
Citation: Zhang, Y.; Li, H.; Wang, S.;

Chen, F. A Fuzzy-PI Clock Servo with

Window Filter for Compensating

Queue-Induced Delay Asymmetry in

IEEE 1588 Networks. Sensors 2024, 24,

2369. https://doi.org/10.3390/

s24072369

Academic Editors: Paolo Bellavista

and Hai Dong

Received: 29 December 2023

Revised: 26 March 2024

Accepted: 4 April 2024

Published: 8 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Fuzzy-PI Clock Servo with Window Filter for Compensating
Queue-Induced Delay Asymmetry in IEEE 1588 Networks
Yifeng Zhang , Haotian Li, Shixuan Wang and Feifan Chen *

State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument,
Tsinghua University, Beijing 100084, China; yifeng-z18@mails.tsinghua.edu.cn (Y.Z.);
li-ht21@mails.tsinghua.edu.cn (H.L.); wsx22@mails.tsinghua.edu.cn (S.W.)
* Correspondence: cff@mail.tsinghua.edu.cn

Abstract: Clock synchronization is one of the popular research topics in Distributed Measurement
and Control Systems (DMCSs). In most industrial fields, such as Smart Grid and Flight Test, the
highest requirement for synchronization accuracy is 1 µs. IEEE 1588 Precision Time Protocol-2008
(PTPv2) can theoretically achieve sub-microsecond accuracy, but it relies on the assumption that
the forward and backward delays of PTP packets are symmetrical. In practice, PTP packets will
experience random queue delays in switches, making the above assumption challenging to satisfy
and causing poor synchronization accuracy. Although using switches supporting the Transparent
Clock (TC) can improve synchronization accuracy, these dedicated switches are generally expensive.
This paper designs a PTP clock servo for compensating Queue-Induced Delay Asymmetry (QIDA),
which can be implemented based on ordinary switches. Its main algorithm comprises a minimum
window filter with drift compensation and a fuzzy proportional–integral (PI) controller. We construct
a low-cost hardware platform (the cost of each node is within USD 10) to test the performance of the
clock servo. In a 100 Mbps network with background (BG) traffic of less than 70 Mbps, the maximum
absolute time error (max |TE|) does not exceed 0.35 µs, and the convergence time is about half a
minute. The accuracy is improved hundreds of times compared with other existing clock servos.

Keywords: clock synchronization; IEEE 1588 Precision Time Protocol (PTP); queue-induced delay
asymmetry; clock servo; packet selection algorithm; fuzzy-PI controller

1. Introduction

In a Distributed Measurement and Control System (DMCS), there are a large number
of nodes driven by independent clocks [1]. Clock synchronization plays a vital role because
synchronous measurement, distributed action coordination, etc., require each node to have
a common time reference. Due to node size and cost limitations, network-based packet
switching [2] is the mainstream clock synchronization method. The network link of the
DMCS can be divided into two types: wired and wireless. In the wireless field, especially
Wireless Sensor Network (WSN) [3], clock synchronization methods are sensitive to power
and complexity. Typical synchronization protocols suitable for WSNs include TPSN [4],
RBS [5], FTSP [6], etc. However, in industrial automation, wired communication, including
Fieldbus and Industrial Ethernet, still accounts for more than 90% of the global market [7].
In contrast, wireless technology is susceptible to interference and attack and has poor
security and reliability, leading to limited applications in the industry.

Typical clock synchronization methods for Industrial Ethernet include Network Time
Protocol (NTP) and IEEE 1588 Precision Time Protocol (PTP). NTP [8] completely relies
on software synchronization and has strong applicability. It originates from the Internet
and can only achieve millisecond accuracy. IEEE 1588-2008 (PTPv2) [9] supports obtaining
hardware timestamps, and the accuracy can reach the sub-microsecond level. It is widely
used in most fields, such as Smart Grid [10], Seismic Survey [11], Automotive Electron-
ics [12], and Flight Test [13]. White Rabbit (WR) [14], also known as IEEE 1588-2019 [15],

Sensors 2024, 24, 2369. https://doi.org/10.3390/s24072369 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24072369
https://doi.org/10.3390/s24072369
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8510-6335
https://doi.org/10.3390/s24072369
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24072369?type=check_update&version=1

Sensors 2024, 24, 2369 2 of 26

uses optical fiber to transmit time and frequency information. Based on PTPv2, it adds
Synchronous Ethernet and digital double-mixing phase detection. The accuracy can reach
the sub-nanosecond level, effectively meeting the requirements of applications such as
particle acceleration control [16] and cosmic ray detection [17]. However, its cost of network
construction is high, and the application field is narrow. Since the highest requirement for
synchronization accuracy in most industrial applications is 1 µs, PTPv2 is still the most
popular version in industrial automation.

The high accuracy of PTP relies on the assumption that the forward and backward
delays of packets are symmetrical [18]. Nevertheless, in actual networks, PTP packets will
compete with background traffic (BG) packets for transmission and experience random
queue delays in network elements such as switches. The higher the network load rate,
the more pronounced the Queue-Induced Delay Asymmetry (QIDA). The inconsistency
between the assumption and reality leads to time offset estimation error, resulting in
synchronization accuracy of tens of microseconds [19]. PTPv2 proposes to use Transparent
Clock (TC) [9] to measure the residence time of PTP packets inside the switch. The slave
clock compensates for QIDA using this time information, and the accuracy can be improved
to the sub-microsecond. However, this dedicated switch supporting the TC is generally
expensive (USD 1000–2000 per switch) [20,21], leading to a high cost of large-scale use and
poor flexibility.

In addition to QIDA, frequency instability of the crystal oscillator (XO) is also an essen-
tial factor affecting PTP accuracy [22]. The XO frequency is susceptible to drift due to the
influence of temperature, pressure, and aging. Therefore, time error is easily accumulated,
and the clock time must be periodically corrected. Correction methods comprise offset
compensation and frequency compensation [23]. Since most nodes are designed based on
unidirectional time flow [24], negative time correction can easily lead to system instability,
so more scholars adopt frequency compensation. A clock servo is a control system that
uses frequency compensation to periodically correct the time offset [25]. There are many
studies on clock servo [26–34], but few provide a detailed evaluation of synchronization
performance under QIDA.

To fill this knowledge gap, this paper designs a PTP clock servo for compensating
QIDA. The synchronization accuracy can achieve 1 µs in the network of ordinary switches.
Its main algorithm consists of a minimum window filter with drift compensation and a
fuzzy-PI controller. The main contributions are as follows:

1. We propose a time offset estimation algorithm based on the minimum window filter.
It has two improvements over ref. [35]. One is to use a single observation window
to complete the frequency offset estimation without constructing a second window.
Another is that the estimation is optimal bidirectional estimation, effectively reducing
the estimation error.

2. We propose a method to determine PI coefficients according to the damping ratio
and natural frequency under the discrete system model. After adding fuzzy logic,
the system can adaptively adjust PI coefficients at different stages, ensuring rapid
convergence and high synchronization accuracy. The physical and fuzzy domains of
the fuzzy controller are separated by scaling factors, improving the design flexibility.

3. We optimize the algorithm parameters and evaluate the performance of the clock
servo based on the broadcast traffic model. In a 100 Mbps network with BG traffic of
less than 70 Mbps, the maximum absolute time error does not exceed 0.35 µs, which
is improved hundreds of times compared with other clock servos [27,28,31,33].

This paper is organized as follows. Section 2 reviews the research progress of the
QIDA compensation methods and design methods of the clock servo. Section 3 analyzes
the sources for delay asymmetry and introduces the frequency compensation clock model.
Section 4 details the design method of our clock servo. Section 5 presents the experimental
platform and BG traffic model. Section 6 discusses the experimental results and compares
our method with others. Finally, Section 7 concludes and looks forward to future works.

Sensors 2024, 24, 2369 3 of 26

For convenience, a list of symbols and associated definitions adopted in this paper are
organized in Table 1.

Table 1. Symbols and associated definitions.

Symbols Definitions

x,
~
x,

^
x True value, measurement value, and estimation value of the time offset

t1, t2, t3, t4 Four timestamps obtained through PTP packet exchanges
t21, t43 Forward and backward timestamp differences
t21, t43 Forward and backward timestamp difference vectors
dms, dsm Forward and backward delays
κms, κsm Forward and backward static delays
δms, δsm Forward and backward queue delays
w Measurement noise of the time offset
n PTP synchronization process index
V Constant value in the frequency compensation clock model
u0, ucom Initial value and compensation value of the addend
fsys, f0 System clock frequency and slave clock frequency
T0 Slave clock period
k Observation window index
^
y21,

^
y43

Forward and backward frequency offset estimations
^
y Final frequency offset estimation
N Observation window length
τ21f, τ21b, τ43f, τ43b, τ′

21, τ′
43 Minimum timestamp differences

m21f, m21b, m43f, m43b Index of the minimum timestamp differences in the observation window
ψ{} Operator of mathematical statistics
Tsync, Tc PTP synchronization period and frequency correction period
TM, TS Master and slave clock time
e, ec Time offset and its derivative
r Remaining estimation error after window filtering
D(z), G(z) Transfer function of the PI controller and the clock
Φ(z) Closed-loop Transfer function of the clock servo system
Φs(s) General closed-loop Transfer function of a second-order continuous system
kc Constant coefficient in the clock transfer function
kp, ki Proportional and integral coefficients
ξ Damping ratio
ωn Natural frequency
BL Equivalent noise bandwidth
ef, efc, ωf Values of the input and output on the fuzzy domain
ke, kec, kω Scaling factors of the fuzzy controller
E, Ec, Ωd, Ωu Boundary of the physical domain
Ef, Efc, Ωf Boundary of the fuzzy domain
Wbg BG traffic
Lbg BG traffic packet length
Nhop Switch hop count
Ttemp Ambient temperature

2. Related Works

QIDA and frequency instability of the XO are two main reasons for deterioration in
synchronization performance. For QIDA, there are many compensation methods, and
scholars were committed to achieving the same performance as PTPv2 in the network of
ordinary switches. With regard to the frequency instability of the XO, different clock servos
were designed to follow frequency drift. Next, we will detail the research progress.

2.1. QIDA Compensation Methods

Currently, QIDA compensation methods (QIDACMs) include PTPv2, probing packets,
controlled packet departure, filter, packet selection algorithm, etc. Sending extra probing
packets [36] after the regular PTP process can estimate asymmetry. Although it can improve

Sensors 2024, 24, 2369 4 of 26

the synchronization performance, it involves some changes to PTP, and the compatibility is
not strong. Controlled packet departure [37] allocates a sufficient time slot between PTP
packets and BG traffic packets to ensure that the PTP packets will not experience queue
delays. This method has strict timing requirements, and its applicability is not strong. Some
conventional filters [27,28] are used to mitigate the effect of asymmetry. For example, a
low-pass filter can separate high-frequency noise from the frequency domain, and a Kalman
filter can achieve optimal performance in estimating Gaussian-distributed noise. However,
QIDA noise sometimes contains an impulse component, which is not Gaussian-distributed,
and the noise signal frequency also changes with network load. Therefore, conventional
filters are not suitable for compensating QIDA, and the accuracy cannot be guaranteed
within 1 µs. Compared to conventional filters, the statistical window filter, also known
as the packet selection algorithm, performs better in estimating non-Gaussian-distributed
noise. Its principle is to obtain enough samples through many packet exchanges and then
acquire accurate time offset estimation through statistical operations. Hadzic et al. [38]
compared three packet selection strategies (minimum, maximum, and mean). Under the
cross-traffic model with a load rate of less than 45%, the sampling minimum performs best
in terms of output noise variance. Later, Hadzic et al. [39] proposed an adaptive algorithm
that selects the lowest noise variance among the minimum, maximum, and mean at any
time as the effectual output. Chaloupka et al. [40] set a large enough window to include
the minimum delay packet and verified through simulation that the synchronization
accuracy after compensation can reach 1 µs. However, they did not evaluate the algorithm
performance on a real hardware platform. Giorgi et al. [41] proposed a new Boltzmann
package selection algorithm to verify the feasibility of the frequency transfer using the
oversampling strategy. Studies [38,39,41] share a common premise that the time offset
remains constant within the window. It is a relatively strict constraint, and the window
cannot be selected too long. Freire et al. [35] added preprocessing of drift compensation
before packet selection, and the window length is no longer constrained by the constant
time offset. Their experimental results show that the minimum or maximum strategy is
very effective in compensating for QIDA.

