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Abstract: Fusing multiple sensor perceptions, specifically LiDAR and camera, is a prevalent method
for target recognition in autonomous driving systems. Traditional object detection algorithms are
limited by the sparse nature of LiDAR point clouds, resulting in poor fusion performance, especially
for detecting small and distant targets. In this paper, a multi-task parallel neural network based on
the Transformer is constructed to simultaneously perform depth completion and object detection.
The loss functions are redesigned to reduce environmental noise in depth completion, and a new
fusion module is designed to enhance the network’s perception of the foreground and background.
The network leverages the correlation between RGB pixels for depth completion, completing the
LiDAR point cloud and addressing the mismatch between sparse LiDAR features and dense pixel
features. Subsequently, we extract depth map features and effectively fuse them with RGB features,
fully utilizing the depth feature differences between foreground and background to enhance object
detection performance, especially for challenging targets. Compared to the baseline network, im-
provements of 4.78%, 8.93%, and 15.54% are achieved in the difficult indicators for cars, pedestrians,
and cyclists, respectively. Experimental results also demonstrate that the network achieves a speed of
38 fps, validating the efficiency and feasibility of the proposed method.

Keywords: point cloud data; YOLO; Transformer; multi-source feature fusion; depth completion

1. Introduction

The perception of surrounding objects is crucial for autonomous driving [1]. However,
the dynamic characteristics of objects are influenced by environmental factors like lighting,
fog, rain, wind, and reflections. Challenges in distinguishing foreground from background
arise due to factors like rainwater or oil obstructions, decreased visibility due to fog,
blurring from motion, and color distortions. These challenges significantly complicate the
task for recognition algorithms that depend on RGB images. The advent of depth sensors
has rendered depth images more attainable, providing depth disparity information between
foreground and background to enhance object detection. Depth images play a pivotal role
in various practical applications, including stereo matching [2], image understanding [3],
co-saliency detection [4], action recognition [5], video detection and segmentation [6–9],
semantic segmentation [10,11], medical image segmentation [12–14], object tracking [15,16],
camouflage object detection [17], and image retrieval [18].

Nevertheless, most of the depth images utilized in these methods originate from depth
cameras. In outdoor settings, depth cameras are susceptible to lighting conditions, with a
limited detection range of merely 20 m. Depth images captured beyond this range exhibit
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substantial errors and noticeable noise [19–22]. In contrast, LIDAR sensors are less affected
by lighting conditions, and multi-line LIDAR sensors can often detect distances exceeding
100 m. Consequently, numerous studies opt for LIDAR to produce depth images and
integrate them with RGB cameras.

Currently, a variety of target recognition algorithms incorporate both LIDAR and RGB
data. For instance, EPNet [23] and MV3D [24] both project sparse LIDAR data onto the
front view. In contrast, SPLATNet [25] maps pixels onto sparse point clouds and derives
classification probabilities for each point using 1 × 1 convolutional kernels, ultimately
yielding 3D detection results. However, the methods mentioned above have not adequately
addressed the sparsity issue in LIDAR data compared to RGB pixels, leaving significant
room for improvement.

These depth maps are then projected into the 3D point cloud coordinate space, and neu-
ral networks are employed for object detection. Noteworthy examples of such studies
include Pseudo LiDAR [26] and Pseudo LiDAR++ [27]. While these approaches heavily
rely on 3D recognition networks, they tend to overlook the potential of mature and stable
2D object recognition algorithms. Other researchers aim to establish a connection between
point clouds and 2D semantics by matching semantic segmentation information from im-
ages with depth maps. Illustrative examples of such research include Complex-YOLO [28]
and MVP [29], guiding 3D networks in object recognition. However, these methods do not
fully exploit the information from depth maps to enhance image recognition. Moreover,
some studies utilize depth maps generated under image guidance to enhance RGB-based
object recognition. Ophoff [30], Chu [31], and Liang [32] leverage dense depth maps for
feature extraction, subsequently fusing them with RGB features through concatenation and
addition operations across multi-scale feature maps. Nevertheless, these approaches occa-
sionally disregard the disparities between depth map features and RGB features. Shen [33]
leverages RGB guidance for LIDAR depth completion, inputting concatenated sparse depth
maps, dense depth maps, and RGB images into the YOLO backbone network without fur-
ther fusion in the FPN (Feature Pyramid Network) phase, resulting in the underutilization
of depth map information.

The fusion strategies employed in the above-mentioned methods, which rely on
dense depth maps and RGB fusion, often disregard the feature disparities between depth
maps and RGB images. Furthermore, these methods concatenate the depth completion
network with the recognition network, resulting in reduced recognition efficiency. Depth
maps are essentially single-channel images that encapsulate depth values, rich in distance-
related information. Notably, they exhibit substantial differences in distance and feature
boundaries between foreground and background when compared to RGB images. This
inherent property makes them less susceptible to issues arising from texture and color
interference. Hence, they are distinctly advantageous in segregating the foreground from
the background and accentuating target information. In light of these advantages, we
leverage dense depth maps to dynamically generate weight values for each pixel at various
scales, and subsequently apply these weights to the RGB feature maps. This strategy steers
the detection module towards a more focused assessment of color and texture features
within the target area, thus reducing false positives and enhancing recognition rates.

Our contribution can be summarized as follows:

1. We introduce a real-time object recognition and depth completion approach using a
single Transformer backbone network, allowing the simultaneous extraction of RGB
and sparse LIDAR features. Compared to the 32 ms required when serializing the
depth completion network and object detection network, our integrated network,
inclusive of object detection functionality, totals an inference time of 26 ms.

