model misjudgments. Experiment 3, which added the
MFFM module to the setup of Experiment 2, demonstrated increases of 0.97%, 1.53%, and
1.27% in Precision, Recall rate, and F1-score, respectively. This indicates that the addition
of MFFM significantly boosts the model’s ability to identify positive samples. An IoU
increase of 1.95% also suggests that the model’s predictions are more aligned with the
actual targets. By merging multi-scale features and enhancing details, MFFM effectively
captures the complex structures and intricate features of buildings, thus improving the
model’s precision in recognizing and locating positive samples. In Experiment 4, which
integrated the CMSCA module into Experiment 3, there was a slight decrease in Precision.
However, there were increases of 1.39%, 0.57%, and 0.89% in Recall rate, F1-score, and IoU,
respectively. This indicates that incorporating the CMSCA module into the skip connections
of MAD-UNet enables the model to effectively capture both global and local information,
bridging semantic gaps with deep feature maps. The coordinated attention mechanism
introduced helps to suppress ineffective noise and enhances the model’s resilience to
interference. This makes the model more adaptable to complex environments and more
precise in focusing on target areas, thus improving its ability to identify positive samples.
In Experiment 5, based on Experiment 4, the ASPP module was removed. This led to
decreases in Recall, F1-score, and IoU, particularly in the Recall rate, which suggests a
weakened ability of the model to identify positive samples. Compared with Experiment
4, the overall decrease in Recall rate, F1-score, and IoU, along with the reduced Precision,
further supports the notion that while the ASPP module bolsters the model’s capacity to
recognize multi-scale features, it also introduces some noise from the background. This
leads to certain misjudgments and results in a slight decrease in precision.

Table 7. Accuracy comparative results of melting experiment.

No.
Module Evaluation Metric

ASPP CMSCA MFFM Precision Recall F1-Score IoU

1 88.19% 83.24% 85.16% 75.03%
2

√
87.73% 83.27% 85.44% 74.59%

3
√ √

88.70% 84.80% 86.71% 76.54%
4

√ √ √
88.39% 86.19% 87.28% 77.43%

5
√ √

88.75% 84.65% 86.65% 76.45%
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5. Conclusions

To tackle the challenges of misclassification, omissions, and suboptimal edge extrac-
tion in rural residential structures identified within high-resolution UAV remote sensing
images, an enhanced network model built upon the U-Net framework, named MAD-UNet,
was introduced. This model integrates ResNet50 and atrous convolutional pyramid pooling
in the decoder to enhance the extraction of global and multi-scale features. It also utilizes
a cascade multi-scale convolution module and a coordinated attention mechanism in the
skip connections to bridge semantic gaps at equivalent feature map depths and to mitigate
irrelevant background noise. The decoder combines MFFMs and DEMs to ensure a com-
prehensive representation of the semantic information of buildings while preserving detail
features. The model was tested on 0.5 m resolution UAV aerial images taken across different
seasons in 2022 from various provinces in China, including Jilin, Hebei, Hubei, Jiangsu,
and Guangxi, and on the publicly accessible WHU Building Dataset. Comparative analyses
were performed with models such as U-Net, PSPNet, HRNet, DeepLabV3+, ISANet, and
AGSCNet. MAD-UNet demonstrated enhancements in reducing misclassification and
omissions, as well as in boundary extraction, with Precision, Recall rate, F1-score, and
IoU achieving 88.39%, 86.19%, 87.28%, and 77.43%, respectively. Ablation experiments
further verified the contribution of the ASPP, CMSCA, and MFFM modules to the overall
efficacy of the MAD-UNet model. The research findings attest that the MAD-UNet model
can effectively address issues of missed detection, false detection, and boundary adhesion
in the extraction of rural buildings across diverse regions of China. Moreover, the model
proves to be apt for the extraction of rural buildings in these varied geographical areas.
However, the MAD-UNet model is computationally intensive due to its intricate structure.
Future efforts will be directed towards simplifying the model through methods such as
distillation and pruning [41] to diminish its complexity, reduce the number of parameters,
and shorten training duration. Additionally, semi-supervised learning [42] will be explored
to fortify the model’s generalization ability by incorporating more unlabeled data, thereby
improving its adaptability to complex settings. This strategy aims to facilitate the efficient
deployment of the MAD-UNet model in practical applications with constrained computa-
tional resources and to enhance its proficiency in processing novel scenes. The goal is to
deliver a reliable technological approach for rural building extraction tasks that effectively
balances performance and efficiency.
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