In addition to the packet selection algorithm, there are other compensation methods.
For example, Puttnies et al. [42] presented a PTP-linear programming (PTP-LP) method,
which uses multiple samples to obtain the upper and lower bounds of the slave clock time
and averages the bounds to obtain the estimation value. Nevertheless, the computational
cost of solving the LP problem is high. Ha et al. [43] directly modeled delay asymmetry
through the linear differential equation and state space model and provided an optimal
time offset estimation, and the accuracy can reach 1 µs. However, the estimation algorithm
requires real-time measurement of the clock frequency offset using an oscilloscope, making
it not easy to implement in practical applications.

The characteristics of the above methods are summarized in Table 2. Furthermore,
they have a common problem: they only evaluate the time offset estimation accuracy of
the proposed method under asymmetric conditions or directly correct the clock with offset
compensation. Few studies combine their methods with frequency compensation.

Table 2. Comparison of different QIDACMs.

QIDACMs Accuracy Hardware Support Cost Computational
Complexity

Extra Packet
Exchange Compatibility Applicability

PTPv2 [9] 1 µs Yes,
dedicated switch High Low No Poor Good

Probing packets [36] 100 µs No Low Low Yes Poor Moderate
Controlled packet

departure [37] N/A No Low Low No Poor Poor

Filter [27,28] 1 ms No Low Low No Good Good
Packet selection

algorithm [35,38–41] 1 µs No Low Moderate Yes Good Good

PTP-LP [42] 100 µs No Low High No Good Good
Optimal estimation

algorithm [43] 1 µs Yes, oscilloscope Moderate Moderate No Good Poor

Sensors 2024, 24, 2369 5 of 26

2.2. Design Methods of the Clock Servo

The current mainstream design methods of the clock servo comprise the filter-based
proportional–integral (PI) controller, optimal PI controller, and fuzzy-PI controller. PI
controller is the control algorithm commonly used in the engineering field, and the integral
is used to track the tolerance and unstable jitter of the slave clock XO frequency. A low-pass
filter (LF) [26,27] can effectively filter out noises outside the passband but at the cost of
introducing phase delay, resulting in deterioration in the dynamic characteristics. Optimal
PI [31,32] optimizes the PI coefficients by minimizing the integral square error (ISE) and is
mainly designed for EtherCAT. Its mathematical model assumes that the one-way delay is
constant and is measured only once during the network configuration stage. The one-way
delay of switched Ethernet is always changing, so optimal PI is unsuitable for switched
Ethernet. Later, a Kalman filter (KF) is used in the PI clock servo [28–30]. It is a time
domain filter with fast response speed and can reduce time offset measurement errors
and timestamp quantization errors. Nevertheless, its process and measurement noise
covariances, which directly determine the filter performance, are challenging to obtain in
practice. Nguyen et al. [33] proposed a fuzzy-PI clock servo that uses fuzzy logic to adjust
the system bandwidth online, acquiring faster convergence time and smaller time error.
However, it uses the self-tuning method to select fuzzy logic parameters, which is often not
optimal. Zhang et al. [34] presented a hybrid control technique based on the improved wolf
colony algorithm and cuckoo search algorithm (hybrid IWCA-CS) to optimize fuzzy logic
parameters instead of manually adjusting parameters. Their experimental results illustrate
that the hybrid IWCA-CS acquires better synchronization performance than the method of
Nguyen et al. [33].

As a result, fuzzy-PI is an intelligent control technology recently used in clock servos.
It relies on human experience to deal with control problems that are difficult to accurately
model. However, it is not explicitly designed for QIDA, and its ability to inhibit QIDA
requires further evaluation.

3. Background and Problem Statement
3.1. Delay Asymmetry Analysis

The synchronization process of PTP is illustrated in Figure 1. Through four packet
exchanges, the slave clock can obtain four timestamps of t1, t2, t3, and t4. For details, refer
to [9], and the process is repeated every period Tsync. For the n-th process, assume that
x[n] is the time offset (the slave clock time minus the master clock time); dms[n] and dsm[n]
represent the master-to-slave (forward) delay and the slave-to-master (backward) delay,
respectively. Therefore, the n-th time offset can be calculated by{

x[n] = t2[n]− (t1[n] + dms[n])
x[n] = t3[n]− (t4[n]− dsm[n])

. (1)

Exchange both sides of Equation (1) and obtain{
t21[n] = t2[n]− t1[n] = x[n] + dms[n]
t43[n] = t4[n]− t3[n] = −x[n] + dsm[n]

(2)

where t21[n] and t43[n] are the forward and backward timestamp differences, respectively.
Assume that the delay is symmetrical, that is, dms[n] and dsm[n] are equal, and the time
offset measurement can be expressed as

x̃[n] =
t21[n]− t43[n]

2
. (3)

Substitute Equation (2) into (3) and obtain

Sensors 2024, 24, 2369 6 of 26

x̃[n] = x[n] +
dms[n]− dsm[n]

2
= x[n] + w[n] (4)

where w[n] is the measurement noise, and it is mainly composed of delay asymmetry,
timestamp quantization, and XO frequency drift [44]. As long as the clock frequency is set
large enough, the timestamp quantization error is negligible on the µs scale. Moreover, the
XO frequency drifts generally slowly and can be considered unchanged in the short term.
Therefore, we focus on the effect of delay asymmetry on the measurement. In Figure 1,
both dms[n] and dsm[n] can be expressed as the sum of two parts:{

dms[n] = κms1 + κms2 + δms[n] = κms + δms[n]
dsm[n] = κsm1 + κsm2 + δms[n] = κsm + δsm[n]

. (5)Sensors 2024, 24, x FOR PEER REVIEW 6 of 27

Figure 1. Synchronization process of PTP. Gray squares indicate that BG traffic packets are being
transmitted.

Exchange both sides of Equation (1) and obtain

 = − = +
 = − = − +

21 2 1 ms

43 4 3 sm

[] [] [] [] []
[] [] [] [] []

t n t n t n x n d n
t n t n t n x n d n (2)

where t21[n] and t43[n] are the forward and backward timestamp differences, respec-
tively. Assume that the delay is symmetrical, that is, dms[n] and dsm[n] are equal, and the
time offset measurement can be expressed as

−
= 21 43[] []

[] .
2

t n t n
x n (3)

Substitute Equation (2) into (3) and obtain

−
= + = + ms sm[] []

[] [] [] []
2

d n d n
x n x n x n w n (4)

where w[n] is the measurement noise, and it is mainly composed of delay asymmetry,
timestamp quantization, and XO frequency drift [44]. As long as the clock frequency is set
large enough, the timestamp quantization error is negligible on the µs scale. Moreover,
the XO frequency drifts generally slowly and can be considered unchanged in the short
term. Therefore, we focus on the effect of delay asymmetry on the measurement. In Figure
1, both dms[n] and dsm[n] can be expressed as the sum of two parts:

κ κ δ κ δ
κ κ δ κ δ

 = + + = +
 = + + = +

ms ms1 ms2 ms ms ms

sm sm1 sm2 ms sm sm

[] [] []
.

[] [] []
d n n n
d n n n

 (5)

In Equation (5), κms and κsm are static delays, including physical delay and link de-
lay [35]. The sending and receiving delays of the physical layer chip are often different. At
the link level, the forward and backward transmission line length and negotiated rate may
not be consistent, so the link delay may also be asymmetric. δms[n] and δsm[n] are the
queue delays of the network element, which are dynamic and random [19]. In Figure 1,
whenever a Sync packet or a DelayReq packet enters the network element, there may be

Figure 1. Synchronization process of PTP. Gray squares indicate that BG traffic packets are being
transmitted.

In Equation (5), κms and κsm are static delays, including physical delay and link
delay [35]. The sending and receiving delays of the physical layer chip are often different.
At the link level, the forward and backward transmission line length and negotiated rate
may not be consistent, so the link delay may also be asymmetric. δms[n] and δsm[n] are the
queue delays of the network element, which are dynamic and random [19]. In Figure 1,
whenever a Sync packet or a DelayReq packet enters the network element, there may be a
BG packet (gray square) being transmitted, especially when the network is congested. Since
the lengths of forward and backward BG packets may be different, and the entry moments
of the Sync and DelayReq packets are also random, δms[n] and δsm[n] may be asymmetric.
Therefore, the measurement noise w[n] also has static and random components. Substitute
Equation (5) into (4) and obtain

w[n] =
κms − κsm

2
+

δms[n]− δsm[n]
2

(6)

where the left is the static component. Once the network is built, it generally does not
change, and asymmetry correction is relatively easy. Moreover, its proportion in w[n] is
tiny, almost negligible. The right is the random component, which accounts for a large
proportion of w[n]. Consequently, an algorithm must be designed to compensate for QIDA
to acquire an accurate time offset estimation.

Sensors 2024, 24, 2369 7 of 26

3.2. Frequency Compensation Clock

After measuring the time offset, every slave clock corrects the local time and synchro-
nizes with the master clock. There are two main correction methods: offset compensation
and frequency compensation [23]. Offset compensation is the slave clock directly adding or
subtracting the value based on the local time. In contrast, frequency compensation is the
slave clock adjusting the clock rate to eliminate the time offset. The comparison between
the two is illustrated in Figure 2. Offset compensation causes the clock time to jump in
the opposite direction, while frequency compensation causes the clock time to change
continuously and smoothly, so it is adopted by more scholars.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 27

a BG packet (gray square) being transmitted, especially when the network is congested.
Since the lengths of forward and backward BG packets may be different, and the entry
moments of the Sync and DelayReq packets are also random, δms[n] and δsm[n] may be
asymmetric. Therefore, the measurement noise w[n] also has static and random compo-
nents. Substitute Equation (5) into (4) and obtain

κ κ δ δ− −
= +ms sm ms sm[] []

[]
2 2

n n
w n (6)

where the left is the static component. Once the network is built, it generally does not
change, and asymmetry correction is relatively easy. Moreover, its proportion in w[n] is
tiny, almost negligible. The right is the random component, which accounts for a large
proportion of w[n] . Consequently, an algorithm must be designed to compensate for
QIDA to acquire an accurate time offset estimation.

3.2. Frequency Compensation Clock
After measuring the time offset, every slave clock corrects the local time and synchro-

nizes with the master clock. There are two main correction methods: offset compensation
and frequency compensation [23]. Offset compensation is the slave clock directly adding
or subtracting the value based on the local time. In contrast, frequency compensation is
the slave clock adjusting the clock rate to eliminate the time offset. The comparison be-
tween the two is illustrated in Figure 2. Offset compensation causes the clock time to jump
in the opposite direction, while frequency compensation causes the clock time to change
continuously and smoothly, so it is adopted by more scholars.

Figure 2. Comparison of two methods for correcting clock time: offset compensation and frequency
compensation.

The frequency compensation clock model is demonstrated in Figure 3, which consists
of a local XO, an addend, an accumulator, a sub-second counter, and a second counter
[45]. The local XO frequency is multiplied by the Phase Locked Loop (PLL) to generate the
system clock frequency fsys. The value of the addend is added to the accumulator every
system clock cycle. When the accumulator overflows, an increment signal is generated,
and the sub-second counter is incremented by a constant value V. When the sub-second
counter also overflows, the value of the second counter is increased by 1.

Figure 2. Comparison of two methods for correcting clock time: offset compensation and frequency
compensation.

The frequency compensation clock model is demonstrated in Figure 3, which consists
of a local XO, an addend, an accumulator, a sub-second counter, and a second counter [45].
The local XO frequency is multiplied by the Phase Locked Loop (PLL) to generate the
system clock frequency fsys. The value of the addend is added to the accumulator every
system clock cycle. When the accumulator overflows, an increment signal is generated,
and the sub-second counter is incremented by a constant value V. When the sub-second
counter also overflows, the value of the second counter is increased by 1.

Sensors 2024, 24, x FOR PEER REVIEW 8 of 27

Figure 3. Frequency compensation clock model.

The value of the addend is the sum of the initial value u0, and the frequency com-
pensation value ucom. ucom is updated by the clock synchronization algorithm in each cy-
cle. The calculation method of u0 is

⋅
=

32
0

0
sys

2 f
u

f (7)

where f0 represents the slave clock frequency, which is also the overflow frequency of the
accumulator. The larger f0, the smaller the timing granularity, the smaller the quantiza-
tion error, and the higher the synchronization accuracy.

The sub-second counter is used to save time of less than 1 s, and the relationship
between the increment constant value V and the clock frequency f0 is

⋅ = 31
0 2 .f V (8)

Eliminate f0 according to Equations (7) and (8) and obtain

=
⋅

63

0
sys

2 .u
f V

 (9)

To sum up, the addend directly affects the overflow frequency of the accumulator,
which essentially determines the slave clock frequency. Selecting an appropriate algo-
rithm to calculate the frequency compensation value can control the slave clock frequency
and ensure accurate synchronization of the master and slave clocks.

