
Citation: Umer, A.; Ali, M.; Jehangiri,

A.I.; Bilal, M.; Shuja, J. Multi-Objective

Task-Aware Offloading and

Scheduling Framework for Internet of

Things Logistics. Sensors 2024, 24,

2381. https://doi.org/10.3390/

s24082381

Academic Editor: Muhammad

Gulistan

Received: 29 December 2023

Revised: 9 March 2024

Accepted: 13 March 2024

Published: 9 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Multi-Objective Task-Aware Offloading and Scheduling
Framework for Internet of Things Logistics
Asif Umer 1,* , Mushtaq Ali 1,*, Ali Imran Jehangiri 1, Muhammad Bilal 2 and Junaid Shuja 3

1 Department of Computer Science & Information Technology, Hazara University, Mansehra 21130, Pakistan;
ali_imran@hu.edu.pk

2 School of Computing and Communications, Lancaster University, Bailrigg LA1 4YW, UK; m.bilal@ieee.org
3 Department of Computer and Information Sciences, Universiti Teknologi PETRONAS,

Seri Iskandar 32610, Malaysia
* Correspondence: asifumer@hu.edu.pk (A.U.); mushtaq@hu.edu.pk (M.A.)

Abstract: IoT-based smart transportation monitors vehicles, cargo, and driver statuses for safe
movement. Due to the limited computational capabilities of the sensors, the IoT devices require
powerful remote servers to execute their tasks, and this phenomenon is called task offloading.
Researchers have developed efficient task offloading and scheduling mechanisms for IoT devices to
reduce energy consumption and response time. However, most research has not considered fault-
tolerance-based job allocation for IoT logistics trucks, task and data-aware scheduling, priority-based
task offloading, or multiple-parameter-based fog node selection. To overcome the limitations, we
proposed a Multi-Objective Task-Aware Offloading and Scheduling Framework for IoT Logistics
(MT-OSF). The proposed model prioritizes the tasks into delay-sensitive and computation-intensive
tasks using a priority-based offloader and forwards the two lists to the Task-Aware Scheduler (TAS)
for further processing on fog and cloud nodes. The Task-Aware Scheduler (TAS) uses a multi-criterion
decision-making process, i.e., the analytical hierarchy process (AHP), to calculate the fog nodes’
priority for task allocation and scheduling. The AHP decides the fog nodes’ priority based on
node energy, bandwidth, RAM, and MIPS power. Similarly, the TAS also calculates the shortest
distance between the IoT-enabled vehicle and the fog node to which the IoT tasks are assigned
for execution. A task-aware scheduler schedules delay-sensitive tasks on nearby fog nodes while
allocating computation-intensive tasks to cloud data centers using the FCFS algorithm. Fault-tolerant
manager is used to check task failure; if any task fails, the proposed system re-executes the tasks,
and if any fog node fails, the proposed system allocates the tasks to another fog node to reduce the
task failure ratio. The proposed model is simulated in iFogSim2 and demonstrates a 7% reduction
in response time, 16% reduction in energy consumption, and 22% reduction in task failure ratio in
comparison to Ant Colony Optimization and Round Robin.

Keywords: analytical hierarchy process (AHP); computation-intensive tasks; delay-sensitive tasks;
energy consumption; IoT task offloading & scheduling; smart transportation of logistics; task-aware
scheduler; fault-tolerant manager

1. Introduction

The Internet of Things (IoT) is a setup of physical objects monitoring an environment
using millions of sensor devices to produce large amounts of data and tasks. Due to limited
battery power, storage, and processing capabilities, IoT tasks must be executed on remote
servers to meet certain quality of service (QoS) requirements. Thousands of IoT devices
(sensors) are connected to the internet for the purpose of communicating with servers and
among themselves. However, there is a dire need for services that are near the IoT device
and provide computation and storage facilities to the IoT devices and sensors [1]. One such
scenario is for IoTs that monitor logistics. Figure 1 depicts the IoT logistics transportation
vehicle information communication with logistic control and monitoring offices.
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IoT devices and sensors often have storage, processing, and energy consumption
shortcomings due to their small structures. To address these issues, IoT tasks and data
are offloaded to the cloud and fog for service provisioning, reducing energy consumption
and execution costs [2]. Cloud is one of the best solutions to storing and executing IoT
device data. However, the time delay impedes the use of the cloud in delay-sensitive
applications [3]. In this research, IoT-enabled vehicles are the focus, as they enable the
efficient and reliable delivery of goods and materials. The IoT devices in these vehicles
generate various types of data, ensuring a smooth and efficient journey for goods and
vehicles. The IoT logistic vehicles generate a huge amount of data while monitoring the
fleet on a real-time basis using sensors.

For this, a combination of cloud and fog can be used to meet the QoS requirements of
the IoT devices. Cloud computing is a distributed model that is used for heavy computation
and storage. But due to the distant nature of the cloud, high response times are experienced
when offloading IoT devices. IoT devices can bring fog computing into service to bring
cloud services nearby to the edge of the network. Fog nodes remove the limitations of cloud
services, such as high response times [4,5]. IoT devices require high processing, energy,
and storage capabilities due to their small sensors. To meet QoS requirements, they need to
execute tasks on remote servers. To improve traffic flow and expedite freight movement,
IoT logistics need efficient task offloading and scheduling strategies [6]. With ten-billion
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connected IoT devices installed and expected to grow to twenty-two billion in the next five
years, this research aims to develop an efficient IoT logistics task offloading and scheduling
model to reduce energy, task failure ratio, and response time [7].