2. During the Feature Pyramid Network (FPN) stage, we use a weight matrix based on
dense depth map features to enhance the detection of small and challenging objects.
This approach yields significant improvements in detection accuracy for vehicles,
bicycles, and pedestrians within the Kitti dataset, showing relative enhancements of
4.78%, 8.93%, and 15.54%, respectively, over the baseline.
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3. We generate masks for regions with target recognition labels, calculate depth comple-
tion loss separately, and reduce the weight of depth completion loss in environmental
areas to mitigate noise impact on the neural network.

2. Related Work
2.1. General 2D Image Object Detection

Deep learning-based detection algorithms are typically divided into two main cat-
egories: two-stage and one-stage detectors. The well-known RCNN series, including
RCNN [34], Fast RCNN [35], and Faster RCNN [36], are two-stage algorithms known for
their superior accuracy over many other detection methods. Nonetheless, they are com-
putationally intensive, resulting in longer processing times. On the other hand, one-stage
detectors like SSD (Single Shot MultiBox Detector) [37] and YOLO (You Only Look Once)
were developed to strike a balance between accuracy and efficiency. Particularly, YOLO is
renowned for its effectiveness in balancing these two aspects.

RCNN utilizes a strategy based on region proposals [38], where each proposal is
normalized in scale before being classified by a ConvNet [39]. Advanced detectors such
as Fast RCNN and Faster RCNN promote the usage of features calculated at a singular
scale, optimizing the balance between accuracy and processing duration. However, these
methods are not fast enough for embedded board applications due to their high memory
demands and complex network architectures, making real-time performance difficult to
achieve [40,41].

Focusing on efficiency, one-stage object detection methods have gained significant
interest. The SSD technique, introduced by Liu et al. [42], assigns different scale anchors
across multiple ConvNet layers, with each layer tasked to predict objects of a certain
scale. To further enhance SSD, Fu et al. [43] developed the Deconvolutional Single Shot
Detector (DSSD), integrating Residual-101 [44] with SSD and adding deconvolutional layers.
This provides a broader scale context for detection, thereby improving accuracy. Another
innovation by Li et al. [45], the Feature Fusion Single Shot Detector (FSSD), augments SSD
with a novel, lightweight feature fusion module. This module connects multi-layer features
from various scales to create a new feature pyramid using downsampling blocks, which is
then utilized for final detection predictions.

YOLO performs object category and position predictions through a singular forward
convolutional network, achieving impressive frame rates of up to 45 fps. Its successor,
YOLOv2 [46], made several enhancements, including the adoption of high-resolution layers,
batch normalization in each convolutional layer, and the use of convolutional layers for
bounding box predictions. YOLOv3 [47] further improved the framework by switching
to the darknet-53 backbone network and incorporating multi-scale feature utilization for
detection. YOLOv5 [48] introduced new elements such as the Focus module, SPP module,
and a feature pyramid structure. These enhancements allow for the fusion of multi-scale
features at different stages of detection, thus boosting accuracy and stability.

2.2. Multi-Sensor Fused Object Detection

Intelligent vehicles have increasingly adopted the integration of camera and LiDAR
technologies for detecting objects. The approaches to this fusion have evolved over time.
The Navlab team utilized a combination of multiple cameras and laser scanners to identify
moving objects, as outlined in Aufrère et al.’s work [49]. They employed image-based edge
detection and used laser scanners for edge localization, classifying objects based on their
motion trajectories. Monteiro et al. [50] implemented a single laser scan and a camera for
object detection in semi-structured outdoor environments tailored to intelligent vehicles.
Their approach involved using the laser for rapid detection to create regions of interest
(ROIs), followed by the application of two distinct classifiers to these ROIs for obtaining
individual results. In similar vein, Premebida et al. [51] designed a perception system,
optimized for pedestrian detection, that employed two distinct fusion architectures, both
enhancing detection capabilities.
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With the increasing integration of LiDAR technology in autonomous driving systems,
many studies have combined camera and LiDAR data for 3D object detection via Deep
Convolutional Neural Networks (DCNNs) [52,53]. The PC-CNN framework [52] offers a
method to extend 2D object detection to 3D by utilizing images to generate 2D detection
results, which are then used to narrow down the search area in the point cloud. However,
this framework does not exploit the point cloud data to enhance 2D detection performance,
representing a promising area for further development. F-PointNet [53] follows a similar
procedure, generating 3D frustums from the point cloud based on 2D detection results,
and then conducting 3D instance segmentation based on 3D box estimates. However, in this
approach, image and point cloud data are processed using separate branches without in-
depth fusion, missing an opportunity to improve 2D detection capabilities. F-PointNet [53]
introduced a comparable workflow, producing a 3D frustum from the point cloud based
on 2D detection outcomes, followed by 3D instance segmentation in line with 3D box
estimation. Yet, this method did not deeply fuse image and point cloud data for feature
extraction, thus missing an opportunity to enhance 2D detection capabilities.

In this paper, a critical issue addressed is how to directly extract features from the
integrated data space of images and point clouds, instead of merely conducting a fusion
process post individual feature extraction. Additionally, inspired by the works of Ochs [54]
and Klingner [55], we recognized the parallelizability of depth completion and object
detection tasks. Consequently, we have implemented this objective through Transformer,
resulting in relatively favorable outcomes.

3. Methodology

Existing object detection networks typically use the results of the depth completion
network as input to the object detection network and perform fusion in a sequential manner.
However, during the fusion stage, these networks often rely solely on the Concat method,
which not only affects real-time performance but also does not yield significant fusion
improvements. As illustrated in Figure 1, to maintain real-time processing, our approach
conducts object detection and depth completion concurrently within the same neural
network backbone. Furthermore, in the subsequent Feature Pyramid Network (FPN) stage,
we leverage the recovered dense depth map features for further fusion, thereby enhancing
fusion effectiveness.