4. Design of the Clock Servo
As established in Section 3, the synchronization algorithm has two goals: one is to

obtain an accurate time offset estimation under QIDA, and the other is to provide an ap-
propriate frequency compensation value. The first goal requires designing a time offset
estimation algorithm. This paper uses a packet selection algorithm based on over-
sampling, and the selection strategy uses the minimum. The second goal requires a control
algorithm. If the estimation result of the packet selection algorithm is directly used for
compensation, the time error is prone to large fluctuations, and the accuracy is not high.
The control algorithm adopts the PI controller, and we add fuzzy control to adaptively

Figure 3. Frequency compensation clock model.

Sensors 2024, 24, 2369 8 of 26

The value of the addend is the sum of the initial value u0, and the frequency compen-
sation value ucom. ucom is updated by the clock synchronization algorithm in each cycle.
The calculation method of u0 is

u0 =
232 · f0

fsys
(7)

where f0 represents the slave clock frequency, which is also the overflow frequency of the
accumulator. The larger f0, the smaller the timing granularity, the smaller the quantization
error, and the higher the synchronization accuracy.

The sub-second counter is used to save time of less than 1 s, and the relationship
between the increment constant value V and the clock frequency f0 is

f0 · V = 231. (8)

Eliminate f0 according to Equations (7) and (8) and obtain

u0 =
263

fsys · V
. (9)

To sum up, the addend directly affects the overflow frequency of the accumulator,
which essentially determines the slave clock frequency. Selecting an appropriate algorithm
to calculate the frequency compensation value can control the slave clock frequency and
ensure accurate synchronization of the master and slave clocks.

4. Design of the Clock Servo

As established in Section 3, the synchronization algorithm has two goals: one is to
obtain an accurate time offset estimation under QIDA, and the other is to provide an
appropriate frequency compensation value. The first goal requires designing a time offset
estimation algorithm. This paper uses a packet selection algorithm based on oversampling,
and the selection strategy uses the minimum. The second goal requires a control algorithm.
If the estimation result of the packet selection algorithm is directly used for compensation,
the time error is prone to large fluctuations, and the accuracy is not high. The control
algorithm adopts the PI controller, and we add fuzzy control to adaptively adjust PI coeffi-
cients so that the system can converge quickly and have some anti-noise performance after
stabilization. The time offset estimation algorithm and the control algorithm, combined
with the frequency compensation clock model, can constitute a complete clock servo system,
as shown in Figure 4.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 27

adjust PI coefficients so that the system can converge quickly and have some anti-noise
performance after stabilization. The time offset estimation algorithm and the control algo-
rithm, combined with the frequency compensation clock model, can constitute a complete
clock servo system, as shown in Figure 4.

Figure 4. Composition of the clock servo system.

4.1. Minimum Window Filter
The sampling period of the clock servo is also the synchronization period, and the

default value is 1 s. Since the estimation algorithm adopts oversampling, the sampling
speed needs to be increased by about ten times to ensure sufficient samples. Although
oversampling will increase the number of PTP packets in the network and the processing
burden of the master and slave clocks, a balance point can be found as long as the sam-
pling period is adequately designed. The packet selection algorithm is essentially a win-
dow filter. When the number of PTP packets reaches the window length, the minimum
delay packets are searched in the master-to-slave and slave-to-master directions. The
queue delays of these two packets are negligible (δms≈ δsm ≈ 0), and we substitute them
into Equation (6), thus having the slightest measurement noise. The data exchanged be-
tween nodes in a DMCS are mostly measurement and control information. The infor-
mation density is not high, and the actual BG traffic is generally less than 50% [19]. The
smaller the BG traffic, the higher the probability of finding the minimum delay packet.
Therefore, it is more appropriate to use the minimum strategy in this scenario.

Assume that the length of the observation window is N, and each window does not
overlap. In the k-th window, the timestamp difference vectors can be expressed as

 = ⋅⋅⋅ −

= ⋅⋅⋅ −

T
21 21 21 21

T
43 43 43 43

[] [[,0], [,1], , [, 1]]
[] [[,0], [,1], , [, 1]]
k t k t k t k N
k t k t k t k N

t
t

 (10)

where t21[k,m] (m∈[0, N-1]) represents the m-th timestamp difference in the k-th window.
Because this paper uses frequency compensation to correct the time offset, there must be
a frequency offset between the master and slave clocks, which will cause t21[k] and t43[k]
to drift. Therefore, drift compensation must be implemented before packet selection.

The first step of drift compensation is to estimate the frequency offset in the window,
and the one-way estimation method using t21[k] is presented in Figure 5. The dotted line
in the figure indicates the true time offset, and the circle indicates the timestamp differ-
ence. The vertical distance between the two represents the delay, according to Equation
(2). Divide the window into the front and back parts, find the minimum timestamp differ-
ences, respectively, and record their indexes m21f and m21b. The one-way frequency offset
estimation can be described as

21f 21b

≤ < ≤ <
ψ + − ψ

=
+ −

21 21
0 /2 0 /2

21

{ [, / 2]} { [,]}
ˆ []

/ 2
j N j N

t k N j t k j
y k

m N m
 (11)

where { }ψ represents an operator, which can be the minimum, maximum, median, etc.
This paper uses the minimum. Similarly, the frequency offset estimation in another direc-
tion using t43[k] can be denoted as y43[k]. If the minimum delay packets can be found in
both the front and the back windows, y21[k] and y43[k] will have the same absolute value

Figure 4. Composition of the clock servo system.

4.1. Minimum Window Filter

The sampling period of the clock servo is also the synchronization period, and the
default value is 1 s. Since the estimation algorithm adopts oversampling, the sampling
speed needs to be increased by about ten times to ensure sufficient samples. Although
oversampling will increase the number of PTP packets in the network and the processing
burden of the master and slave clocks, a balance point can be found as long as the sampling
period is adequately designed. The packet selection algorithm is essentially a window filter.
When the number of PTP packets reaches the window length, the minimum delay packets
are searched in the master-to-slave and slave-to-master directions. The queue delays of
these two packets are negligible (δms ≈ δsm ≈ 0), and we substitute them into Equation

Sensors 2024, 24, 2369 9 of 26

(6), thus having the slightest measurement noise. The data exchanged between nodes in a
DMCS are mostly measurement and control information. The information density is not
high, and the actual BG traffic is generally less than 50% [19]. The smaller the BG traffic,
the higher the probability of finding the minimum delay packet. Therefore, it is more
appropriate to use the minimum strategy in this scenario.

Assume that the length of the observation window is N, and each window does not
overlap. In the k-th window, the timestamp difference vectors can be expressed as{

t21[k] = [t21[k, 0], t21[k, 1], · · ·, t21[k, N − 1]]T

t43[k] = [t43[k, 0], t43[k, 1], · · ·, t43[k, N − 1]]T
(10)

where t21[k, m](m ∈ [0, N − 1]) represents the m-th timestamp difference in the k-th win-
dow. Because this paper uses frequency compensation to correct the time offset, there must
be a frequency offset between the master and slave clocks, which will cause t21[k] and t43[k]
to drift. Therefore, drift compensation must be implemented before packet selection.

The first step of drift compensation is to estimate the frequency offset in the window,
and the one-way estimation method using t21[k] is presented in Figure 5. The dotted line
in the figure indicates the true time offset, and the circle indicates the timestamp differ-
ence. The vertical distance between the two represents the delay, according to Equation (2).
Divide the window into the front and back parts, find the minimum timestamp differ-
ences, respectively, and record their indexes m21f and m21b. The one-way frequency offset
estimation can be described as

ŷ21[k] =

ψ
0≤j<N/2

{t21[k, N/2 + j]} − ψ
0≤j<N/2

{t21[k, j]}

m21f + N/2 − m21b
(11)

whereψ{} represents an operator, which can be the minimum, maximum, median, etc. This
paper uses the minimum. Similarly, the frequency offset estimation in another direction

using t43[k] can be denoted as
^
y43[k]. If the minimum delay packets can be found in both

the front and the back windows,
^
y21[k] and

^
y43[k] will have the same absolute value and

opposite signs in theory. On the contrary, if the packets cannot be found,
^
y21[k] or

^
y43[k]

may have significant variation. To reduce the estimation error, the final frequency offset

estimation takes the smaller absolute value of the two, and the sign is consistent with
^
y21[k],

which can be expressed as

ŷ[k] =

{
ŷ21[k] |ŷ21[k]| ≤ |ŷ43[k]|
−ŷ43[k] |ŷ21[k]| > |ŷ43[k]|

. (12)

Sensors 2024, 24, x FOR PEER REVIEW 10 of 27

and opposite signs in theory. On the contrary, if the packets cannot be found, y21[k] or
y43[k] may have significant variation. To reduce the estimation error, the final frequency
offset estimation takes the smaller absolute value of the two, and the sign is consistent
with y21[k], which can be expressed as

 ≤= − >

21 21 43

43 21 43

ˆ ˆ ˆ[] [] []
ˆ[] .

ˆ ˆ ˆ[] [] []
y k y k y k

y k
y k y k y k

 (12)

Figure 5. One-way estimation method of the frequency offset using t21[k]. Circles in two red boxes
indicate the minimum timestamp differences inside the front and back windows.

Compared with Ref. [35], we simultaneously use samples from two directions to es-
timate the frequency offset, effectively reducing estimation error. Moreover, the estima-
tion process does not need to construct a second window. Since the synchronization pe-
riod Tsync is constant in this paper, there is no need to substitute Tsync when calculating
y21[k] or y43[k]. So, the unit of y[k] is s/Tsync, which is easy for subsequent calculation.
We use y[k] to perform drift compensation and correct vectors t21[k] and t43[k]:

′ = − ⋅ +
 ′ = + ⋅ +

21 21

43 43

ˆ[,] [,] [] (1)
.

ˆ[,] [,] [] (1)
t k m t k m y k m
t k m t k m y k m

 (13)

The final time offset estimation can be obtained by

′ ′ψ − ψ
= + ⋅43{ []} { []}ˆ ˆ[] [] .

2
k k

x k y k N21t t
 (14)

The premise of using the minimum window filter with drift compensation is that the
frequency offset remains constant within the window, which is a loose constraint and al-
lows a longer window. Algorithm 1 details the above time offset estimation process.

Figure 5. One-way estimation method of the frequency offset using t21[k]. Circles in two red boxes
indicate the minimum timestamp differences inside the front and back windows.

Sensors 2024, 24, 2369 10 of 26

Compared with ref. [35], we simultaneously use samples from two directions to esti-
mate the frequency offset, effectively reducing estimation error. Moreover, the estimation
process does not need to construct a second window. Since the synchronization period

Tsync is constant in this paper, there is no need to substitute Tsync when calculating
^
y21[k] or

^
y43[k]. So, the unit of

^
y[k] is s/Tsync, which is easy for subsequent calculation. We use

^
y[k]

to perform drift compensation and correct vectors t21[k] and t43[k]:{
t′21[k, m] = t21[k, m]− ŷ[k] · (m + 1)
t′43[k, m] = t43[k, m] + ŷ[k] · (m + 1)

. (13)

The final time offset estimation can be obtained by

x̂[k] =
ψ
{

t′21[k]
}
−ψ

{
t′43[k]

}
2

+ ŷ[k] · N. (14)

The premise of using the minimum window filter with drift compensation is that
the frequency offset remains constant within the window, which is a loose constraint and
allows a longer window. Algorithm 1 details the above time offset estimation process.