To make the logistics process smooth and to monitor the fleet of organizations in real
time, we need IoT sensors to be placed in vehicles to make the freight move smoothly. For
this purpose, many companies are using IoT devices in logistics transportation to monitor
the delivery of goods on a real-time basis, and by doing so, client satisfaction levels can be
increased. Recently, IoT logistics have captured the attention of researchers, and billions of
devices are expected to be installed in vehicles in the future. So, the IoT sensors have fewer
computational resources to execute the tasks locally. Many IoT devices need to offload
tasks to compute-in-reach servers, such as GPS sensors, tire pressure sensors, temperature
sensors, front cameras, back cameras, etc. Front and back cameras of the IoT-enabled
vehicles need image- and machine learning-based algorithms to process the data. Due to
the limited computation resources of the sensors, we need to offload the tasks to fog and
clouds to meet certain QoS requirements for the results [8].

A review of the previous work [1,2] revealed a multi-objective solution that caters to
the following: (a) offloading and scheduling tasks based on priorities to decrease response
time and energy utilization; (b) multiple parameter-based fog node selection, such as MIPS,
BW, RAM, and node energy, to reduce energy footprint; (c) finding adjacent fog nodes
based on task- and data-aware scheduling; and (d) IoT logistics truck requirement for task
allocation with fault tolerance that has not been proposed. The proposed MT-OSF tackles
IoT logistics challenges by assigning priorities to tasks and offloading them to coordinated
cloud and fog nodes. Fog node allocation is based on parameters like energy, MIPS power,
RAM, and bandwidth. The framework checks task execution and fog node failure while
assigning tasks to nearby fog nodes to reduce the failure ratio.

The following are the main contributions of the research:

✓ IoT-enabled logistics vehicle tasks are classified as delay-sensitive and computation-
intensive using the MT-OSF priority-based offloader to execute the important task on
a priority basis on nearby fog nodes. Computation-intensive tasks are executed on
cloud nodes using the FCFS algorithm.

✓ The MT-OSF Task-Aware Scheduler is proposed to allocate the offloaded tasks to the
most efficient fog node. The analytical hierarchy process (AHP) is used to prioritize
the most efficient fog node for IoT task execution and scheduling while considering
RAM, BW, MIPS, and node energy.

✓ The Euclidean formula is used to calculate the shortest distance between the fog
node and the IoT-enabled vehicle to whom the tasks are allocated for execution to
reduce response time. Fault-tolerant manager is used and followed by task retry and
node transfer mechanisms in case of task failure and fog node failure in the MT-OSF
Task-Aware Scheduler to reduce the task failure ratio.

✓ By comparing the proposed MT-OSF with other standard algorithms, including Ant
Colony Optimization and Round Robin, etc., we evaluated the system performance
of the proposed MT-OSF. The suggested approach decreased the task failure ratio by
22%, reaction time by 7%, and energy usage by 16%.

The remaining paper is divided into several components. The related work is ex-
plained in Section 2 of the work, and the system architecture and proposed solution are
presented in Section 3 of the paper. Section 4 presents simulations and results, while
Section 5 presents the paper’s conclusion.

2. Related Work

IoT task offloading and scheduling enable the remote execution of tasks on servers
to meet QoS requirements in smart transportation. Real-time monitoring of vehicles,
cargo, and drivers enhances efficiency, reduces costs, and prevents cargo loss. IoT devices
improve supply chain processes by enabling fleet tracking in real-time [9]. A vehicle
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monitoring system was developed to track vehicle travel from anywhere using GPS and
GSM/GPRS technologies. The system uses GPS to obtain regular geographic coordinates,
while GSM/GPRS updates vehicle location in a database. A smartphone app was also
developed to continuously track the car’s whereabouts [10].

A car-locating system combining RFID, GPS, and GSM technologies was presented,
enabling autonomous vehicle tracking without GPS signals. The project uses an RFID
transmitter with a read range of 31 cm in the LF communication band. The system uses
Bluetooth technology to transmit traffic status and density, allowing for effective data
processing to determine dynamic traffic circumstances [11,12]. The article suggests de-
veloping 5G-based logistics models, combining 5G, IoT, and AI to create an intelligent
traceability system for automated transportation. An IoT-based freight tracking system
utilizes middleware, AI, RFID, GIS, and 3G connectivity, enabling real-time signal capture,
data transfer, and information processing. Additionally, an IoT and RFID-based dynamic
road transport monitoring system is shown [13–15].

EURIDICE is a freight solution that uses IoT technology to collaborate with highway
infrastructure and databases. Without requiring human interaction, it provides cargo
localization, rerouting, and monitoring of cargo conditions. The system also enables driver
monitoring to identify healthy and unsafe driving behaviors. Wearable sensor networks
enable low-power healthcare, real-time processing, and Internet of Things applications,
reducing road accidents and enabling preventative actions. The IoT and fog-based comput-
ing system monitors driver behavior using sensors and communication technologies like
RFID, Bluetooth, Wi-Fi, and 4G-LTE, enabling real-time monitoring and analysis. [16–19].

A driving style assessment solution was developed using an IoT-based embedded
system that evaluates driving behavior based on factors like speed, acceleration, jerk, engine
rotation speed, and driving duration. A monitoring system for IoT is crucial for smart
logistics transportation, utilizing sensors to gather status data and pre-process them locally.
Establishing a link with a logistics center is essential for communication and scheduling
work. Wireless communication’s transmission rate and dynamic stability are crucial for
real-time and stable information transmission in smart logistics transportation [20–22].

In [23], the authors proposed a LiMPO-based machine learning technique to offload
mobile tasks to nearby edge nodes while considering the mobility of the users. Similarly,
in [24], the authors proposed a deep learning-based energy-aware task-offloading scheme
for 5G-enabled IoT devices. They did not use fault tolerance for task offloading and did not
consider response time for their proposed algorithm. In [25], the authors proposed a content
cache approach to enhance the performance of a proactive edge caching scheme based on
federated learning (MPCF) while considering users preferences in edge computing.

In [26–28] the authors discussed and provided the task offloading schemes with
limitations, similarly the other authors proposed secure task offloading scheme for drone
technologies to gather and control the drone technology in efficient manner. However they
emphasis that IoT task offloading and scheduling is still NP-Hard problem which need
further analysis and require more optimize solution.