Concat

Fusion Module 

Shared transformer

Conv Conv

Conv

Depth Completion

Feature Extraction

Dense Depth

Sparse Depth RGB Image Detection Result

RGB Feature Depth Feature

Figure 1. Network architecture diagram.
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Compared to YOLOv5, our model substitutes the backbone with a Swin-Transformer [56]
and integrates a preprocessing network prior to the Swin-Transformer, aiming for the more
effective extraction of features from sparse depth maps and RGB images independently.
Additionally, we added a neural conditional random field-based depth completion branch
downstream to reconstruct dense depth maps. Furthermore, we incorporated a fusion
module to extract dense depth map features and fused them with RGB and sparse LI-
DAR features.

3.1. Data Augmentation

The commonly used data augmentation methods in YOLO include Mosaic, CutMix,
and MixUp. The Mosaic method involves processing four images using basic data aug-
mentation techniques such as cropping and scaling, and then randomly combining them
to generate a new image. The CutMix method randomly selects two images from the
dataset, crops one of them, overlays it onto the other image, and then inputs the newly
generated image into the network for training. However, this can result in discontinuities in
depth maps. The MixUp method combines two images without cropping, applies different
opacities to overlap them, and then inputs them into the network, causing a single pixel to
have two depth values.

Considering the unique characteristics of depth completion tasks, depth values within
a single image often exhibit continuity, and the same pixel location cannot have two depth
values simultaneously. Therefore, we have excluded the CutMix and MixUp algorithms
and ultimately opted for the Mosaic method. In our approach, we scale and combine
four depth maps with RGB images proportionally and then input them into the network
for training.

3.2. Preprocessing Module

In the backbone network stage, we used Swin-Transformer-tiny as the base network,
which is superior to CSPN-Darknet in extracting global features, which is crucial for both
depth completion and object detection tasks. Since RGB images have dense pixels and a
higher number of channels, while sparse depth maps have sparse effective pixels and are
single-channel, there is a significant difference in the amount of information carried by the
two. Sparse depth maps, due to their sparse effective depth, require a larger receptive field
than RGB images to extract effective features. Directly inputting them into the network
would result in the network’s inability to allocate the number of feature maps accurately
for different sensor data.

Hence, we refrained from directly feeding them into the network; instead, we applied
three 3 × 3 convolutional layers for preprocessing. This approach allowed us to intervene
manually in the number of feature map channels occupied by each sensor data and also
increased the receptive field for the sparse depth map. This strategy effectively prevents
the premature loss of substantial RGB or depth feature information during the integration
of feature layers. The formula is as follows:

FRGB = Conv3( fRGB, OutchannelRGB), (1)

FDepth = Conv3
(

fDepth, OutchannelDepth

)
, (2)

FFinal = Conv3
(

Concat
(

FRGB, FDepth

)
, OutchannelUnion

)
, (3)

where Conv3 represents a 3 × 3 convolution, fRGB denotes the initial input three-channel
RGB image, fDepth represents the initial input single-channel depth map, Concat indicates
the stacking of feature maps along dimensions, and OutchannelRGB , OutchannelDepth,
OutchannelUnion are set to 48, 16, and 64, respectively, representing the number of channels
in the output after convolution.
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3.3. Depth Completion

For the features extracted at different scales by the backbone network, we feed them
separately into the FPN (Feature Pyramid Network) and the depth completion network.
In the FPN section, we drew inspiration from the design philosophy of YOLOv5. As for
the depth completion section, we employed a neural conditional random field [57], as
illustrated in Figure 2.

C Concat
+

QK
Head-1

F

QK
Head-n

Q

K

P X

X +X

Unary Net

Optimize
Net

X 

  ...

X

+ Addition

Dot product

So
ftM

ax

ѱp 
ѱu 

E1 

En 

Neural FC-CRF

Figure 2. In the Neural FC-CRF, we begin with the initial prediction X based on image and sparse
depth features F. Subsequently, at each level, the network constructs a multi-head attention mecha-
nism from X and F to optimize for an improved prediction X

′
.

In our research, Conditional Random Fields (CRF) are utilized to enhance the accuracy
of depth estimation. The estimation of depth associated with a given pixel is influenced by
surrounding pixels within a broadened scope across the image. In the context of graphical
models, the energy function for a fully connected CRF is generally defined as follows:

E(x) = ∑
i

ψu(xi) + ∑
ij

ψp
(

xi, xj
)
, (4)

in our model, the variable xi is assigned to represent the output prediction for the node
labeled i. Meanwhile, j refers to all remaining nodes within the same graph. For each
node, a unary potential, denoted as ψu, is computed, drawing on the information from
feature maps. In addition, a pairwise potential, ψp, is established, connecting a given node
not just with its immediate neighbors but with every other node in the graph. The unary
potential originates from the feature maps processed by the network. On the other hand,
the pairwise potential is a composite measure, incorporating the values from both the
focused node and all others, factoring in a weight based on the combined attributes of color,
depth, and spatial location for each pair of nodes. The mathematical expressions defining
these potentials are structured as follows:

ψu(xi) = Nu(F, xi), (5)

ψp
(
xi, xj

)
= w

(
pi, pj,Fi,Fj

)∥∥xi − xj
∥∥, (6)

in this context, F represents the feature map, with N denoting the parameters of a unary
network. The variable pi indicates the spatial location of node i, and w is identified as the
weighting function.