Algorithm 1: Time offset estimation using the minimum window filter

Sensors 2024, 24, x FOR PEER REVIEW 11 of 27

Algorithm 1: Time offset estimation using the minimum window filter
Input: Observation window index k, forward timestamp difference vector t21[k], back-
ward timestamp difference vector t43[k], window length N.
Output: Time offset estimation x[k].
1 begin
2 /* min() is the minimum function, and the return result is the minimum and
3 the corresponding index. */
4 (τ21f, m21f) ← min([t21 k, N/2 , t21 k, N/2 + 1 ,…, t21 k, N − 1]T);
5 (τ21b, m21b) ← min([t21 k, 0 , t21 k, 1 ,…, t21 k, N/2 − 1]T);
6 (τ43f, m43f) ← min([t43 k, N/2 , t43 k, N/2 + 1 ,…, t43 k, N − 1]T);
7 (τ43b, m43b) ← min([t43 k, 0 , t43 k, 1 ,…, t43 k, N/2 − 1]T);
8 y21[k] ← (τ21f − τ21b)/(m21f + N/2 − m21b);
9 y43[k] ← (τ43f − τ43b)/(m43f + N/2 − m43b);
10 if |y21[k]| ≤ |y43[k]| then
11 y[k] ← y21[k];
12 else
13 y[k] ← −y43[k];
14 end if
15 for m ← 1 to (N − 1) do
16 t21[k, m] ← t21 k, m − y[k]⋅(m + 1);
17 t43[k, m] ← t43 k, m + y[k]⋅(m + 1);
18 end for
19 τ21 ← min([t21[k, 0], t21[k, 1],…, t21[k, N − 1]]T);
20 τ43 ← min([t43[k, 0], t43[k, 1],…, t43[k, N − 1]]T);
21 x[k] ← (τ21 − τ43)/2 + y[k]⋅N;
22 end

4.2. Fuzzy-PI Controller
The minimum window filter is an oversampling nonlinear filter. Since the observa-

tion window is non-overlapping, the frequency correction period Tc of the clock servo is
magnified by N times compared to the synchronization period Tsync:

=c sync.T NT (15)

We temporarily ignore the fuzzy logic and establish the control system model of the
clock servo after window filtering, as observed in Figure 6a. TM[k] and TS[k] are the
master and slave clock times. e[k] is the time offset estimation x[k], and r[k] is the re-
maining estimation error after window filtering. D(z) is the transfer function (TF) of the
PI controller, which can be described as

= +
−p i()

1
zD z k k

z
 (16)

where kp and ki are PI coefficients. ∆u[k] is the adjustment value output by the PI con-
troller, and u[k] is the value of the addend in Figure 3. G(z) is the clock TF, and the ex-
pression is

=
−

c c()
1

k T
G z

z
 (17)

where kc is a constant coefficient, which can be expressed as

= sys
c 63 .

2

f V
k (18)

4.2. Fuzzy-PI Controller

The minimum window filter is an oversampling nonlinear filter. Since the observa-
tion window is non-overlapping, the frequency correction period Tc of the clock servo is
magnified by N times compared to the synchronization period Tsync:

Tc = NTsync. (15)

Sensors 2024, 24, 2369 11 of 26

We temporarily ignore the fuzzy logic and establish the control system model of
the clock servo after window filtering, as observed in Figure 6a. TM[k] and TS[k] are the

master and slave clock times. e[k] is the time offset estimation
^
x[k], and r[k] is the remaining

estimation error after window filtering. D(z) is the transfer function (TF) of the PI controller,
which can be described as

D(z) = kp + ki
z

z − 1
(16)

where kp and ki are PI coefficients. ∆u[k] is the adjustment value output by the PI controller,
and u[k] is the value of the addend in Figure 3. G(z) is the clock TF, and the expression is

G(z) =
kcTc

z − 1
(17)

where kc is a constant coefficient, which can be expressed as

kc =
fsysV
263 . (18)

Sensors 2024, 24, x FOR PEER REVIEW 12 of 27

The clock model’s input u[k] consists of two parts, which are summed through the
comparison point. We move the comparison point backward and construct a new input
TM[k] and output TS[k]:

S S S

M M M M

c 0 c c

c 0 c c c

[] [] []
.

[] [] [0] [0]
T k T k kk u T T k kT
T k T k kk u T T kT kT T

′ = − = −
 ′ = − = + − =

 (19)

The calculation process can refer to Equations (9) and (18), and TM[0] is the initial
value of the master clock time. Combining the clock model with the two coefficients in
front results in the simplified diagram shown in Figure 6b. The new clock TF is

′ =
−
1() .

1
G z

z
 (20)

The time offset e[k] values before and after simplification are entirely equivalent. The
original input TM[k] is a ramp input, and the new input TM[k] is a step input from Equa-
tion (19). The closed-loop TF of the system can be expressed as

+ −′ ′
Φ = = =

′ ′+ + + − + −
p i p

2
p i p

()() () ()() .
() 1 () () (2) (1)

s

M

k k z kT z G z D zz
T z G z D z z k k z k

 (21)

Figure 6. Control system model of the clock servo (ignore the fuzzy logic). (a) Original diagram. (b)
Simplified diagram after constructing a new input and output.

The system is a second-order discrete system. We need to find a method to determine
PI coefficients. The general closed-loop TF of a second-order continuous system can be
expressed as

2
n n

s 2 2
n n

2
()

2
s

s
s s

ξω ω
ξω ω

+
Φ =

+ +
 (22)

The system poles are

2
1,2 n n n d1s j jξω ω ξ ξω ω= − ± − = − ± (23)

where ξ is the damping ratio, ωn is the natural frequency, and ωd is the damped fre-
quency. According to the z-transform, the poles of the corresponding discrete system can
be obtained as follows:

1 ,2 c n c d c n c
1 ,2 d c .s T T j T Tz e e e e Tξω ω ξω ω− ± −= = = ∠ ± (24)

According to Equation (24), the general characteristic polynomial of the second-order
discrete system can be expressed as

Figure 6. Control system model of the clock servo (ignore the fuzzy logic). (a) Original diagram.
(b) Simplified diagram after constructing a new input and output.

The clock model’s input u[k] consists of two parts, which are summed through the
comparison point. We move the comparison point backward and construct a new input
T′

M[k] and output T′
S[k]:{

T′
S[k] = TS[k]− kkcu0Tc = TS[k]− kTc

T′
M[k] = TM[k]− kkcu0Tc = TM[0] + kTc − kTc = TM[0]

. (19)

The calculation process can refer to Equations (9) and (18), and TM[0] is the initial
value of the master clock time. Combining the clock model with the two coefficients in
front results in the simplified diagram shown in Figure 6b. The new clock TF is

G′(z) =
1

z − 1
. (20)

The time offset e[k] values before and after simplification are entirely equivalent.
The original input TM[k] is a ramp input, and the new input T′

M[k] is a step input from
Equation (19). The closed-loop TF of the system can be expressed as

Φ(z) =
T′

s(z)
T′

M(z)
=

G′(z)D(z)
1 + G′(z)D(z)

=
(kp + ki)z − kp

z2 + (kp + ki − 2)z + (1 − kp)
. (21)

Sensors 2024, 24, 2369 12 of 26

The system is a second-order discrete system. We need to find a method to determine
PI coefficients. The general closed-loop TF of a second-order continuous system can be
expressed as

Φs(s) =
2ξωns + ω2

n
s2 + 2ξωns + ω2

n
(22)

The system poles are

s1,2 = −ξωn ± jωn

√
1 − ξ2 = −ξωn ± jωd (23)

where ξ is the damping ratio, ωn is the natural frequency, and ωd is the damped fre-
quency. According to the z-transform, the poles of the corresponding discrete system can
be obtained as follows:

z1,2 = es1,2Tc = e−ξωnTc e±jωdTc = e−ξωnTc∠± ωdTc. (24)

According to Equation (24), the general characteristic polynomial of the second-order
discrete system can be expressed as

P(z) = (z − z1)(z − z2) = (z − e−ξωnTc ejωdTc)(z − e−ξωnTc e−jωdTc)

= z2 − (2 cos(ωdTc))e−ξωnTc z + e−2ξωnTc .
(25)

Equation (25) should be equal to the corresponding coefficients of the denominator of
(21), and the expressions of kp and ki can be acquired as follows:{

kp = 1 − e−2ξωnTc

ki = 1 − 2(cos(ωdTc))e−ξωnTc + e−2ξωnTc
. (26)

PI coefficients are related to three parameters: the frequency correction period Tc,
damping ratio ξ, and natural frequency ωn. The equivalent noise bandwidth of a second-
order system can be expressed as [46]

BL =
1

2π

∫ ∞

0
|Φs(jω)|2dω =

ωn

2
(ξ +

1
4ξ

). (27)

When the damping ratio ξ is fixed, the system bandwidth BL is proportional to the
natural frequency ωn. The larger ωn and the wider BL, the stronger the system’s dynamic
performance, which is suitable for the initial unstable stage to ensure rapid convergence. On
the contrary, the smaller ωn and the narrower BL, the weaker the dynamic performance, but
the loop exhibits low-pass characteristics and has a strong ability to suppress input noise,
which is suitable for the synchronization stabilization stage. The relationship between the
time offset and the bandwidth is challenging to model, but it can be described with a series
of language rules, so we use fuzzy control.

The schematic diagram of the clock servo after adding fuzzy control is demonstrated
in Figure 7. The absolute time offset |e| and absolute offset derivative |ec| are the two inputs
of the fuzzy controller, and the natural frequency ωn is its output. ke and kec are input
scaling factors, and kω is the output scaling factor. They are used to separate physical
and fuzzy domains and improve the design flexibility. The fuzzy controller is composed
of three parts: fuzzification, approximate reasoning, and defuzzification, as shown in the
dotted line box in Figure 7. Moreover, the fuzzy process requires using several modules in
the knowledge base: membership function (MF), control rules, and defuzzification method.
The fuzzification module converts the input from numeric values into fuzzy sets, and then
the approximate reasoning module performs logical operations based on control rules to
acquire fuzzy values. Finally, the defuzzification module converts the fuzzy values into
accurate numeric values.

Sensors 2024, 24, 2369 13 of 26

Sensors 2024, 24, x FOR PEER REVIEW 13 of 27

n c d c n c d c

n c n c

1 2
22

d c

() ()() ()()
(2 cos()) .

T j T T j T

T T

P z z z z z z e e z e e
z T e z e

ξω ω ξω ω

ξω ξωω

− − −

− −

= − − = − −

= − +
 (25)

Equation (25) should be equal to the corresponding coefficients of the denominator
of (21), and the expressions of kp and ki can be acquired as follows:

n c

n c n c

2
p

2
i d c

1
.

1 2(cos())

T

T T

k e

k T e e

ξω

ξω ξωω

−

− −

 = −

= − +
 (26)

PI coefficients are related to three parameters: the frequency correction period Tc,
damping ratio ξ, and natural frequency ωn. The equivalent noise bandwidth of a second-
order system can be expressed as [46]

ω
ω ω ξ

π ξ
∞

= Φ = +
2 n

L s0

1 1() ().
2 2 4

B j d (27)

When the damping ratio ξ is fixed, the system bandwidth BL is proportional to the
natural frequency ωn . The larger ωn and the wider BL , the stronger the system’s dy-
namic performance, which is suitable for the initial unstable stage to ensure rapid conver-
gence. On the contrary, the smaller ωn and the narrower BL, the weaker the dynamic
performance, but the loop exhibits low-pass characteristics and has a strong ability to sup-
press input noise, which is suitable for the synchronization stabilization stage. The rela-
tionship between the time offset and the bandwidth is challenging to model, but it can be
described with a series of language rules, so we use fuzzy control.

The schematic diagram of the clock servo after adding fuzzy control is demonstrated
in Figure 7. The absolute time offset |e| and absolute offset derivative |ec| are the two
inputs of the fuzzy controller, and the natural frequency ωn is its output. ke and kec are
input scaling factors, and kω is the output scaling factor. They are used to separate phys-
ical and fuzzy domains and improve the design flexibility. The fuzzy controller is com-
posed of three parts: fuzzification, approximate reasoning, and defuzzification, as shown
in the dotted line box in Figure 7. Moreover, the fuzzy process requires using several mod-
ules in the knowledge base: membership function (MF), control rules, and defuzzification
method. The fuzzification module converts the input from numeric values into fuzzy sets,
and then the approximate reasoning module performs logical operations based on control
rules to acquire fuzzy values. Finally, the defuzzification module converts the fuzzy val-
ues into accurate numeric values.

Figure 7. Schematic diagram of the fuzzy-PI clock servo.

Assume that the physical domain of |e| is [0, E] and the fuzzy domain is [-Ef, Ef].
The physical domain of |ec| is [0, Ec] and the fuzzy domain is [-Efc, Efc]. The physical

Figure 7. Schematic diagram of the fuzzy-PI clock servo.

Assume that the physical domain of |e| is [0, E] and the fuzzy domain is [−Ef, Ef]. The
physical domain of |ec| is [0, Ec] and the fuzzy domain is [−Efc, Efc]. The physical domain
of ωn is [Ωd, Ωu] and the fuzzy domain is [−Ωf, Ωf]. The input scaling factor ke of |e| can
be expressed as

ke =
2Ef
E

. (28)

The mapping function between its fuzzy and physical domains is as follows, and the
function plot is illustrated in Figure 8a.

ef =

{
ke(|e| − E

2) 0 ≤|e|< E

Ef |e|≥ E
. (29)

Sensors 2024, 24, x FOR PEER REVIEW 14 of 27

domain of ωn is [Ωd, Ωu] and the fuzzy domain is [-Ωf, Ωf]. The input scaling factor ke
of |e| can be expressed as

= f
e

2
.