In [29], the proposed approach enhanced particle swarm fitness evaluation for load
balancing, improving search efficiency and convergence speed. The multi-swarm design
minimized local optimality. Experimental verification using Alibaba’s task dataset and
benchmark algorithms demonstrate improved task scheduling performance in supply
chain management. Similarly, in [30], the authors provide an elite-preserving genetic
algorithm (ETS_GA)-based blockchain-assisted safe ES placement technique. Using niche
sharing and tabu search, it addresses the classic GA’s premature issue. The algorithm
employs blockchain-based privacy protection techniques and is continuously monitored.
In [31] the authors present an osmotic approach for task offloading and scheduling, utilizing
classifications of devices and tasks, and assigning tasks to suitable devices based on capacity.
Compared to traditional random and Round Robin algorithms, the proposed algorithm
outperforms others.
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As discussed in the literature until now, researchers have mainly focused on IoT
logistics structure, while in our research we basically focused on IoT smart logistics trans-
portation task offloading and scheduling. So, in [32], the authors proposed a hybrid genetic-
simulated IoT–Fog model while minimizing response time. They minimized the service
delay; however, communication costs were not considered when calculating response time.

Swarm optimization and Ant Colony Optimization (ACO) methods were applied
in [1] to effectively offload IoT chores to cloud and fog nodes. This reduced response time,
but they did not apply any fault-tolerance mechanisms because most processes in ACO
choose the shortest path, which increases the likelihood that the fog node will fail. In [33],
a plan for IoT–mobile edge computing job offloading services is put out. This minimized
energy consumption while considering computation and communication costs. However,
they did not use the shortest path selection algorithm.

The author of [34] suggested a Dynamic Energy-Efficient Resource Allocation (DEER)
load balancing approach to balance IoT workloads across fog nodes while using less energy.
The scheduling of IoT tasks on fog nodes uses less energy. Fog node selection is based solely
on a single metric; node energy, MIPS, RAM, or BW were not considered. To offload IoT
tasks to fog nodes, the authors in [35] suggest an SDN-based path selection technique. By
choosing the best fog nodes, they were able to shorten response times, although single-node
failure might hurt the offloading procedure.

In [36], a hybrid model is provided by the authors in which they offload IoT tasks to
fog or cloud nodes based on requirements using Q-learning algorithms. This efficiently
balanced load on the fog nodes, but the model was limited to load balancing on just fog
nodes. Response time was not considered. The authors proposed an IoT logistics monitoring
system using mobile systems for vehicle temperature and humidity monitoring. However,
fault-tolerance- and priority-based task offloading were not utilized. They focused on energy
consumption and response time optimization, using the shortest path for delay-sensitive tasks.
A fault-tolerance mechanism is needed for efficient models [37–40].

As analyzed from the literature review, IoT sensor nodes have limited battery life,
storage, and computational power. IoT tasks need to be executed on powerful remote
servers to extract information from the data generated from sensors. IoT tasks on remote
servers are essential for meeting QoS parameters like connectivity, reliability, capacity, and
latency. To reduce energy consumption and response time, researchers have developed
fog computing to bring servers to near the network edge. Fog computing offloads and
schedules tasks to fog and clouds, reducing energy consumption by prioritizing important
and unimportant tasks and data on nearby fog nodes. Table 1 is used for a comparison of
the different related work provided here in the paper.

IoT task placement based on single parameters, such as RAM usage, can increase re-
sponse time and energy consumption. The Ant Colony Optimization (ACO) model for task
offloading, which follows the shortest path after several iterations, can lead to increased
task failure ratio and energy consumption. To improve offloading and scheduling, a frame-
work should be provided to offload and balance IoT tasks, reducing energy consumption,
response time, and task failure ratio. IoT task offloading and scheduling are NP-hard
problems [1,2]. It has been analyzed from the literature that no one has used priority-basis
task offloading, muti-criteria-based fog node selection, and fault-tolerant-based scheduling
in IoT logistics.

IoT task offloading and scheduling have various challenges and issues that need to
be addressed for an efficient IoT-based system. In task offloading, the offloading decision
is critical in determining which data or tasks should be offloaded and which should be
executed locally. In this regard, as from the literature review, various models are provided,
but the problem is NP-hard, so we need an efficient solution for task offloading to reduce the
energy consumption and computation costs as well. Secondly, in task offloading, most of
the time similar tasks or data are offloaded to fog and clouds for execution, which increases
energy consumption and response time. So, in the proposed work, we categorized the data
into delay-sensitive and computation-intensive tasks/data to reduce energy consumption
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and response time. It was also observed in the literature review that some tasks or data do
not offload and fail, so fault-tolerance-based task offloading is necessary to make the task
offloading process or system efficient.

Table 1. Literature review comparison.

Reference Response
Time

Task
Priority

Energy
Consumption

Fault
Tolerance

Multi-Criteria-
Based Fog Node

Allocation
Simulation Tool Used

[1]
√

× × × × MATLAB-R2023b

[11]
√

× × × × Arduino based IoT real
setup

[32]
√

× × × × iFogSim2

[33] × ×
√

× × iFogSim

[34] × ×
√

× × MATLAB

[35]
√

× × × × iFogSim

[36] × ×
√

× × iFogSim

[37]
√

× × × × CloudSim 3.0.3

[38]
√

×
√

× × SIMUL8

[39]
√

×
√

× × iFogSim

[40]
√ √ √

× × C++ based NS3 Tool

MT-OSF
Proposed

Model

√ √ √ √ √
iFogSim2

Once the tasks and data are offloaded to the nearby fog or cloud nodes, we need
efficient scheduling techniques to utilize the resources efficiently. According to the literature
review, multi-criteria-based fog node priority is not considered in scheduling, which
results in fog node failure, a longer execution time, increased energy consumption, and an
increased response time of the resources to the IoT devices. To consider and address all
of the above challenges and limitations of IoT task offloading and scheduling, we need a
framework that efficiently offloads the tasks to fog and clouds and schedules the offloaded
tasks in a timely manner to reduce energy consumption and response time. So, we proposed
Multi Objective Task-Aware Offloading and Scheduling Framework for IoT Logistics.