Furthermore, it is essential that the weights assigned to potential functions differ when
considering a node in relation to various other nodes. The redefined potential functions,
incorporating these adjustments, are presented as follows:
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ψxi = α
(

pi, pj,Fi,Fj
)
xi + ∑

j ̸=i
β
(

pi, pj,Fi,Fj
)
xj, (7)

in this formulation, α and β function as weighting factors, determined through net-
work computation.

Our method is influenced by recent advancements in Swin-Transformer technology.
For each patch within a given window, we derive query vectors q and key vectors k
from their respective feature maps. These vectors, aggregated from all patches, are then
formulated into matrices represented as q and k. Following this, we calculate the dot
product of these matrices to ascertain potential weights that define pairwise relationships.
The final pairwise potentials are obtained by scaling the predicted values X with these
deduced weights.

To incorporate spatial context, relative position embeddings, denoted as P, have been
integrated into our model. Consequently, the calculation of the previously mentioned
formula is executed as follows:

ψpi = So f tMax
(

q · KT + P
)
· X, (8)

∑
i

ψpi = So f tMax
(

Q · KT + P
)
· X, (9)

where · represents dot product, the output of So f tMax yields weights α and β, determining
the weights of information with position encoding P. The final module structure is shown
in Figure 3.
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Figure 3. The final densely completed feature map is re-extracted for feature enhancement. Channel
and spatial attention mechanisms are applied at different scales to weight the regions of interest and
are concatenated with the features extracted by YOLO before being sent to the head for detection.
F1, F2, F3 represent shared feature maps, each being input into the depth completion and FPN stages.

3.4. Fusion Module

During the Feature Pyramid Network (FPN) phase, preceding the final detection stage,
features processed through depth completion undergo convolution and downsampling.
These enhanced features are then integrated with the semi-dense depth feature map.
The fusion of RGB and depth features presents two main challenges: firstly, a compatibility
issue due to the inherent differences between the modalities, and secondly, the presence of
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redundancy and noise in low-quality depth features. Inspired by [58], we have developed
a depth-enhancement module. This module is tailored to augment the synergy of multi-
modal features and to distill valuable information from the depth feature maps, as depicted
in Figure 3.

Specifically, we denote f rgb
i , f d

i as the feature maps from the i-th side output layer of
the RGB and depth branches, respectively. Each fusion module is added before introducing
features from the depth branch into each side output feature map, aiming to improve the
compatibility of these depth feature maps. This lateral output procedure not only enhances
the prominence of depth feature maps but also conserves information across multiple
levels and varying scales. The methodology for integrating features in both scenarios is
characterized as follows:

fDEM

(
f d
i

)
= Satt

(
Catt

(
f d
i

))
, (10)

f cm
i = Concat

(
f rgb
i , fDEM

)
, (11)

where f cm
i represents the feature maps from the i-th layer of multimodal fusion, and the

DEM module encompasses both sequential channel attention mechanism and spatial
attention mechanism, Satt represents the spatial attention module, and Catt represents the
channel attention module.

3.5. Loss Function Design

In the phase of depth completion, our approach incorporated the use of Scale-Invariant
Logarithmic (SILog) loss, as detailed in [59], for overseeing the training process. With access
to the ground truth depth map, our first step was to compute the logarithmic deviation
between the forecasted depth map and the ground truth depth measurement. Subsequently,
we computed the scale-invariant loss to ensure the effective supervision of the model
training even in situations with varying scales:

∆di = log
ˆ
di − logd∗i , (12)

L = α

√√√√ 1
K ∑

i
∆d2

i −
λ

K2

(
∑

i
∆di

)2

, (13)

where d∗i represents the true depth value, di is the predicted depth value for pixel i. λ is the
variance minimization factor, set to 0.85, and α is a scale constant, set to 10.

In most scenes, areas containing branches, grass, and shrubs are common, and these
areas often contain a significant amount of noise, occupying a large portion of the image.
At the same time, depth ground truth labels are also unable to accurately represent them.
Therefore, we have employed label data from object detection to generate masks (as shown
in the semi-transparent rectangular areas in Figure 4) to ignore most of the background areas.
By calculating the depth completion loss for both the masked areas and the entire image
separately, we can effectively reduce the loss weight of the background areas, allowing the
network to fit better. The final depth completion loss is designed as follows:

Lmask = α

√√√√ 1
K ∑

i
∆d2

i−mask −
λ

K2

(
∑

i
∆di−mask

)2

, (14)

Ldepth = L+ 0.5 ×Lmask, (15)

where ∆di−mask represents the logarithmic difference between the predicted depth map and
the actual depth in the masked region.
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The object detection loss consists of anchor localization loss computed using General-
ized Intersection over Union (GIOU), cross-entropy loss for classification, and confidence
loss. Finally, our loss function is designed as follows:

Ltotal = β
(
LBCEcls + LBCEobj + Lgiou

)
+ Ldepth, (16)

where β is a scalar parameter, LBCEcls represents cross-entropy loss for classification,
LBCEobj represents cross-entropy loss for confidence loss. To adjust the neural network
predominantly by depth completion in the early training stages and by the detection task
in the later stages, we set β to 0.1 for the first 100 epochs, and then to 1 and 10 at epochs
100 and 150, respectively.

Figure 4. Previous depth completion loss calculations required assessing the valid depth areas across
the entire image. In this paper, we leverage target boxes derived from object detection to generate
masks (represented by the semi-transparent areas in the image) for the isolated computation of depth
completion loss in regions containing targets.