E
k

E
 (28)

The mapping function between its fuzzy and physical domains is as follows, and the
function plot is illustrated in Figure 8a.

 − ≤ <=
 ≥

e
f

f

(| |) 0 | | .2
| |

Ek e e Ee
E e E

 (29)

The scaling factor and mapping function of |ec| are the same as above. The output
scaling factor kω of ωn can be expressed as

Ω Ω
Ωω

−
= u d

f

.
2

k (30)

The corresponding mapping function of ωn is as follows, and the function plot is
also shown in Figure 8b.

Ω ω Ω
Ω Ω Ω

ω ω Ω ω < Ω
Ω Ω

Ω ω Ω

ω

 ≤ −
 += + − < −
 ≥

d f f

f u d
n f f f f

u d

u f f

()
() .k (31)

Figure 8. Mapping function between the fuzzy and physical domains of the fuzzy controller. (a)
Absolute time offset |e|. (b) Natural frequency ωn.

In order to facilitate calculation and ensure control accuracy, the input and output
fuzzy sets are all set to five: NB, NS, ZO, PS, and PB. The MF uses a triangle to ensure a
smaller computational burden and higher resolution. The absolute time offset |e| and
absolute offset derivative |ec| have the same MF, as shown in Figure 9a, and the bound-
ary of the fuzzy domain Ef = Efc = 3. The MF of the natural frequency ωn is shown in Fig-
ure 9b, and the boundary Ωf = 2. The approximate reasoning method uses the Mamdani
algorithm. For different inputs, the output should meet the following human experience:
• If |e| and |ec| are large, a large ωn should be selected to speed up the system re-

sponse and ensure rapid convergence.
• If |e| and |ec| are moderate, a moderate ωn should be chosen so that the system

has smaller overshoot.

Figure 8. Mapping function between the fuzzy and physical domains of the fuzzy controller. (a) Ab-
solute time offset |e|. (b) Natural frequency ωn.

The scaling factor and mapping function of |ec| are the same as above. The output
scaling factor kω of ωn can be expressed as

kω =
Ωu − Ωd

2Ωf
. (30)

The corresponding mapping function of ωn is as follows, and the function plot is also
shown in Figure 8b.

Sensors 2024, 24, 2369 14 of 26

ωn =

Ωd ωf ≤ −Ωf

kω(ωf +
Ωf(Ωu + Ωd)

Ωu − Ωd
) −Ωf < ωf < Ωf

Ωu ωf ≥ Ωf

. (31)

In order to facilitate calculation and ensure control accuracy, the input and output
fuzzy sets are all set to five: NB, NS, ZO, PS, and PB. The MF uses a triangle to ensure
a smaller computational burden and higher resolution. The absolute time offset |e| and
absolute offset derivative |ec| have the same MF, as shown in Figure 9a, and the boundary
of the fuzzy domain Ef = Efc= 3. The MF of the natural frequency ωn is shown in Figure 9b,
and the boundary Ωf = 2. The approximate reasoning method uses the Mamdani algorithm.
For different inputs, the output should meet the following human experience:

• If |e| and |ec| are large, a large ωn should be selected to speed up the system response
and ensure rapid convergence.

• If |e| and |ec| are moderate, a moderate ωn should be chosen so that the system has
smaller overshoot.

• If |e| and |ec| are small, a small ωn should be taken so that the system has good
steady-state performance and anti-noise ability.

Sensors 2024, 24, x FOR PEER REVIEW 15 of 27

• If |e| and |ec| are small, a small ωn should be taken so that the system has good
steady-state performance and anti-noise ability.

Figure 9. Membership function. (a) Absolute time offset |e| and absolute offset derivative |ec|. (b)
Natural frequency ωn.

According to the above experience, fuzzy control rules are generated, as illustrated
in Table 3, with a total of twenty-five rules. In addition, the defuzzification method adopts
the center of gravity method. Using the output of the fuzzy controller, the corresponding
PI coefficients can be calculated according to Equation (26).

The largest difference between our clock servo and the fuzzy-PI servo [33,34] is the
introduction of a window filter for compensating QIDA, meaning that our servo performs
better in asymmetric networks (please refer to Section 6.2). Moreover, the clock servo is
essentially a discrete system, and we build a more accurate discrete model to adjust PI
coefficients compared to Ref. [33,34].

Table 3. Fuzzy control rules.

|e|/|ec| NB NS ZO PS PB
NB NB NB NB NS ZO
NS NB NS NS ZO PS
ZO NS NS ZO PS PS
PS ZO ZO PS PS PB
PB PS PS PS PB PB

5. Experimental Platform
5.1. System Introduction

To test the performance of the clock servo proposed in Section 4, we construct the
experimental platform illustrated in Figure 10a. The simplest system is a single-hop sys-
tem, where one master clock, three slave clocks, and one personal computer (PC) are di-
rectly connected to one switch through network cables. The switch uses S5735S-L8T4S-
QA2 (nearly USD 100 per switch) (Huawei, Shenzhen, China), and the PC is used to mon-
itor traffic changes in the network. The oscilloscope uses ZLG ZDS1104 (Zhiyuan Elec-
tronics, Guangzhou, China), which is used to observe the time error fluctuation. Connect
the Pulse Per Second (PPS) signals of the master clock and slave clocks 1, 2, and 3 to the
four channels of the oscilloscope, and set the PPS signal of the master clock (channel 1) as
the trigger source. The system scale can be expanded based on the single-hop system.
Every time one switch is added, three slave clocks are directly connected to this switch,
and the master clock and PC are also transferred to this switch. The oscilloscope still mon-
itors the master clock and slave clocks 1, 2, and 3. The expansion method is observed in

Figure 9. Membership function. (a) Absolute time offset |e| and absolute offset derivative |ec|.
(b) Natural frequency ωn.

According to the above experience, fuzzy control rules are generated, as illustrated in
Table 3, with a total of twenty-five rules. In addition, the defuzzification method adopts the
center of gravity method. Using the output of the fuzzy controller, the corresponding PI
coefficients can be calculated according to Equation (26).

Table 3. Fuzzy control rules.

|e|/|ec| NB NS ZO PS PB

NB NB NB NB NS ZO
NS NB NS NS ZO PS
ZO NS NS ZO PS PS
PS ZO ZO PS PS PB
PB PS PS PS PB PB

The largest difference between our clock servo and the fuzzy-PI servo [33,34] is the
introduction of a window filter for compensating QIDA, meaning that our servo performs
better in asymmetric networks (please refer to Section 6.2). Moreover, the clock servo is
essentially a discrete system, and we build a more accurate discrete model to adjust PI
coefficients compared to refs. [33,34].

Sensors 2024, 24, 2369 15 of 26

5. Experimental Platform
5.1. System Introduction

To test the performance of the clock servo proposed in Section 4, we construct the
experimental platform illustrated in Figure 10a. The simplest system is a single-hop system,
where one master clock, three slave clocks, and one personal computer (PC) are directly
connected to one switch through network cables. The switch uses S5735S-L8T4S-QA2
(nearly USD 100 per switch) (Huawei, Shenzhen, China), and the PC is used to monitor
traffic changes in the network. The oscilloscope uses ZLG ZDS1104 (Zhiyuan Electronics,
Guangzhou, China), which is used to observe the time error fluctuation. Connect the Pulse
Per Second (PPS) signals of the master clock and slave clocks 1, 2, and 3 to the four channels
of the oscilloscope, and set the PPS signal of the master clock (channel 1) as the trigger
source. The system scale can be expanded based on the single-hop system. Every time one
switch is added, three slave clocks are directly connected to this switch, and the master
clock and PC are also transferred to this switch. The oscilloscope still monitors the master
clock and slave clocks 1, 2, and 3. The expansion method is observed in the dotted line box
in Figure 10a, and Figure 10b is a physical diagram according to Figure 10a.

Sensors 2024, 24, x FOR PEER REVIEW 16 of 27

the dotted line box in Figure 10a, and Figure 10b is a physical diagram according to Figure
10a.

Figure 10. Experimental platform. (a) Schematic diagram. (b) Physical diagram.

The master and slave clocks use the same nodes, and the hardware cost of each node
is within USD 10. The node microcontroller unit (MCU) chooses STM32F407VGT6
(STMicroelectronics, Geneva, Switzerland), and the system frequency is set to 168 MHz.
Its integrated Ethernet controller can obtain hardware timestamps at the MAC layer. The
physical layer chip uses LAN8720A (Microchip, Chandler, AZ, USA). The XO uses KDS
DSX321G (Daishinku, Kakogawa, Japan), the nominal frequency is 8 MHz, the frequency
tolerance is ±20 ppm (25 °C), and the frequency stability is ±50 ppm (−40 to +105 °C). The
node software uses the free real-time operating system (FreeRTOS) and is further devel-
oped based on the open-source PTP Daemon project [47].

5.2. BG Traffic Model
Most scholars used two traffic models when studying QIDACM: cross-traffic and in-

line traffic [38]. Unlike the above two models, we use a broadcast traffic model, which is
more suitable for a DMCS. The master and slave clocks can generate PTP traffic and BG
traffic simultaneously, and the transmission paths of the two are the same, as observed
regarding the blue and green dotted lines in Figure 10a. This model is particularly suitable
for one-to-many communication. Each node can decide whether to receive the BG traffic
packet based on the internal filter, which is convenient for system scalability and redun-
dancy design. This traffic model is widely used in EtherNet/IP for industrial automation.
The BG traffic packet is transmitted periodically using the UDP multicast protocol. Unless
otherwise stated, the BG traffic in this article refers to the total traffic. The BG traffic gen-
erated by each clock is equally distributed according to the number of clocks. For example,
assume that the total BG traffic is 60 Mbps and the single-hop system has four clocks, so
each clock needs to generate 15 Mbps BG traffic. In addition, we do not use Virtual Local
Area Network (VLAN) to set priorities for PTP packets and BG traffic packets to improve
the applicability of our clock servo.

6. Results and Discussion
6.1. Effect of Different Parameters on Synchronization Performance

This subsection studies the effect of different parameters on synchronization perfor-
mance, which mainly includes algorithm parameters and external parameters, as pre-
sented in Table 4. The algorithm parameters comprise slave clock period T0, synchroni-
zation period Tsync , observation window length N, and PI coefficients kp and ki . The

Figure 10. Experimental platform. (a) Schematic diagram. (b) Physical diagram.

The master and slave clocks use the same nodes, and the hardware cost of each
node is within USD 10. The node microcontroller unit (MCU) chooses STM32F407VGT6
(STMicroelectronics, Geneva, Switzerland), and the system frequency is set to 168 MHz.
Its integrated Ethernet controller can obtain hardware timestamps at the MAC layer. The
physical layer chip uses LAN8720A (Microchip, Chandler, AZ, USA). The XO uses KDS
DSX321G (Daishinku, Kakogawa, Japan), the nominal frequency is 8 MHz, the frequency
tolerance is ±20 ppm (25 ◦C), and the frequency stability is ±50 ppm (−40 to +105 ◦C). The
node software uses the free real-time operating system (FreeRTOS) and is further developed
based on the open-source PTP Daemon project [47].

5.2. BG Traffic Model

Most scholars used two traffic models when studying QIDACM: cross-traffic and
in-line traffic [38]. Unlike the above two models, we use a broadcast traffic model, which is
more suitable for a DMCS. The master and slave clocks can generate PTP traffic and BG
traffic simultaneously, and the transmission paths of the two are the same, as observed
regarding the blue and green dotted lines in Figure 10a. This model is particularly suitable
for one-to-many communication. Each node can decide whether to receive the BG traffic
packet based on the internal filter, which is convenient for system scalability and redun-
dancy design. This traffic model is widely used in EtherNet/IP for industrial automation.
The BG traffic packet is transmitted periodically using the UDP multicast protocol. Unless
otherwise stated, the BG traffic in this article refers to the total traffic. The BG traffic gener-
ated by each clock is equally distributed according to the number of clocks. For example,

Sensors 2024, 24, 2369 16 of 26

assume that the total BG traffic is 60 Mbps and the single-hop system has four clocks, so
each clock needs to generate 15 Mbps BG traffic. In addition, we do not use Virtual Local
Area Network (VLAN) to set priorities for PTP packets and BG traffic packets to improve
the applicability of our clock servo.