3. Proposed Work

In this section, we provide the system architecture, proposed MT-OSF model, entity
interaction diagram, and time complexity of the proposed research work.

3.1. System Architecture

For IoT logistics, we proposed the Multi-Objective Task-Aware Offloading and Schedul-
ing Framework (MT-OSF). The location of the logistic trucks, their temperature, and the
interior state of the vehicle are all considered in the suggested model. Our centralized
monitoring system will alert the administration and the affected cars if the IoT device data
are discovered to be irregular. Task Manager is a smart gateway for gathering IoT tasks
and sending them to cloud and fog nodes for further processing. The IoT Task Manager
priorities jobs and data that are computationally and delay sensitive. The Task Manager
will provide the Task-Aware Scheduler with lists of computation- and delay-intensive tasks,
and the Task-Aware Scheduler will use the Euclidean formula to determine the distances
between IoT devices and fog nodes, saving the results in the repository. The analytical
hierarchy process (AHP) is used to determine the cumulative weight of fog nodes, and the
priority vector is then saved in the repository. Offloaded tasks are placed on nearby fog
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nodes and cloud nodes according to the priority repository information. The fault-tolerance
manager verifies the successful allocation of tasks after assigning IoT tasks to fog or cloud
nodes. If any tasks fail to be allocated on the execution machine, the fault-tolerance manager
will reallocate them to another active node.

3.2. Proposed Work/MT-OSF

We propose the Multi-Objective Task-Aware Offloading and Scheduling Framework
(MT-OSF) for IoT logistics. In the proposed model, we obtain tasks from the vehicles that
have IoT devices. We have V1, V2, V3, . . ., Vn logistics vehicles that have IoT devices.
For simplicity, we named the IoT devices which are placed at vehicles as VIoT1, VIoT2,
VIoT3, . . ., VIoTm. We have multiple smart gateways (SG1, SG2, and SGk) to receive IoT
tasks, calculate the shortest path, and prioritize the task into computation-intensive and
delay-sensitive categories. We have fog and cloud nodes for the execution of delay-sensitive
tasks and computation-intensive tasks. The fog nodes are Fog1, Fog2, Fog3, . . ., Fogz and
the cloud nodes are Cloud1, Cloud2, Cloud3, . . ., Cloudx. Furthermore, each fog node has
multiple Virtual Machines (VMs) such as VM1, VM2, . . ., VMt. The tasks that are generated
by IoT devices are considered Task1, Task2, Task3, . . ., Tasks. We have used a random model
(Poisson process) for IoT task generation, such as that any vehicle can ask for the total
remaining distance from his destination, and temperature measurements are sent to the
admin office for further necessary action and orders. The tasks that are generated by the
IoT devices (1, 2, 3, . . ., m) by the specific vehicle (1, 2, 3, . . ., n) are represented as the
tasks generated by the IoT devices that are received by a smart gateway and prioritized as
delay-sensitive or computation-intensive tasks. Delay-sensitive tasks are those tasks that
need immediate execution and action within the required time, otherwise, the important
information will be lost.

The computation required by the IoT task and the time for the completion of the task
will be evaluated, and the total weight (M) is calculated for the generated tasks using
Equation (1) as follows:

Mn,s,m =
i

∑
s=1

Service_Times/times (1)

If the values of M of the concerned task, concerned vehicle, and concerned IoT device
are >0.5, then such tasks will be put into a delay-sensitive queue and forwarded to a
task-aware scheduler for further allocation to a nearby fog node. Computation-intensive
tasks are those that need execution for a long time. Tasks generated by IoT devices with
computation required and time for completion are received by the IoT Task Manager, which
calculates the total weight (M) of the tasks according to Equation (1).

If the value of M is ≤ 0.5 then such tasks are put to a computation-intensive queue.
Delay-sensitive tasks are offloaded to fog nodes while computation-intensive tasks are
offloaded to cloud nodes. Figure 2 is used to show the process of algorithm one. Table 2 is
used to show the abbreviations and their meaning of the used terms and symbols in the
proposed research work.

The IoT tasks created by the devices at the smart gateways are received using
Algorithm 1. The concerned vehicle’s IoT device duties are sent to the smart gateway.
Equations (1) and (2) are used to compute the task’s overall weight.

Tasks are allocated to computation-intensive list if the sum of their weights higher
than 0.5, and delay-sensitive jobs if the sum is less or equal to 0.5.

The two lists of jobs are sent to the Task-Aware Scheduler (TAS), which functions on a
fog main node once tasks have been successfully prioritized. When using a task scheduler,
computation-intensive work is sent to cloud nodes while delay-sensitive work is sent to
nearby fog nodes. The analytical hierarchy process (AHP) is used to examine and compare
the performance of the available fog nodes. One method for making decisions using several
criteria is the analytical hierarchy process (AHP). From paired comparisons, ratio scales are
derived using this technique. Measurements like cost, weight, and other factors may be
used as input, as well as objective evaluations like satisfaction, emotions, and preferences.
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Table 2. Abbreviations used in the proposed model.