3.6. Dataset and Metric

Given that KITTI provided the necessary dense depth ground truths and object detec-
tion labels for our training, we conducted our training and testing on this dataset. The train-
ing set for the KITTI object detection task comprises 7481 paired instances. Of these,
3740 pairs are allocated for training purposes, and 3741 for testing. Addressing the skewed
distribution of object categories within KITTI, categories such as ‘Car’, ‘Van’, ‘Truck’, and
‘Tram’ were consolidated under the single label ‘Car’, while both ‘Pedestrian’ and ‘Person
sitting’ were combined under ‘Pedestrian’. Our analysis primarily focused on the categories
of ‘Car’, ‘Pedestrian’, and ’Cyclist’. In the training phase, mosaic augmentation techniques
were employed, and random adjustments in translation, orientation, and scale were applied
to both LIDAR point clouds and camera images. For concurrent task training, the KITTI
depth dataset provided dense depth annotations. The KITTI benchmark uses Average
Precision (AP), calculated at 40 distinct points on the Precision–Recall (PR) curve, as its
detection metric. The 2D assessment criterion for cars requires an Intersection over Union
(IoU) of 0.7, whereas, for other categories, the IoU threshold is set at 0.5. KITTI further
categorizes object labels into three groups based on size and degree of occlusion, namely
easy, moderate, and hard.



Sensors 2024, 24, 2374 10 of 16

3.7. Implementation Details

We detect objects in the RGB images where LIDAR points fall because only these
regions can benefit from image feature augmentation. We also crop different-sized images
to a uniform size of 352 × 1216 pixels. Model training was conducted on a single GPU
machine with a total batch size of 6. We set the initial learning rate to 0.0001 with a
minimum learning rate of 0.000001. Utilizing the Adam optimization algorithm (β1 = 0.9,
β2 = 0.999), along with a cosine annealing strategy with Tmax set to 40 epochs, we trained
the model for a total of 250 epochs. The methodology we have developed was executed on
a single RTX 3090 graphics card, equipped with 24 GB of memory.

3.8. Evaluation Metrics

Evaluation metrics for object detection models based on deep learning include recall,
precision, average precision (AP), accuracy, and others. Precision quantifies the ratio
of correctly detected objects out of all detected objects. Recall gauges the proportion of
correctly predicted positive samples out of all positive samples. Accuracy assesses the ratio
of correctly predicted objects out of all objects.

Average Precision|R =
1
|R| ∑

r∈R
pinterp (r), (17)

where pinterp (r) denotes the interpolated average precision at a given recall value r, R
represents the number of interpolation points for the average precision. Object detection
accuracy and detection coverage are generally evaluated using the Precision–Recall (PR)
curve. Higher precision at a fixed recall indicates the better detection capability of the
algorithm. In this context, we set R to 40.

4. Results
4.1. Evaluation Results

We compared our method with state-of-the-art detectors in Table 1 and demonstrated
that our method outperforms competitors significantly in both pedestrian and cyclist
detection tasks. This is mainly due to the unique characteristics of pedestrian and cyclist
contours on the depth map, making them easier to distinguish. In contrast, the depth
map of vehicles, such as trucks and trams, has relatively small differences from the walls.
In poor lighting conditions, it is easy to misidentify walls as vehicles, which somewhat
reduces the recognition rate. In the end, under the challenging difficulty level, we achieved
a performance improvement of 4.59% and 11.32% compared to the state of the art.

Table 1. Comparative assessment of different methods in 3D object detection, evaluated by Average
Precision (AP, %) on the KITTI test dataset. * indicates that the data originate from the referenced paper.
Bold indicates the highest recognition rate.

Method Runtime Input Data
Car (%) Pedestrian (%) Cyclist (%)

Easy Mod Hard Easy Mod Hard Easy Mod Hard

MMF [32] 43 ms Image + Lidar 91.82 90.17 88.54 N/A N/A N/A N/A N/A N/A
MSF-YOLO [33] 32 ms * Image + Lidar 95.34 91.12 84.55 75.04 59.03 54.65 66.53 48.23 42.61

Faster R-CNN [35] 24 ms Image 88.97 83.16 72.62 79.97 66.24 61.09 72.40 62.86 54.97
GFD-Retina [60] 376 ms * Image + Lidar 94.36 88.54 78.74 77.43 60.00 56.01 79.90 60.43 53.62

VPF [61] 72 ms Image + Lidar 96.06 95.17 92.66 75.03 65.68 61.95 82.60 74.52 66.04
YOLOX [62] 18 ms Image 93.15 87.26 84.49 73.80 65.93 57.81 79.49 71.83 59.38

YOLOV7 [63] 15 ms Image 94.20 88.13 86.34 73.62 65.91 57.13 79.83 74.15 62.05
Ours 26 ms Image + Lidar 96.41 90.01 89.89 80.84 73.67 66.54 87.55 83.19 77.36
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As shown in Figure 5, compared to methods involving concatenating sparse LiDAR
data with RGB images, our approach excels in detecting smaller objects and exhibits
reduced susceptibility to false positives.

(a) (b) (c)

Figure 5. Detection results on the KITTI dataset. (a) Generated dense depth map. (b) Detection
results by concatenating the RGB image with sparse depth map in the detection network. (c) Our
detection results.