6. Results and Discussion
6.1. Effect of Different Parameters on Synchronization Performance

This subsection studies the effect of different parameters on synchronization perfor-
mance, which mainly includes algorithm parameters and external parameters, as presented
in Table 4. The algorithm parameters comprise slave clock period T0, synchronization
period Tsync, observation window length N, and PI coefficients kp and ki. The slave period
T0 is the reciprocal of the slave clock frequency f0. The smaller the value of T0, the larger
the value of f0 and the smaller the quantization error. T0 is set to 7 ns, and then, according
to Equations (8) and (9), the constant value V and the initial value u0 of the addend are
15 and 0xDA2835AC. IEEE 1588 standard stipulates that the minimum synchronization
period is 7.8125 ms [9]. The smaller the value of Tsync, the better the synchronization
performance, but the greater the pressure on the clocks to process PTP packets. Therefore,
the compromise is to set Tsync to 125 ms. The window length N is set to 32, ensuring enough
samples for estimation. It is a power of two and convenient for shift calculation. N should
not be too large because, the larger N, the longer the frequency correction period Tc, and
the easier it is for time error to accumulate. PI coefficients kp and ki are calculated by the
fuzzy controller in each correction period. From Section 4.2, the physical domain range of
the fuzzy controller has not been determined, which will be studied later.

Table 4. Different parameter types and values for clock synchronization.

Types Parameters Values

Algorithm parameters

Slave clock period T0 7 ns
Synchronization period Tsync 125 ms

Observation window length N 32
PI coefficients kp, ki Calculated by the fuzzy controller

External parameters

BG traffic Wbg From 0 to 100 Mbps
BG traffic packet length Lbg 512, 1024, and 1518 Bytes

Switch hop count Nhop From 1 to 5
Ambient temperature Ttemp Room Temperature

The external parameters comprise BG traffic Wbg, BG traffic packet length Lbg, switch
hop count Nhop, and ambient temperature Ttemp. Since the node hardware only supports
100 Mbps Ethernet, the BG traffic Wbg ranges from 0 to 100 Mbps. The BG traffic packet
length Lbg has three values: 512, 1024, and 1518 Bytes (1518 is the maximum frame length of
Ethernet). The larger the value of Lbg, the longer the queue delay for PTP packets to collide
with BG traffic packets. The switch hop count Nhop supports from 1 to 5, which is already
the size of medium networks. All the experiments are carried out at room temperature
for convenience.

6.1.1. PI Coefficients

First, we study the effect of PI coefficients kp and ki on synchronization performance.
The experimental parameters are set as follows. The BG traffic Wbg is 50 Mbps, the BG
traffic packet length Lbg is 1518 Bytes, and the switch hop count Nhop is one. Fuzzy control
is temporarily ignored, and kp and ki are artificially provided during initialization and
remain unchanged during the experiment. Set the damping ratio ξ to 0.707 (the best value
in engineering), the natural frequency ωn to 0.2 rad/s, and the corresponding kp and ki
are 0.677 and 0.364, respectively, for the experiments. First, record the convergence time of
the synchronization algorithm. The initial time offset is set to 1 ms, and the convergence
condition is that the absolute time error (|TE|) is less than 1 µs. Then, enable the afterglow

Sensors 2024, 24, 2369 17 of 26

mode of the oscilloscope to record the time error fluctuation for one hour, and the result is
shown in Figure 11a. The mean time error values between slave clocks 1, 2, and 3 and the
master clock are −0.016 µs, −0.050 µs, and −0.036 µs. The standard deviations (STDs) are
0.041 µs, 0.051 µs, and 0.055 µs. The max |TE| values are 0.168 µs, 0.228 µs, and 0.244 µs.

Sensors 2024, 24, x FOR PEER REVIEW 18 of 27

Figure 11. (a) Time error fluctuation recorded by the oscilloscope for one hour (damping ratio is
0.707, and natural frequency is 0.2 rad/s). Oscilloscope parameter settings: horizontal time scale 0.2
µs/div, vertical voltage scale 2 V/div, rising edge trigger, trigger level 0.8 V, and afterglow mode
enabled. (b) PI coefficients for varying natural frequency (damping ratio is 0.707, and frequency
correction period is 4 s). Intersections of dashed lines and solid lines indicate PI coefficients used for
the experiments.

In order to study the performance under different natural frequencies, ωn is selected
as 0.05, 0.1, 0.3, 0.4, 0.5, 0.75, 1, and 5 rad/s, and the relationship between the selected
values of ωn and the PI coefficients is shown in Figure 11b. Multiple experiments are car-
ried out, and the results are presented in Table 5. Variations in the STD of the time error
and the max |TE| with natural frequency are demonstrated in Figure 12a,b. If ωn is too
small (ωn is less than 0.1 rad/s), although the loop’s ability to suppress input noise be-
comes stronger, the dynamic performance becomes weaker, and the jitter of the XO fre-
quency will cause large time error fluctuation. Both the STD and the max |TE| increase
significantly. On the contrary, if ωn is too large (ωn is greater than 0.5 rad/s), the loop’s
ability to suppress input noise becomes weaker, and the max |TE| increases significantly.
Therefore, ωn has an optimal intermediate value of 0.2 or 0.3 rad/s. When ωn is 0.3 rad/s,
the STD values of the time error of slave clocks 1, 2, and 3 are 0.038 µs, 0.040 µs, and 0.055
µs, achieving the global minimum. The max |TE| values are 0.188 µs, 0.208 µs, and 0.260
µs. The reason why the STD of slave 3 is obviously larger than that of slaves 1 and 2 may
be that the stability of its XO frequency at room temperature is poor.

Table 5. Results of the PI coefficients experiment.

ξ. ωn
(rad/s)

Time Error (µs) Convergence Time (Tc)
Slave Clock 1 Slave Clock 2 Slave Clock 3

Slave
Clock 1

Slave
Clock 2

Slave
Clock 3 Mean STD Max

|TE|
Mean STD Max

|TE|
Mean STD Max

|TE|

0.707

0.05 0.011 0.129 0.476 −0.087 0.188 0.656 −0.031 0.208 0.664 46 46 46
0.1 0.010 0.065 0.228 −0.051 0.087 0.292 −0.022 0.087 0.304 23 23 23
0.2 −0.016 0.041 0.168 −0.050 0.051 0.228 −0.036 0.055 0.244 12 12 12
0.3 −0.007 0.038 0.188 −0.034 0.040 0.208 −0.022 0.055 0.260 10 10 10
0.4 0.017 0.049 0.292 −0.020 0.047 0.228 −0.015 0.058 0.288 8 8 7
0.5 0.006 0.053 0.300 −0.012 0.052 0.268 −0.003 0.061 0.248 8 8 8

0.75 −0.033 0.070 0.460 −0.018 0.062 0.352 −0.035 0.071 0.344 7 7 7
1 0.005 0.057 0.360 −0.006 0.063 0.532 0.008 0.061 0.304 7 7 8
5 −0.024 0.064 0.432 −0.018 0.054 0.364 −0.018 0.059 0.316 7 7 7

Fuzzy-PI 0.005 0.039 0.168 −0.006 0.046 0.248 −0.005 0.057 0.196 8 7 8

Figure 11. (a) Time error fluctuation recorded by the oscilloscope for one hour (damping ratio is
0.707, and natural frequency is 0.2 rad/s). Oscilloscope parameter settings: horizontal time scale
0.2 µs/div, vertical voltage scale 2 V/div, rising edge trigger, trigger level 0.8 V, and afterglow mode
enabled. (b) PI coefficients for varying natural frequency (damping ratio is 0.707, and frequency
correction period is 4 s). Intersections of dashed lines and solid lines indicate PI coefficients used for
the experiments.

In order to study the performance under different natural frequencies, ωn is selected as
0.05, 0.1, 0.3, 0.4, 0.5, 0.75, 1, and 5 rad/s, and the relationship between the selected values
of ωn and the PI coefficients is shown in Figure 11b. Multiple experiments are carried out,
and the results are presented in Table 5. Variations in the STD of the time error and the max
|TE| with natural frequency are demonstrated in Figure 12a,b. If ωn is too small (ωn is
less than 0.1 rad/s), although the loop’s ability to suppress input noise becomes stronger,
the dynamic performance becomes weaker, and the jitter of the XO frequency will cause
large time error fluctuation. Both the STD and the max |TE| increase significantly. On the
contrary, if ωn is too large (ωn is greater than 0.5 rad/s), the loop’s ability to suppress input
noise becomes weaker, and the max |TE| increases significantly. Therefore, ωn has an
optimal intermediate value of 0.2 or 0.3 rad/s. When ωn is 0.3 rad/s, the STD values of the
time error of slave clocks 1, 2, and 3 are 0.038 µs, 0.040 µs, and 0.055 µs, achieving the global
minimum. The max |TE| values are 0.188 µs, 0.208 µs, and 0.260 µs. The reason why the
STD of slave 3 is obviously larger than that of slaves 1 and 2 may be that the stability of its
XO frequency at room temperature is poor.

Table 5. Results of the PI coefficients experiment.

ξ. ωn
(rad/s)

Time Error (µs) Convergence Time (Tc)
Slave Clock 1 Slave Clock 2 Slave Clock 3

Slave
Clock 1

Slave
Clock 2

Slave
Clock 3Mean STD Max

|TE| Mean STD Max
|TE| Mean STD Max

|TE|

0.707

0.05 0.011 0.129 0.476 −0.087 0.188 0.656 −0.031 0.208 0.664 46 46 46
0.1 0.010 0.065 0.228 −0.051 0.087 0.292 −0.022 0.087 0.304 23 23 23
0.2 −0.016 0.041 0.168 −0.050 0.051 0.228 −0.036 0.055 0.244 12 12 12
0.3 −0.007 0.038 0.188 −0.034 0.040 0.208 −0.022 0.055 0.260 10 10 10
0.4 0.017 0.049 0.292 −0.020 0.047 0.228 −0.015 0.058 0.288 8 8 7
0.5 0.006 0.053 0.300 −0.012 0.052 0.268 −0.003 0.061 0.248 8 8 8

0.75 −0.033 0.070 0.460 −0.018 0.062 0.352 −0.035 0.071 0.344 7 7 7
1 0.005 0.057 0.360 −0.006 0.063 0.532 0.008 0.061 0.304 7 7 8
5 −0.024 0.064 0.432 −0.018 0.054 0.364 −0.018 0.059 0.316 7 7 7

Fuzzy-PI 0.005 0.039 0.168 −0.006 0.046 0.248 −0.005 0.057 0.196 8 7 8

Sensors 2024, 24, 2369 18 of 26Sensors 2024, 24, x FOR PEER REVIEW 19 of 27

Figure 12. Results of the PI coefficients experiment. (a) STD of the time error for varying natural
frequency. (b) Max |TE| for varying natural frequency. (c) Convergence time for varying natural
frequency. (d) Convergence process of the time offset (slave clock 2; initial offset 1 ms; convergence
condition |TE| ≤ 1 µs).

Table 5 also provides the algorithm convergence time. The variation in the conver-
gence time with ωn is shown in Figure 12c. Figure 12d displays the convergence process
of the time offset of slave clock 2. The larger the value of ωn, the faster the convergence
speed, but overshoot will increase. When ωn is 5 rad/s, both kp and ki reach the stable
value of 1.000. Substitute them into Equation (21), and the two poles of the system are
located at the origin, so the dynamic performance is the best, and the convergence time
only takes seven correction periods.

Based on the above results, the physical domain range of the fuzzy controller can be
determined. Since the synchronization accuracy target in this paper is 1 µs, the upper
bound E of the absolute time offset |e| is also set to 1 µs. Since the absolute offset de-
rivative |ec| values when ωn is 0.2 or 0.3 rad/s are both within 0.06 µs/s, the upper
bound Ec of |ec| is also set to 0.06 µs/s. Moreover, the upper bound Ωu and lower
bound Ωd of the natural frequency ωn are 0.6 rad/s (better dynamic performance) and
0.2 rad/s (optimal intermediate value). The results after adding fuzzy control are pre-
sented in the last row of Table 5. The STD values of the time error of slave clocks 1, 2, and
3 are 0.039 µs, 0.046µs, and 0.057µs, and the max |TE| values are 0.168 µs, 0.248 µs, and
0.196 µs. These results are relatively close to those when ωn is 0.2 or 0.3 rad/s. The con-
vergence time is seven to eight correction periods, about half a minute, almost reaching
the fastest speed. As a result, fuzzy-PI can ensure fast convergence and obtain good syn-
chronization performance simultaneously. All the subsequent experiments use the above
fuzzy-PI controller.

Figure 12. Results of the PI coefficients experiment. (a) STD of the time error for varying natural
frequency. (b) Max |TE| for varying natural frequency. (c) Convergence time for varying natural
frequency. (d) Convergence process of the time offset (slave clock 2; initial offset 1 ms; convergence
condition |TE| ≤ 1 µs).