Symbol Abbreviation Symbol Abbreviation

TAS Task-Aware Scheduler Taskm
n

Task generated by logistic vehicle
IoT device

SG Smart Gateway VM Virtual Machine

VIoT IoT devices placed in vehicles V IoT-enabled vehicle

ACO Ant Colony Optimization MIPS Million instruction per second

PSO Particle swarm optimization BW Bandwidth

RAM Random access memory IoT Internet of Things

Ω Delay-sensitive tasks ω Computation-intensive tasks

Šs Execution requirement for the tasks Times Execution time required

AHP Analytic hierarchy process M Weight of the IoT task

NE Fog node energy FN Fog node

Dn
m

Shortest distance between fog node and
IoT device W Weight of the fog node, BW, MIPS power,

RAM, and node energy

C.W Cumulative weight (combined weight of
the four parameters) GPS Global positioning System

N IoT-based vehicles S IoT tasks

M IoT devices/sensors z No of fog nodes

X No of cloud nodes T No of Virtual Machines

AHP allows for a little level of judgement error since humans are not always consistent.
The significant Eigenvalue is used to generate the ratio scales, whereas the significant
Eigenvalue is used to calculate the consistency index. Figure 3 shows the AHP for ranking
fog nodes according to priority. For IoT logistics tasks, we select the top fog node from a
range of options to perform them successfully and on time. Each fog node is composed
of several Virtual Machines (VMs). It is used to choose the fog node based on the top VM
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that is currently housed there. For instance, if of the five fog nodes, fog node 2 has the best
available VM, we will assign and prioritize that fog node to complete IoT activities. From
among the several fog nodes (FNs) that we have, we must choose the right one. Each fog
has unique VMs, and each VM also has unique processing power, RAM, and bandwidth
requirements, as well as node energy requirements.

Algorithm 1. IoT task offloading and task categorization as delay-sensitive and
computation-intensive based on required resources and deadline.
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is sent to nearby fog nodes. The analytical hierarchy process (AHP) is used to examine 

and compare the performance of the available fog nodes. One method for making 

decisions using several criteria is the analytical hierarchy process (AHP). From paired 

comparisons, ratio scales are derived using this technique. Measurements like cost, 

weight, and other factors may be used as input, as well as objective evaluations like 

satisfaction, emotions, and preferences. 

AHP allows for a little level of judgement error since humans are not always 

consistent. The significant Eigenvalue is used to generate the ratio scales, whereas the 

significant Eigenvalue is used to calculate the consistency index. Figure 3 shows the AHP 

for ranking fog nodes according to priority. For IoT logistics tasks, we select the top fog 

node from a range of options to perform them successfully and on time. Each fog node is 

composed of several Virtual Machines (VMs). It is used to choose the fog node based on 

the top VM that is currently housed there. For instance, if of the five fog nodes, fog node 

2 has the best available VM, we will assign and prioritize that fog node to complete IoT 

activities. From among the several fog nodes (FNs) that we have, we must choose the right 

one. Each fog has unique VMs, and each VM also has unique processing power, RAM, 

and bandwidth requirements, as well as node energy requirements. 
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To locate the appropriate VM that satisfies the user’s criteria, the configuration of each
accessible parameter of the VM is compared with the setting of the required parameter
of the VM. The proposed method uses the AHP procedure to create a Matrix with the
necessary value. RAM, MIPS processing power, bandwidth, and node energy were the four
factors we used. Thus, in terms of the AHP method, we need a 4-by-4 matrix. The values
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for the diagonals are represented as 1, and the values for the chosen choice are written
above the diagonals. The values are expressed in a reciprocal form in accordance with the
AHP procedure if the choice value is on the left side of the comparison line and the chosen
option is on the right side of the middle point.

Equation (3) was used to enter the matrix’s top diagonal values. We utilized a range
of 9, 7, 5, 3, 1, 3, 5, and 7. We placed the parameters of the fog node, such as RAM,
MIPS, bandwidth, and node energy (NE), on the left and right sides of the decision values.
Equation (3) was used to calculate the wagon vector matrix values from the choice values.
aij was used to specify the row- and column-wise values of the AHP matrix, which was
further solved and retrieved the priority values of the fog nodes. The values on the right
side of the middle values from the submitted choices were put to the matrix in the same
form using Equation (3) while the choice values on the left side of the middle zero value
were put into the matrix below the diagonal in reciprocal form using Equation (4).

Equations (2)–(8) are used to obtain the priority values by using the AHP. First, the fog
node input choice values are obtained from the fog nodes, such as RAM, MIPS, bandwidth,
and node energy. First, we obtained all the values for the AHP matrix one by one by
using Equations (2) and (3), and then, by using Equations (4)–(8), the proposed framework
calculated the priority values of the fog nodes while considering the VMs of the nodes.
Once the priority list of the fog nodes was finalized, we assigned the top-most task to the
top-most fog node to reduce the energy consumption, execution cost, response time, and
overall efficiency of the proposed system.

AHP_Matrix_Diagnol_Right= aij (2)

Similarly, the lower diagonal values were put into Equation (3) using the upper
diagonal values that were put into the matrix by using Equation (2). The i and j are the rows
and columns of the matrix. Equation (2) was used to calculate the wagon vector matrix
values from the choice values. The equation was used to specify row and column wise
values of the AHP matrix, which was further solved and retrieved the priority values of the
fog nodes. Equation (2) is the part of AHP where we need to specify or obtain one value
for matrix development. By obtaining all the values using Equation (2), the final matrix
was built for further wagon vector values/priority values calculation.

AHP_Matrix_Diagnol_Le f t =
1
aij

(3)

From the matrix that is constructed by using Equations (2) and (3), we further calcu-
lated the weight (W) of each fog node individually using Equations (4)–(7) and calculated
the cumulated weight of the fog nodes using the total power, total RAM, total energy, and
total bandwidth of the node using Equation (9).

W1 =
z

∑
z=1

t

∑
t=1

MIPS (4)

W2 =
z

∑
z=1

t

∑
t=1

RAM (5)

W3 =
z

∑
z=1

t

∑
t=1

BW (6)

W4 =
z

∑
z=1

t

∑
t=1

NE (7)

Total_W =
z

∑
z=1

(W1 + W2 + W3 + W4) (8)



Sensors 2024, 24, 2381 11 of 22

Equation (4) was used to calculate the weight of a fog node VM in the context of MIPS
power; Equation (5) was used to calculate the RAM power of a fog node VM; Equation (6)
was used to calculate the bandwidth of the fog node; Equation (7) was used to calculate the
weight of a fog node energy (NE); and Equation (8) was used to calculate the total weight
of a fog node. The fog nodes with high weights are kept at the top of the priority list, and
so on.