4.2. Ablation Study

In this section, our primary emphasis is on the following key aspects:

1. The advantages of employing the preprocessing network in the context of fused
object detection.

2. The efficacy of multi-scale fusion during the Feature Pyramid Network (FPN) stage
for our fused object detection.

3. The impact on object detection performance due to the design of the loss function.

4.2.1. Impact of the Preprocessing Module

We performed an ablation study using the KITTI dataset, where YOLOV5, augmented
with a Swin-Transformer backbone, served as our baseline model. This approach allowed us
to evaluate the individual contributions of each component in the system. Our investigation
aimed to understand the differences between directly concatenating the LiDAR depth map
and RGB image and utilizing a preprocessing convolutional network before feeding them
into the Swin-Transformer. As depicted in Table 2, the results show that the preprocessing
network leads to an improvement of over 0.5% for detecting hard targets. This improvement
can be attributed to several factors. Firstly, the convolutional processing of LiDAR and RGB
images within the preprocessing network expands the receptive field, allowing for a better
grasp of the data from different sensors. Secondly, it helps control the proportion of feature
map layers dedicated to different sensor inputs. Lastly, employing separate convolutional
kernels for each sensor data stream makes it more feasible for the network to fit and extract
distinctive features from each type of sensor data.
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Table 2. Ablation study of different modules in the network. “P” refers to the preprocessing module,
“L” refers to loss function design, and “M” refers to the multi-scale depth completion fusion module.
Bold indicates the highest recognition rate.

Method
Car (%) Pedestrian (%) Cyclist (%)

Easy Mod Hard Easy Mod Hard Easy Mod Hard

Basaeline 93.59 87.92 85.11 73.49 65.71 57.61 80.31 73.79 61.82
+ P 93.74 88.12 85.73 73.66 65.95 58.37 80.92 74.58 62.75
+ M 94.37 88.82 87.05 77.92 70.53 63.36 85.28 80.29 74.53

+ P + M 94.63 89.19 88.02 78.28 71.01 64.47 85.73 81.13 75.59
+ M + L 94.85 89.33 88.59 80.15 72.82 65.35 86.79 82.25 76.08

+ P + M + L 96.41 90.01 89.89 80.84 73.67 66.54 87.55 83.19 77.36

4.2.2. Impact of the Multi-Scale Depth Completion Fusion Module

This module initially employs a neural Conditional Random Field (CRF), which has
recently been applied in depth completion, semantic segmentation, and other areas. Its
primary function is based on the color and distance correlation between pixels within
the image to predict the depth values of pixels with missing depth. After sequentially
restoring to the original image dimensions, we use a lightweight feature extraction network
to conduct specialized feature extraction on the depth map. Drawing inspiration from the
multi-scale design concept in YOLO, we also divide depth features into three scales: small,
medium, and large. This allows the model to better adapt to complex scenes, enhancing its
perception of objects at different scales and thereby improving the model’s performance
across various tasks. We utilize a spatial attention mechanism to calculate the weight of
each pixel in space, enabling the model to focus on more important image areas through
depth differences while ignoring less significant areas. Concurrently, a channel attention
mechanism is used to determine the importance of each channel, with the final combined
RGB features then fed into YOLO’s detection head for object detection.

We performed a comparison between the network with and without the multi-scale
depth completion fusion module. The results clearly show that the inclusion of features
extracted from the dense depth map leads to more precise matching relationships between
pixels and LiDAR points. This improvement in matching enhances the detector’s ability
to distinguish between foreground and background, leading to notable improvements in
detection performance across all levels of difficulty. In particular, the Average Precision
(AP) for cars increased by 1.94%, for pedestrians by 5.75%, and for cyclists by 12.71%.

4.2.3. The Combined Impact of the Preprocessing Module and Multi-Scale Fusion Module

Based on the aforementioned observations, we have discovered that the preprocessing
network significantly enhances the receptive field of downstream tasks, thereby improving
object detection performance. Simultaneously, it endeavors to preserve RGB features while
mitigating the dominance of depth-related features within the channels. We integrated the
preprocessing network with other modules, and through experimentation, we observed that
the preprocessing network, by simultaneously expanding the receptive field for both depth
completion and object detection tasks, exhibits a more pronounced impact on networks
equipped with the multi-scale depth completion fusion module compared to networks
lacking this design module.

4.2.4. Impact of the Loss Function Design

The enhancement of the loss function has led to a more focused depth completion on
areas with cars, pedestrians, and cyclists, thereby reducing the impact of environmental
noise on depth completion. Consequently, the depth completion of targeted areas has
become more refined, which in turn has improved the effectiveness of object detection after
the integration of depth features.
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Ultimately, in comparison to the baseline, vehicle recognition improved by 4.78%,
pedestrian recognition improved by 8.93%, and cyclist recognition improved by 15.54%.

5. Discussion

MSF-YOLO [33] simply concatenates the dense depth map with RGB data, with-
out employing advanced fusion techniques. This basic method of fusion fails to exploit
the depth information fully, leading to inadequate detection performance. Furthermore,
GFD-Retina [60] advances upon this by designing a fusion unit that merges depth features
with RGB features at multiple scales, thereby outperforming MSF-YOLO in pedestrian
and cyclist detection. However, methods mentioned above did not utilize shared feature
extraction between depth completion and object detection, resulting in redundant feature
extractions and longer processing times (32 ms). On the other hand, the environmental
noise was not considered in depth completion loss functions, resulting in only a 2.4%
improvement in prediction accuracy. VPF [61] employs computationally intensive 3D con-
volutions and complex fusion modules. It achieves an average precision of 78.86% across
all classes but requires inference times exceeding 70 ms. Contrarily, our method shares
a feature extraction network between depth completion and object detection, merging
depth and RGB features before the final detection stage. This strategy boosts the network’s
inference speed and reduces computational demands. Compared to the 32 ms needed
for serial integration of depth completion and object detection networks, our enhanced
framework requires only 26 ms for inference. Moreover, it outperforms VPF by 4.59% and
11.32% for pedestrian and cyclist detection under the hard level, respectively.