Table 5 also provides the algorithm convergence time. The variation in the convergence
time with ωn is shown in Figure 12c. Figure 12d displays the convergence process of the
time offset of slave clock 2. The larger the value of ωn, the faster the convergence speed,
but overshoot will increase. When ωn is 5 rad/s, both kp and ki reach the stable value of
1.000. Substitute them into Equation (21), and the two poles of the system are located at the
origin, so the dynamic performance is the best, and the convergence time only takes seven
correction periods.

Based on the above results, the physical domain range of the fuzzy controller can
be determined. Since the synchronization accuracy target in this paper is 1 µs, the upper
bound E of the absolute time offset |e| is also set to 1 µs. Since the absolute offset derivative
|ec| values when ωn is 0.2 or 0.3 rad/s are both within 0.06 µs/s, the upper bound Ec of
|ec| is also set to 0.06 µs/s. Moreover, the upper bound Ωu and lower bound Ωd of the
natural frequency ωn are 0.6 rad/s (better dynamic performance) and 0.2 rad/s (optimal
intermediate value). The results after adding fuzzy control are presented in the last row of
Table 5. The STD values of the time error of slave clocks 1, 2, and 3 are 0.039 µs, 0.046µs,
and 0.057µs, and the max |TE| values are 0.168 µs, 0.248 µs, and 0.196 µs. These results
are relatively close to those when ωn is 0.2 or 0.3 rad/s. The convergence time is seven
to eight correction periods, about half a minute, almost reaching the fastest speed. As a
result, fuzzy-PI can ensure fast convergence and obtain good synchronization performance
simultaneously. All the subsequent experiments use the above fuzzy-PI controller.

6.1.2. BG Traffic

Subsequently, BG traffic experiments are conducted, and the switch hop count remains
one. The BG traffic Wbg ranges from 0 to 100 Mbps. The results are illustrated in Figure 13a.
The vertical axis means the maximum among the max |TE| of slave clocks 1, 2, and 3. The
vertical axes in Figure 14 and Figure 16 have the same meaning. When there is no BG traffic,
the max |TE| is 0.164 µs. When BG traffic is added and controlled within 70 Mbps, the

Sensors 2024, 24, 2369 19 of 26

max |TE| shows an increasing trend, but the change range is not large and remains within
0.3 µs. However, the greater the value of Wbg, the greater the probability that PTP packets
will be affected by queue delay. Nevertheless, as long as the minimum delay packets can
be found within the window, the time offset estimation using Algorithm 1 can be close
to the true value, and the synchronization accuracy can be guaranteed. Figure 13b shows
the time offset estimation when Wbg is 40 Mbps and the length Lbg is 1518 Bytes, and the
estimation value is basically within 0.3 µs. Figure 13c shows the forward and backward
timestamp differences from the 200-th window of slave clock 1 in Figure 13b. The dotted
line indicates the true time offset, which is close to zero. The vertical distance between the
circles or boxes and the dotted line represents the delay. Most PTP packets are not affected
by queue delays, and the forward and backward static delays κms and κsm are about 13.4 µs.
Therefore, the algorithm estimation accuracy is excellent, and the result is 0.051 µs. When
Lbg is 512 Bytes, the maximum of Wbg is only 70 Mbps. Because of the smaller Lbg, in order
to achieve the same BG traffic, the number of packets will be greater, and the software will
have more overhead in packing and unpacking packets. When Wbg is 70 Mbps, the MCU
utilization is measured to exceed 90%. If Wbg continues to increase, the MCU will not have
enough time to process PTP packets.

Sensors 2024, 24, x FOR PEER REVIEW 21 of 27

Figure 13. Results of the BG traffic experiments. (a) Max |TE| for varying BG traffic. (b) Time offset
estimation recorded for one hour when BG traffic is 40 Mbps and length is 1518 Bytes. (c) Forward
and backward timestamp differences from the 200-th window of slave clock 1 in (b). (d) Time offset
estimation when BG traffic is 80 Mbps and length is 1518 Bytes. (e) Forward and backward
timestamp differences from the 248-th window of slave clock 1 in (d).

Figure 14. Max |TE| for varying switch hop count.

Figure 13. Results of the BG traffic experiments. (a) Max |TE| for varying BG traffic. (b) Time offset
estimation recorded for one hour when BG traffic is 40 Mbps and length is 1518 Bytes. (c) Forward
and backward timestamp differences from the 200-th window of slave clock 1 in (b). (d) Time offset
estimation when BG traffic is 80 Mbps and length is 1518 Bytes. (e) Forward and backward timestamp
differences from the 248-th window of slave clock 1 in (d).

Sensors 2024, 24, 2369 20 of 26

Sensors 2024, 24, x FOR PEER REVIEW 21 of 27

Figure 13. Results of the BG traffic experiments. (a) Max |TE| for varying BG traffic. (b) Time offset
estimation recorded for one hour when BG traffic is 40 Mbps and length is 1518 Bytes. (c) Forward
and backward timestamp differences from the 200-th window of slave clock 1 in (b). (d) Time offset
estimation when BG traffic is 80 Mbps and length is 1518 Bytes. (e) Forward and backward
timestamp differences from the 248-th window of slave clock 1 in (d).

Figure 14. Max |TE| for varying switch hop count. Figure 14. Max |TE| for varying switch hop count.

When Wbg is increased to 80 Mbps and Lbg is 1024 or 1518 Bytes, the max |TE| values
are 47.8 µs and 37.8 µs, respectively. Figure 13d includes the time offset estimation when
Wbg is 80 Mbps and Lbg is 1518 Bytes. The offset has multiple jumps, meaning that the
packet selection algorithm begins to fail. Figure 13e shows the forward and backward
timestamp differences from the 248-th window of slave clock 1 in Figure 13d. Compared
to Figure 13c, its PTP packets affected by queue delays increase significantly, and all the
red boxes are affected, so the estimation deviates from the true value and is −10.484 µs.
This value is obviously a gross estimation point, and secondary filtering can be used to
eliminate it later. Thanks to the excellent dynamic performance of fuzzy-PI, the time offset
can return to normal with five to six correction periods. When Wbg increases to 90 and
100 Mbps, the synchronization performance continues to deteriorate, and the accuracy can
only reach a hundred microseconds.

To sum up, our clock servo can guarantee 1 µs synchronization accuracy within
70 Mbps BG traffic, which meets the needs of most scenarios.

6.1.3. Switch Hop Count

Finally, the effect of switch hop count Nhop on synchronization performance is studied.
The system expansion method is described in Section 5.1. As Nhop increases, the number of
clocks increases, and the output traffic on the switch ports directly connected to each clock
also increases. At the same time, the communication paths between the master clock and
slave clocks 1, 2, and 3 become longer, and the uncertainty of PTP packets colliding with
BG packets will also increase. The experimental result is illustrated in Figure 14. The BG
traffic Wbg is set to 70 or 30 Mbps, and the length Lbg is set to 1518 or 512 Bytes. When Nhop
is within four, the variation in Nhop will not affect synchronization performance, and the
max |TE| fluctuates within 0.35 µs. When Nhop is increased to five and Wbg is 70 Mbps, we
observed that the packet selection algorithm began to fail occasionally, similar to Figure 13d,
and the max |TE| reaches tens of microseconds. When Wbg is 30 Mbps, the max |TE| can
be guaranteed to less than 0.35 µs.

Ref. [19] also contains the experimental results regarding switch hop count. Using
TC switches, the max |TE| of single-hop, two-hop, and three-hop can all be kept around
0.03 µs, and the accuracy is very high. If ordinary switches are used, the performance will
obviously deteriorate, and the max |TE| will reach tens of microseconds, and it will be
significantly affected by the increase in Nhop.

Therefore, in a network with a switch hop count of less than four and BG traffic of
less than 70 Mbps, our clock servo is sufficient to achieve 1 µs synchronization accuracy.
Although the performance is not as good as the results using TC switches in ref. [19], it is
significantly improved compared to using ordinary switches.

6.2. Comparison with Other Methods

We compare our method with the four design methods of the clock servo [27,28,31,33]
and QIDACM [40]. The comparative fuzzy-PI servo includes [33] instead of [34] because

Sensors 2024, 24, 2369 21 of 26

hybrid IWCA-CS [34] seeks the optimal solution through continuous iterations, which has
a large computational overhead. Our low-cost STM32 platform does not have enough
computing capability. Moreover, some communication tasks and measurement and control
tasks will be deployed in our nodes in the future, and the overhead of the clock synchro-
nization task should be as small as possible. As introduced in Table 2, there are many
QIDACMs, but they have respective limitations:

• Dedicated switches for PTPv2 are expensive.
• Sending probing packets causes major changes to PTP. Controlled packet departure

has strict timing requirements. Their compatibility and applicability are not strong.
• PTP-LP has a high computational cost and is also not suitable for the STM32 platform.
• Optimal estimation algorithm requires an oscilloscope to provide input, which is not

easy to implement in practical applications.

As a result, we focus on comparing the method in [40], which also uses the principle of
detecting the minimum delay packet. Comparative performance metrics include time error,
convergence time, and MCU utilization. When comparing the time error, the BG traffic is
set from 10 to 70 Mbps. The BG traffic length is set to 1518 Bytes, and the switch hop count
is set to one. Because the errors of some methods cannot converge within 1 µs, there is no
BG traffic when comparing the convergence time, and the initial time offset is set to 1 ms.
The MCU utilization is measured through the function vTaskGetRunTimeStats() provided
by FreeRTOS.

The parameter settings of each method are organized in Table 6. For LF-PI [27], the
time offset filter coefficient is set to 0.5, and the PI coefficients are set to 0.5 and 0.0625. The
PI coefficients of the optimal PI [31] are both set to 1. The PI coefficients of the KF-PI [28]
are also set to 1. The process noise covariance is set to 0.1 (µs)2, and the measurement noise
covariance is calculated based on the one-way delay measured fifty times before starting the
filter [48]. The core parameters of the fuzzy-PI [33] are consistent with those in this paper,
except for the input physical domain. The upper bound of the absolute time offset is set to
500 µs, and that of the absolute offset derivative is set to 100 µs/s. The PTP synchronization
period of the above four methods is set to 4 s, so the frequency correction period is also
4 s. Since ref. [40] only provides the time offset estimation method and does not include
the correction method, we combine it with fuzzy-PI, and the fuzzy parameters are entirely
consistent with those in this paper. Furthermore, it does not provide an estimation method
for clock skew. For convenience of comparison, the clock skew directly uses the value of
Equation (12) in this paper, with the opposite sign. The exponentially weighted moving
average filter factor is set to 1.

Table 6. Parameter settings of different clock synchronization methods.

Methods Parameters Values

LF-PI [27]
Time offset filter coefficient 0.5

PI coefficients 0.5 and 0.0625
Optimal PI [31] PI coefficients 1

KF-PI [28]
Process noise covariance 0.1 (µs)2

Measurement noise covariance
Calculated based on the one-way
delay measured fifty times before

starting the filter
PI coefficients 1

Fuzzy-PI [33] Upper bound of the absolute time offset 500 µs
Upper bound of the absolute

offset derivative 100 µs/s

QIDACM [40]
Clock skew Value of Equation (12) in this

paper, with the opposite sign
Exponentially weighted moving

average filter factor 1

All Synchronization period 4 s

Sensors 2024, 24, 2369 22 of 26

Table 7 summarizes the results of the six methods when BG traffic is 50 Mbps. Figure 15
is the convergence process of the time offset of slave clock 2. None of the first four methods
can achieve 1 µs synchronization accuracy, and their mean error is approximately −10 µs.
Optimal PI has the fastest convergence, requiring about four correction periods. However,
its performance is the worst. The STD is about 100 µs, and the max |TE| reaches nearly
500 µs. Because the PI coefficients of this method are both 1, the loop bandwidth is the
widest, the dynamic characteristic is the strongest, and the filter characteristic is the worst.
Fuzzy-PI adds fuzzy logic compared to optimal PI, and the synchronization performance is
improved. The STD is reduced to about 60 µs, and the max |TE| is reduced to about 300 µs.
The convergence becomes slower and requires 11 correction periods. The synchronization
performance will be significantly enhanced after adding a filter to the clock servo. The STD
of LF-PI is about 35 µs, and the max |TE| is about 160 µs, but the convergence speed is
the slowest, requiring about 40 correction periods. The reason is that the LF will introduce
phase delay, and the system is in an overdamping state. Among these four methods, KF-PI
has the best performance. The max |TE| is about 100 µs, and the convergence time is
basically the same as the optimal PI.

Table 7. Comparison of our method with other clock synchronization methods: time error and
convergence time.