To schedule the IoT tasks in a way that might save energy and lower the task failure
ratio, the Task-Aware Scheduler (TAS) first determines the priority of the fog nodes. To
speed up reaction times, the TAS also determines the shortest route between IoT-enabled
cars and fog nodes. Equation (9) was utilized to determine the route between the IoT-
enabled logistic vehicle and the Fog node.

Dn
z = sqrt{(xm–xn)2 + (ym–yn)2} (9)

In the equation, we used the Euclidean formula, and z and m represent the IoT-enabled
vehicle and the fog nodes. Figure 4 is used to represent the working of the Task-Aware
Scheduler. After the cumulative weight calculations, the list of the fog node is provided
in ascending order as if any fog node has low cumulative weight, and then our proposed
algorithm will give priority to that fog node.

Sensors 2024, 24, x FOR PEER REVIEW 12 of 23 
 

 

 

Figure 4. MT-OSF Task-Aware Scheduler. 

The Task-Aware Scheduler uses the AHP method to determine the priority of fog 

nodes and the Euclidean Formula to determine the shortest path between fog nodes and 

IoT devices. 

According to the data that are kept in the scheduler repositories, the Task Allocator 

Module distributes delay-sensitive jobs to the closest fog nodes. Tasks that need a lot of 

computation are offloaded to the cloud. If jobs are successfully placed on the execution 

machine, the fault-tolerant manager examines and validates this; otherwise, alternative 

re-allocation procedures are employed. 

Fog and cloud nodes carry out the tasks, and the outcomes are communicated back 

to the source for any additional action that may be required. Using IoT devices, the 

suggested strategy essentially allows for efficient fleet management of logistics. The MT-

OSF Algorithm 2 is used to generate the matrix of the necessary options after obtaining 

priority values from IoT tasks. The two lists created by Algorithm 1 serve as the input for 

Algorithm 2. The algorithm’s output is the priority list for fog nodes and the quickest 

route for logistics trucks to arrive to the fog nodes. 

  

Figure 4. MT-OSF Task-Aware Scheduler.



Sensors 2024, 24, 2381 12 of 22

The Task-Aware Scheduler uses the AHP method to determine the priority of fog
nodes and the Euclidean Formula to determine the shortest path between fog nodes and
IoT devices.

According to the data that are kept in the scheduler repositories, the Task Allocator
Module distributes delay-sensitive jobs to the closest fog nodes. Tasks that need a lot of
computation are offloaded to the cloud. If jobs are successfully placed on the execution
machine, the fault-tolerant manager examines and validates this; otherwise, alternative
re-allocation procedures are employed.

Fog and cloud nodes carry out the tasks, and the outcomes are communicated back
to the source for any additional action that may be required. Using IoT devices, the
suggested strategy essentially allows for efficient fleet management of logistics. The MT-
OSF Algorithm 2 is used to generate the matrix of the necessary options after obtaining
priority values from IoT tasks. The two lists created by Algorithm 1 serve as the input for
Algorithm 2. The algorithm’s output is the priority list for fog nodes and the quickest route
for logistics trucks to arrive to the fog nodes.

Algorithm 2. Fault-tolerance-based IoT tasks scheduling on fog nodes using a multi-criterion decision-making process (AHP) and
shortest distance calculation using the Euclidean formula.
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The system distributes the IoT logistics truck duties to the adjacent fog nodes with efficient node energy, RAM, bandwidth, and MIPS power 
after determining the shortest distance and fog node priority. Algorithm 2 distributes and arranges IoT jobs on fog nodes to minimize energy 
consumption and response time. Fault tolerance is an important factor in resource allocation, as when we allocate a task to a fog node, if the task 
fails and does not execute due to some reason, then important data or tasks may not be able to perform the work. So, in the proposed model, we
used a fault-tolerance manager to check and verify successful task allocation and execution to fog nodes from IoT devices. 

In MT-OSF Algorithm 2, the fault-tolerant manager will be launched if either the node to which the tasks are assigned fails or the tasks (which 
are allocated to the required resources) are unable to be completed. The “Fault-tolerant Manager” component handles “Task-based fault-tolerance” 
and “node-based fault-tolerance”, two key fault-tolerant procedures. First, if a failed task occurs at any node, “Task-based fault-tolerance” re-
executes it. The work will be moved to another nearby fog node if one fog node fails. 

4. Simulation Setup and Results 
In a real-world environment of IoT-enabled logistics vehicles, it is difficult to test and check the proposed algorithm in a repeatable and 

controllable manner. So, we used a simulation/implementation-based strategy to test and check the proposed “Multi-Objective Task-Aware 
Offloading and Scheduling Framework for IoT Logistics (MT-OSF)” model. We used FogSim2, the latest simulation, which is used for IoT task 
offloading and scheduling in cloud and fog computing. The details of the simulation setup are given below.

4.1. Resource Modelling 
iFogSim2 [41] was used to implement and simulate the proposed model. Different tasks and data were created in Java-based classes while

offloading and scheduling them on fog datacenters and cloud datacenters. The tasks were generated randomly with the required resources, such 
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The system distributes the IoT logistics truck duties to the adjacent fog nodes with
efficient node energy, RAM, bandwidth, and MIPS power after determining the shortest
distance and fog node priority. Algorithm 2 distributes and arranges IoT jobs on fog nodes
to minimize energy consumption and response time. Fault tolerance is an important factor
in resource allocation, as when we allocate a task to a fog node, if the task fails and does not
execute due to some reason, then important data or tasks may not be able to perform the
work. So, in the proposed model, we used a fault-tolerance manager to check and verify
successful task allocation and execution to fog nodes from IoT devices.