Regarding car recognition rates, the proposed methodology does not exceed the cur-
rent state-of-the-art. This shortfall primarily stems from suboptimal lighting conditions,
under which entities like walls resemble trucks in LiDAR scans, exacerbated by insuf-
ficient RGB texture data, resulting in erroneous identifications. Additionally, the depth
completion module consumes a considerable segment of inference time; thus, acceler-
ating the computational efficiency of the depth completion module is one of the future
research directions.

6. Conclusions

We have developed a multi-sensor detection framework that capitalizes on depth
completion techniques. This framework uniquely incorporates depth data during both the
feature extraction phase and the Feature Pyramid Network (FPN) stage, in conjunction
with RGB features. Distinct from conventional fusion methods, our model ensures a more
accurate alignment of LiDAR point features with RGB features, both quantitatively and
spatially. This alignment fosters enhanced learning of representations and a more robust
fusion of dense features. Our methodology, rigorously tested on the KITTI benchmark,
has consistently led in performance against the baseline across various detection tasks.
Specifically, within the categories classified by KITTI as easy, moderate, and hard, our
approach has demonstrated substantial improvements over the baseline. For the ‘hard’ dif-
ficulty level, it achieved enhancements of 4.78% for cars, 8.93% for pedestrians, and 15.54%
for cyclists, illustrating its robustness in the most challenging scenarios. Future devel-
opments focus on enhancing 3D object localization by developing a pseudo point cloud
correction module and 3D bounding box fusion algorithm, and adapting the network for
instance segmentation.
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Drbohlav, O.; et al. The eighth visual object tracking VOT2020 challenge results. In Proceedings of the Computer Vision—ECCV
2020 Workshops, Glasgow, UK, 23–28 August 2020; pp. 547–601.

16. Hong, S.; You, T.; Kwak, S.; Han, B. Online tracking by learning discriminative saliency map with convolutional neural network.
In Proceedings of the International Conference on Machine Learning, PMLR, Lille, France, 6–11 July 2015; pp. 597–606.

17. Fan, D.P.; Ji, G.P.; Sun, G.; Cheng, M.M.; Shen, J.; Shao, L. Camouflaged object detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, virtual, 14–19 June 2020; pp. 2777–2787.

18. Liu, G.; Fan, D. A model of visual attention for natural image retrieval. In Proceedings of the 2013 International Conference on
Information Science and Cloud Computing Companion, Guangzhou, China, 7–8 December 2013; pp. 728–733.

19. Li, J.; Zhang, X.; Li, J.; Liu, Y.; Wang, J. Building and optimization of 3D semantic map based on Lidar and camera fusion.
Neurocomputing 2020, 409, 394–407.

20. Ulrich, L.; Vezzetti, E.; Moos, S.; Marcolin, F. Analysis of RGB-D camera technologies for supporting different facial usage
scenarios. Multimed. Tools Appl. 2020, 79, 29375–29398.

21. Brahmanage, G.; Leung, H. Outdoor RGB-D Mapping Using Intel-RealSense. In Proceedings of the 2019 IEEE SENSORS,
Montreal, QC, Canada, 27–30 October 2019; pp. 1–4.

22. Halmetschlager-Funek, G.; Suchi, M.; Kampel, M.; Vincze, M. An empirical evaluation of ten depth cameras: Bias, precision,
lateral noise, different lighting conditions and materials, and multiple sensor setups in indoor environments. IEEE Robot. Autom.
Mag. 2018, 26, 67–77.

23. Huang, T.; Liu, Z.; Chen, X.; Bai, X. Epnet: Enhancing point features with image semantics for 3d object detection. In Proceedings
of the Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; pp. 35–52.



Sensors 2024, 24, 2374 15 of 16

24. Chen, X.; Ma, H.; Wan, J.; Li, B.; Xia, T. Multi-view 3d object detection network for autonomous driving. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1907–1915.

25. Su, H.; Jampani, V.; Sun, D.; Maji, S.; Kalogerakis, E.; Yang, M.H.; Kautz, J. Splatnet: Sparse lattice networks for point cloud
processing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 19–21
June 2018; pp. 2530–2539.

26. Wang, Y.; Chao, W.L.; Garg, D.; Hariharan, B.; Campbell, M.; Weinberger, K.Q. Pseudo-lidar from visual depth estimation:
Bridging the gap in 3d object detection for autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 8445–8453.

27. You, Y.; Wang, Y.; Chao, W.L.; Garg, D.; Pleiss, G.; Hariharan, B.; Campbell, M.; Weinberger, K.Q. Pseudo-lidar++: Accurate depth
for 3d object detection in autonomous driving. arXiv 2019, arXiv:1906.06310.

28. Simon, M.; Amende, K.; Kraus, A.; Honer, J.; Samann, T.; Kaulbersch, H.; Milz, S.; Michael Gross, H. Complexer-yolo: Real-time
3d object detection and tracking on semantic point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019.

29. Yin, T.; Zhou, X.; Krähenbühl, P. Multimodal virtual point 3d detection. In Proceedings of the Thirty-Fifth Annual Conference on
Neural Information Processing Systems, virtual, 6–14 December 2021; Volume 34, pp. 16494–16507.

30. Ophoff, T.; Van Beeck, K.; Goedemé, T. Exploring RGB+ Depth fusion for real-time object detection. Sensors 2019, 19, 866.
31. Chu, F.; Pang, Y.; Cao, J.; Nie, J.; Li, X. Improving 2D object detection with binocular images for outdoor surveillance.