In MT-OSF Algorithm 2, the fault-tolerant manager will be launched if either the
node to which the tasks are assigned fails or the tasks (which are allocated to the required
resources) are unable to be completed. The “Fault-tolerant Manager” component handles
“Task-based fault-tolerance” and “node-based fault-tolerance”, two key fault-tolerant pro-
cedures. First, if a failed task occurs at any node, “Task-based fault-tolerance” re-executes
it. The work will be moved to another nearby fog node if one fog node fails.
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4. Simulation Setup and Results

In a real-world environment of IoT-enabled logistics vehicles, it is difficult to test
and check the proposed algorithm in a repeatable and controllable manner. So, we used a
simulation/implementation-based strategy to test and check the proposed “Multi-Objective
Task-Aware Offloading and Scheduling Framework for IoT Logistics (MT-OSF)” model. We
used FogSim2, the latest simulation, which is used for IoT task offloading and scheduling
in cloud and fog computing. The details of the simulation setup are given below.

4.1. Resource Modelling

iFogSim2 [41] was used to implement and simulate the proposed model. Different
tasks and data were created in Java-based classes while offloading and scheduling them
on fog datacenters and cloud datacenters. The tasks were generated randomly with the
required resources, such as MIPS, bandwidth, RAM, and time for completion of the task.
For the simulation of the proposed model, we used a Core i3 system with 8 GB of RAM
and a 500 GB hard drive to run and store the IoT tasks. Table 3 shows the parameters used
in the simulation with the given values.

Table 3. Simulation parameters.

S. No Simulation Parameters Value Description

1 Cloudx 1 One cloud data center created

2 Fogi 10 10 fog nodes created

3 Šs 5–10 MIPS Each task processing requirement

4 Times 2–6 ms Each task required time for execution

5 Smart Gateways 2 Each gateway connected with 5 fog nodes

6 Logistics Vehicles 5 --

7 IoT devices/Sensors 50 × 5 = 250 Each vehicle has 50 sensers placed in it

8 BW 5–10 MHz Bandwidth for communication lines

9 Processing Capabilities 50–100 MIPS & 500 to 1000 MIPS Fog nodes and cloud nodes processing power

10 Task Size 250 kb–1 MB --

11 Latency from IoT device to fog 2–20 ms --

12 Latency from IoT device to cloud 30 ms --

4.2. Evaluation Parameters

For performance evaluation, we used the following parameters: energy consumption,
response time, and task failure ratio. These are necessary parameters for the evaluation of
the results of the proposed research.

4.2.1. Response Time

Response time is the type of QoS that will be checked for IoT tasks and data. The re-
sponse time of the IoT tasks can be calculated by the following equation, in which response
time (RT) is the sum of the IoT–fog communication cost (IFC), fog–cloud communication
cost (FCC), and average service time (AST) on fog nodes.

RT = IFC + FCC + AST (10)

4.2.2. Energy Consumption

The most important variable in determining how well the suggested model performs
is energy consumption, since we aim to decrease fog node energy consumption while
offloading IoT activities. We can lower energy use when the offloaded jobs are efficiently
balanced. The real energy used during task submission and execution is the energy associ-
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ated with computation and communication. We used and evaluated energy consumption
according to the following equation:
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cc (11)

4.2.3. Task Failure Ratio

Task failure ratio is the percentage in which the number of successful and failed tasks
are given in different simulation runs.

T f = Number o f Tasks Failed × 100/total Number o f Tasks (12)

4.3. Results

In this section, we provide the results obtained from the simulation. We ran the
simulation with different parameters of the values and obtained the most suitable results,
which are given in the following scenarios:

4.3.1. Scenario 1

We created one cloud data center, in which we created ten Virtual Machines and 500
MB of storage. Similarly, we created two fog nodes, each with four Virtual Machines. The
simulation parameters in Table 3 were used to evaluate the response time and energy
consumption of the proposed model. The proposed model was compared with the latest
research work [1], and it was observed that the MT-OSF performed very well in terms
of response time as the algorithms prioritized the tasks and then executed the important
tasks on nearby fog nodes using the AHP process and Euclidean formula. Figure 5′s x-axis
shows the number of internet devices attached to the vehicle, while the y-axis represents the
response time in milliseconds. The proposed model was compared with Round Robin (RR)
and Ant Colony Optimization (ACO) [1]. The results show that the proposed model, MT-
OSF, performed well and reduced the response time from 87 milliseconds to 73 milliseconds.
The response time is given in Figure 5 for delay-sensitive tasks that were executed on nearby
fog nodes.
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Figure 5. Response time of fog nodes.

In Figure 5, we provide the response time of the important and delay-sensitive tasks
that were executed on fog nodes.

In Figure 6, we provide the response times of the computation-intensive tasks and
normal tasks that were executed on cloud nodes or cloud datacenters. Figure 5’s x-axis
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shows the number of internet devices attached to the vehicle, while on the y-axis, the figure
represents the response time in milliseconds.
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Figure 6. Response time comparison of computation-intensive tasks on cloud nodes.

In Figure 7, an energy consumption comparison is provided for the delay-sensitive
tasks. On the x-axis, the number of IoT tasks is provided, while on the y-axis, the energy
consumption values are provided in megajoules.
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Figure 7. Energy consumption comparison of delay-sensitive tasks on fog node.

Our proposed model employed the AHP for fog node priority and IoT task scheduling,
as shown in Figure 7. It performed extremely well in terms of energy usage on the fog layer.
These fog nodes are assigned to IoT tasks via the AHP, a multi-criteria decision-making
mechanism that favors jobs with greater RAM, MIPS, bandwidth, and energy on the node.
We decreased the cost of communication, and when the fog node was assigned to the work,
it completed 90% of the mission’s needs. In terms of energy usage, the suggested model
also contrasted with the most recent work for computation-intensive activities. Figure 8 is
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used to show the energy consumption comparison of the proposed model with ETCORA,
ADMMD, and DMP.
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Figure 8. Energy consumption of computation-intensive tasks on cloud nodes.

In Figure 8, an energy computation comparison is provided for the computation-
intensive tasks. On the x-axis, the number of IoT tasks is provided, while on the y-axis,
the energy consumption values are provided in megajoules. From Figure 8, it is observed
that the proposed model’s energy consumption increases due to an increase in communica-
tion costs.

The proposed model was compared with Round Robin (RR) and Ant Colony Opti-
mization (ACO). The results show that the response time of the proposed model, MT-OSF,
increases for computation-intensive tasks, while the other two techniques, such as RR and
ACO, decrease the response time in comparison with the proposed model. For computation-
intensive tasks, we used the First Come, First Serve (FCFS) basis scheduling algorithm, and
executed it on a cloud data center. In scenario 1, we also evaluated the proposed model
(MT-OSF) using Equation (12) for energy consumption. The proposed model for energy
consumption is compared with the latest related work [39], such as ETCORA, ADMMD,
and DMP.

The proposed MT-OSF model did not use the shortest path algorithm, so in multiple
cloud nodes it increases energy consumption and response time as we use the FCFS algo-
rithm for scheduling. If we use the AHP for cloud VM priority calculation and scheduling,
then we can decrease energy consumption and response time, but in this research, we only
focus on IoT logistics task offloading and scheduling to fog nodes. Figure 9 presents a
comparison of the MT-OSF with and without fault tolerance. From the results, it is analyzed
that task failure ratio is decreased by 22% in comparison to without the fault-tolerance
MT-OSF Algorithm 2.

4.3.2. Scenario 2

In scenario two, we increased the fog nodes up to 10, and each fog node had four
virtual machines with 50 MIPS of computational power, 10 MB of bandwidth, 2 MB of
RAM, and 500 megajoules of energy. Five cloud nodes were created, each with ten VMs
having computational powers such as 1000 MIPS, 50 MB of bandwidth, and 8 MB of RAM.
The parameters remained the same as in scenario 1. We generated random tasks provided
by the iFogSim2 task class, in which we first considered 100 tasks, then 200 tasks, and
then up to 500 tasks for performance evaluation. In Figure 10, we provide the results
of the comparison of the proposed model with the RR and ACO models. The proposed
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model reduced the response time for delay-sensitive tasks as we used the shortest path
formula along with the AHP to schedule the tasks on nearby fog nodes. As is shown
in Figure 10, the communication cost increases due to more cloud nodes and fog nodes,
so with increased communication costs, the response time of the IoT tasks also increases
by 10%.
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Figure 10. Response time comparison of the proposed model for delay-sensitive tasks.

The proposed model performed very well as the AHP returned the fog nodes that
had the computational power, RAM, BW, and node energy to execute the tasks. In the
other methods, such as RER and ACO, few iterations were needed as they do not look for
efficient fog nodes; they only see the near fog nodes and allocate tasks. Similarly, we used
the AHP for the VMs of cloud nodes as well, and then we compared the proposed model
with the RR and ACO models, where the proposed model also decreased the response time
for computation-intensive tasks. Figure 11 is used to show the response time comparison
of the proposed MT-OSF model with RR and ACO, which are the last offloading models.
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Figure 11. Response time comparison of the proposed model for computation-intensive tasks.

In scenario 2, the proposed model was also evaluated for energy consumption, using
Equation (12). In Figures 12 and 13, it is observed that the proposed model decreased
energy consumption in comparison with the latest available work in energy composition
for IoT task offloading and scheduling. Overall, energy consumption increased by up to 5%
when the fog and cloud nodes were increased, so greater communication cost was used
due to priority calculation and other factors. In Figures 12 and 13, energy consumption
comparisons are provided for delay-sensitive tasks and computation-intensive tasks. On
the x-axis, the number of IoT tasks is provided, while on the y-axis, the energy consumption
values are provided in megajoules. From Figures 12 and 13, it is observed that the proposed
model’s energy consumption decreased as we used the proposed model for fog and cloud
nodes. Thus, we reduced the communication cost and allocated the most efficient VMs on
the cloud and the most efficient fog nodes on the fog layer to computation-intensive and
delay-sensitive tasks.
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Figure 12. Energy consumption comparison of delay-sensitive tasks on fog nodes.
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Figure 13. Energy consumption of computation-intensive tasks on cloud nodes.

5. Conclusions

This research focuses on IoT task offloading and scheduling models for logistics
vehicles, specifically for mega projects like the China–Pakistan Economic Corridor. This
study presents a Multi-Objective Task-Aware Offloading and Scheduling Framework for
IoT Logistics (MT-OSF), which prioritizes tasks into delay-sensitive and computation-
intensive tasks using a priority-based offloader. The TAS uses the analytical hierarchy
process (AHP) to calculate the priority of fog nodes for task allocation and scheduling
based on factors such as node energy, bandwidth, RAM, and MIPS power. The MT-OSF
also calculates the shortest distance between the IoT-enabled vehicle and the fog node to
which the IoT tasks are assigned. The system schedules delay-sensitive tasks on nearby
fog nodes and allocates computation-intensive tasks to cloud data centers using the FCFS
algorithm. The fault-tolerant manager checks task failure, re-executing tasks if necessary
and allocating tasks to another fog node to reduce the task failure ratio. The MT-OSF
reduced response time by 7%, energy consumption by up to 17%, and reduced task failure
ratio by 22% in comparison to Ant Colony Optimization and Round Robin. Future research
aims to use machine learning-based approaches to train the offloading model and develop a
framework for executing delay-sensitive and computation-intensive tasks while predicting
IoT mobility.
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