Neurocomputing 2022, 505, 1–9.
32. Liang, M.; Yang, B.; Chen, Y.; Hu, R.; Urtasun, R. Multi-task multi-sensor fusion for 3d object detection. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 7345–7353.
33. Shen, J.; Liu, Q.; Chen, H. An optimized multi-sensor fused object detection method for intelligent vehicles. In Proceedings of

the 2020 IEEE 5th International Conference on Intelligent Transportation Engineering (ICITE), virtual, 11–13 September 2020;
pp. 265–270.

34. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp.
580–587.

35. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December
2015; pp. 1440–1448.

36. Jiang, D.; Li, G.; Tan, C.; Huang, L.; Sun, Y.; Kong, J. Semantic segmentation for multiscale target based on object recognition
using the improved Faster-RCNN model. Future Gener. Comput. Syst. 2021, 123, 94–104.

37. Zheng, W.; Tang, W.; Chen, S.; Jiang, L.; Fu, C.W. Cia-ssd: Confident iou-aware single-stage object detector from point cloud.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 2–9 February 2021; Volume 35, pp.
3555–3562.

38. Shrivastava, A.; Gupta, A.; Girshick, R. Training region-based object detectors with online hard example mining. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 761–769.

39. Sünderhauf, N.; Shirazi, S.; Dayoub, F.; Upcroft, B.; Milford, M. On the performance of convnet features for place recognition. In
Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 29
September–2 October 2015; pp. 4297–4304.

40. Cai, G.; Chen, B.M.; Lee, T.H. Unmanned Rotorcraft Systems; Springer Science & Business Media: London, UK, 2011.
41. Garcia Rubio, V.; Rodrigo Ferran, J.A.; Menendez Garcia, J.M.; Sanchez Almodovar, N.; Lalueza Mayordomo, J.M.; Álvarez, F.

Automatic change detection system over unmanned aerial vehicle video sequences based on convolutional neural networks.
Sensors 2019, 19, 4484.

42. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37.

43. Fu, C.Y.; Liu, W.; Ranga, A.; Tyagi, A.; Berg, A.C. Dssd: Deconvolutional single shot detector. arXiv 2017, arXiv:1701.06659.
44. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
45. Li, Z.; Zhou, F. FSSD: Feature fusion single shot multibox detector. arXiv 2017, arXiv:1712.00960.
46. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.
47. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
48. Kim, J.H.; Kim, N.; Park, Y.W.; Won, C.S. Object detection and classification based on YOLO-V5 with improved maritime dataset.

J. Mar. Sci. Eng. 2022, 10, 377.
49. Aufrère, R.; Gowdy, J.; Mertz, C.; Thorpe, C.; Wang, C.C.; Yata, T. Perception for collision avoidance and autonomous driving.

Mechatronics 2003, 13, 1149–1161.
50. Monteiro, G.; Premebida, C.; Peixoto, P.; Nunes, U. Tracking and classification of dynamic obstacles using laser range finder and

vision. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Beijing, China, 9–15
October 2006; pp. 1–7.

51. Premebida, C.; Ludwig, O.; Nunes, U. LIDAR and vision-based pedestrian detection system. J. Field Robot. 2009, 26, 696–711.



Sensors 2024, 24, 2374 16 of 16

52. Du, X.; Ang, M.H.; Karaman, S.; Rus, D. A general pipeline for 3d detection of vehicles. In Proceedings of the 2018 IEEE
International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 3194–3200.

53. Qi, C.R.; Liu, W.; Wu, C.; Su, H.; Guibas, L.J. Frustum pointnets for 3d object detection from rgb-d data. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 918–927.

54. Ochs, M.; Kretz, A.; Mester, R. Sdnet: Semantically guided depth estimation network. In Proceedings of the Pattern Recognition:
41st DAGM German Conference, DAGM GCPR 2019, Dortmund, Germany, 10–13 September 2019; pp. 288–302.

55. Klingner, M.; Termöhlen, J.A.; Mikolajczyk, J.; Fingscheidt, T. Self-supervised monocular depth estimation: Solving the dynamic
object problem by semantic guidance. In Proceedings of the Computer Vision—ECCV 2020: 16th European Conference, Glasgow,
UK, 23–28 August 2020; pp. 582–600.

56. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using
shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, virtual, 10–17 October 2021; pp.
10012–10022.

57. Yuan, W.; Gu, X.; Dai, Z.; Zhu, S.; Tan, P. New crfs: Neural window fully-connected crfs for monocular depth estimation. arXiv
2022, arXiv:2203.01502.

58. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

59. Eigen, D.; Puhrsch, C.; Fergus, R. Depth map prediction from a single image using a multi-scale deep network. In Proceedings of
the Twenty-Eighth Annual Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014;
Volume 27.

60. Condat, R.; Rogozan, A.; Bensrhair, A. Gfd-retina: Gated fusion double retinanet for multimodal 2d road object detection. In
Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20–23
September 2020; pp. 1–6.

61. Wang, C.H.; Chen, H.W.; Fu, L.C. Vpfnet: Voxel-pixel fusion network for multi-class 3d object detection. arXiv 2021, arXiv:2111.00966.
62. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:2107.08430.
63. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object

detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC,
Canada, 18–22 June 2023.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Related Work
	General 2D Image Object Detection
	Multi-Sensor Fused Object Detection

	Methodology
	Data Augmentation
	Preprocessing Module
	Depth Completion
	Fusion Module
	Loss Function Design
	Dataset and Metric
	Implementation Details
	Evaluation Metrics

	Results
	Evaluation Results
	Ablation Study
	Impact of the Preprocessing Module
	Impact of the Multi-Scale Depth Completion Fusion Module
	The Combined Impact of the Preprocessing Module and Multi-Scale Fusion Module
	Impact of the Loss Function Design


	Discussion
	Conclusions
	References