Methods

Time Error (µs) Convergence Time (Tc)
Slave Clock 1 Slave Clock 2 Slave Clock 3

Slave
Clock 1

Slave
Clock 2

Slave
Clock 3Mean STD Max

|TE| Mean STD Max
|TE| Mean STD Max

|TE|

LF-PI [27] −10.8 34.2 157 −9.73 33.1 134 −10.5 32.5 161 40 38 38
Optimal PI [31] −9.03 98.3 507 −11.0 94.5 376 −11.0 106 465 4 4 3

KF-PI [28] −12.0 44.5 100 −10.0 55.1 103 −10.3 23.0 55.3 4 4 4
Fuzzy-PI [33] −9.36 54.7 366 −9.37 53.1 264 −10.2 55.4 306 11 11 11

QIDACM [40] +
Fuzzy-PI 0.009 0.051 0.380 −0.001 0.056 0.260 0.010 0.069 0.364 7 7 7

Our method 0.005 0.039 0.168 −0.006 0.046 0.248 −0.005 0.057 0.196 7 7 7

Sensors 2024, 24, x FOR PEER REVIEW 24 of 27

is reduced to about 300 µs. The convergence becomes slower and requires 11 correction
periods. The synchronization performance will be significantly enhanced after adding a
filter to the clock servo. The STD of LF-PI is about 35 µs, and the max |TE| is about 160
µs, but the convergence speed is the slowest, requiring about 40 correction periods. The
reason is that the LF will introduce phase delay, and the system is in an overdamping
state. Among these four methods, KF-PI has the best performance. The max |TE| is about
100 µs, and the convergence time is basically the same as the optimal PI.

Figure 15. Convergence process of different methods (slave clock 2; initial time offset 1 ms; conver-
gence condition |TE| ≤ 1 µs).

Table 7. Comparison of our method with other clock synchronization methods: time error and con-
vergence time.

Methods

Time Error (µs) Convergence Time (Tc)
Slave Clock 1 Slave Clock 2 Slave Clock 3

Slave
Clock 1

Slave
Clock 2

Slave
Clock 3 Mean STD Max

|TE|
Mean STD Max

|TE|
Mean STD Max

|TE|
LF-PI [27] −10.8 34.2 157 −9.73 33.1 134 −10.5 32.5 161 40 38 38

Optimal PI [31] −9.03 98.3 507 −11.0 94.5 376 −11.0 106 465 4 4 3
KF-PI [28] −12.0 44.5 100 −10.0 55.1 103 −10.3 23.0 55.3 4 4 4

Fuzzy-PI [33] −9.36 54.7 366 −9.37 53.1 264 −10.2 55.4 306 11 11 11
QIDACM [40] +

Fuzzy-PI 0.009 0.051 0.380 −0.001 0.056 0.260 0.010 0.069 0.364 7 7 7

Our method 0.005 0.039 0.168 −0.006 0.046 0.248 −0.005 0.057 0.196 7 7 7

QIDACM [40] and our method use the window filter based on oversampling, and the
synchronization accuracy is improved to 1 µs. The performance of the two methods is
relatively close, and the convergence time is seven correction periods. In comparison, the
STD and max |TE| of our method are smaller. As the window length of the two methods
is set to 32, in order to ensure that the frequency correction period remains unchanged,
the PTP synchronization period is reduced to 125 ms, and the number of PTP packets
increases significantly. Even so, the PTP traffic still accounts for less than 1% of the 100
Mbps bandwidth, which is completely acceptable for practical applications. Moreover, a
large amount of PTP traffic also increases the processing burden of the node MCU, so we
measure the MCU utilization of the six methods. When there is no BG traffic, the MCU
utilization of the four design methods of the clock servo is less than 1%, while that of
QIDACM [40] and our method is about 3%. Therefore, the burden of oversampling to the
MCU is almost negligible, and the MCU still has enough time to handle other measure-
ment and control tasks.

We adjust the BG traffic to 10, 30, and 70 Mbps and conduct multiple experiments
using the six methods above. In Figure 16a, we can see that the synchronization perfor-
mance of the four design methods of the clock servo is easily affected by BG traffic. The

Figure 15. Convergence process of different methods (slave clock 2; initial time offset 1 ms; conver-
gence condition |TE| ≤ 1 µs).

QIDACM [40] and our method use the window filter based on oversampling, and
the synchronization accuracy is improved to 1 µs. The performance of the two methods
is relatively close, and the convergence time is seven correction periods. In comparison,
the STD and max |TE| of our method are smaller. As the window length of the two
methods is set to 32, in order to ensure that the frequency correction period remains
unchanged, the PTP synchronization period is reduced to 125 ms, and the number of PTP
packets increases significantly. Even so, the PTP traffic still accounts for less than 1% of the
100 Mbps bandwidth, which is completely acceptable for practical applications. Moreover,
a large amount of PTP traffic also increases the processing burden of the node MCU, so
we measure the MCU utilization of the six methods. When there is no BG traffic, the MCU

Sensors 2024, 24, 2369 23 of 26

utilization of the four design methods of the clock servo is less than 1%, while that of
QIDACM [40] and our method is about 3%. Therefore, the burden of oversampling to the
MCU is almost negligible, and the MCU still has enough time to handle other measurement
and control tasks.

We adjust the BG traffic to 10, 30, and 70 Mbps and conduct multiple experiments using
the six methods above. In Figure 16a, we can see that the synchronization performance of
the four design methods of the clock servo is easily affected by BG traffic. The greater the
BG traffic, the worse the performance. The accuracy of these four methods ranges from
tens of microseconds to hundreds of microseconds, and the performance ranking is KF-PI >
LF-PI > Fuzzy-PI > Optimal PI. Figure 16b shows the comparison between QIDACM [40]
and our method. Under different BG traffic, our method always performs better, and the
max |TE| does not exceed 0.3 µs.

Sensors 2024, 24, x FOR PEER REVIEW 25 of 27

greater the BG traffic, the worse the performance. The accuracy of these four methods

ranges from tens of microseconds to hundreds of microseconds, and the performance

ranking is KF-PI > LF-PI > Fuzzy-PI > Optimal PI. Figure 16b shows the comparison be-

tween QIDACM [40] and our method. Under different BG traffic, our method always per-

forms better, and the max |TE| does not exceed 0.3 μs.

Figure 16. Comparison of the max |TE| of the six methods under different BG traffic. (a) Four design

methods of the clock servo. (b) QIDACM [40] and our method.

7. Conclusions

This paper designs a PTP clock servo for compensating QIDA, aiming at addressing

the high cost and poor flexibility of the dedicated switches supporting TC. Its main algo-

rithm consists of a minimum window filter with drift compensation and a fuzzy-PI con-

troller. The minimum window filter is an oversampling nonlinear filter. Before drift com-

pensation, the frequency offset within the window needs to be estimated. It is an optimal

bidirectional estimation, effectively reducing the estimation error. The control system

model of the clock servo is simplified by constructing a new input and output, and a

method of determining the PI coefficients according to the damping ratio and natural fre-

quency under the discrete system model is proposed. Adding fuzzy control can ensure

fast convergence and high synchronization accuracy simultaneously. Finally, the perfor-

mance of the clock servo is evaluated based on the low-cost experimental platform and

the broadcast traffic model. Oversampling will only generate limited traffic, accounting

for less than 1% of the 100 Mbps bandwidth. Furthermore, the burden of oversampling to

the MCU is almost negligible, and the utilization is measured to be about 3%. When the

switch hop count is less than four and the BG traffic is less than 70 Mbps, the max |TE|

does not exceed 0.35 μs, and the convergence time is about half a minute. Compared with

other existing clock servos, this synchronization accuracy is improved hundreds of times.

Future work can further conduct temperature experiments based on the existing

hardware platform. In addition, the current BG traffic model is a fixed-length periodic

UDP multicast packet, and we can study the performance of our clock servo under more

complex traffic models.

Author Contributions: Conceptualization, Y.Z. and F.C.; data curation, Y.Z., H.L. and S.W.; formal

analysis, Y.Z.; funding acquisition, F.C.; investigation, Y.Z. and S.W.; methodology, Y.Z.; project ad-

ministration, F.C.; resources, Y.Z.; software, Y.Z. and H.L.; supervision, F.C.; validation, Y.Z. and

H.L.; visualization, Y.Z.; writing—original draft preparation, Y.Z.; writing—review and editing, Y.Z.

All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Tsinghua Precision Medicine Foundation under Grant

10001020110.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Figure 16. Comparison of the max |TE| of the six methods under different BG traffic. (a) Four design
methods of the clock servo. (b) QIDACM [40] and our method.

7. Conclusions

This paper designs a PTP clock servo for compensating QIDA, aiming at addressing the
high cost and poor flexibility of the dedicated switches supporting TC. Its main algorithm
consists of a minimum window filter with drift compensation and a fuzzy-PI controller.
The minimum window filter is an oversampling nonlinear filter. Before drift compensation,
the frequency offset within the window needs to be estimated. It is an optimal bidirectional
estimation, effectively reducing the estimation error. The control system model of the clock
servo is simplified by constructing a new input and output, and a method of determining
the PI coefficients according to the damping ratio and natural frequency under the discrete
system model is proposed. Adding fuzzy control can ensure fast convergence and high
synchronization accuracy simultaneously. Finally, the performance of the clock servo is
evaluated based on the low-cost experimental platform and the broadcast traffic model.
Oversampling will only generate limited traffic, accounting for less than 1% of the 100 Mbps
bandwidth. Furthermore, the burden of oversampling to the MCU is almost negligible,
and the utilization is measured to be about 3%. When the switch hop count is less than
four and the BG traffic is less than 70 Mbps, the max |TE| does not exceed 0.35 µs, and the
convergence time is about half a minute. Compared with other existing clock servos, this
synchronization accuracy is improved hundreds of times.

Future work can further conduct temperature experiments based on the existing
hardware platform. In addition, the current BG traffic model is a fixed-length periodic
UDP multicast packet, and we can study the performance of our clock servo under more
complex traffic models.

Author Contributions: Conceptualization, Y.Z. and F.C.; data curation, Y.Z., H.L. and S.W.; formal
analysis, Y.Z.; funding acquisition, F.C.; investigation, Y.Z. and S.W.; methodology, Y.Z.; project
administration, F.C.; resources, Y.Z.; software, Y.Z. and H.L.; supervision, F.C.; validation, Y.Z. and

Sensors 2024, 24, 2369 24 of 26

H.L.; visualization, Y.Z.; writing—original draft preparation, Y.Z.; writing—review and editing, Y.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Tsinghua Precision Medicine Foundation under Grant
10001020110.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available from the corresponding
author upon request. The data are not publicly available due to privacy restrictions.

Acknowledgments: We gratefully acknowledge the anonymous reviewers for their constructive
comments and suggestions.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Ge, X.; Yang, F.; Han, Q.-L. Distributed networked control systems: A brief overview. Inform. Sci. 2017, 380, 117–131. [CrossRef]
2. Lévesque, M.; Tipper, D. A survey of clock synchronization over packet-switched networks. IEEE Commun. Surv. Tut. 2016, 18,

2926–2947. [CrossRef]
3. Yang, T.; Niu, Y.; Yu, J. Clock synchronization in wireless sensor networks based on Bayesian estimation. IEEE Access 2020, 8,

69683–69694. [CrossRef]
4. Ganeriwal, S.; Kumar, R.; Srivastava, M.B. Timing-Sync Protocol for Sensor Networks. In Proceedings of the 1st International

Conference on Embedded Networked Sensor Systems, Los Angeles, CA, USA, 5–7 November 2003; pp. 138–149.
5. Elson, J.; Girod, L.; Estrin, D. Fine-grained network time synchronization using reference broadcasts. ACM SIGOPS Oper. Syst.

Rev. 2002, 36, 147–163. [CrossRef]
6. Maróti, M.; Kusy, B.; Simon, G.; Lédeczi, A. The Flooding Time Synchronization Protocol. In Proceedings of the 2nd International

Conference on Embedded Networked Sensor Systems, Baltimore, MD, USA, 3–5 November 2004; pp. 39–49.
7. Industrial Network Market Shares. 2023. Available online: https://www.hms-networks.com/news-and-insights/news-from-

hms/2023/05/05/industrial-network-market-shares-2023 (accessed on 25 December 2023).
8. Hou, T.-C.; Liu, L.-H.; Lan, Y.-K.; Chen, Y.-T.; Chu, Y.-S. An Improved Network Time Protocol for Industrial Internet of Things.

Sensors 2022, 22, 5021. [CrossRef] [PubMed]
9. IEEE Std. 1588-2008; IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control

Systems. IEEE: Piscataway, NJ, USA, 2008; pp. 1–269. [CrossRef]
10. Son, K.J.; Chang, T.G.; Kang, S.H. The Effect of Time Synchronization Error in LAN-Based Digital Substation. Sensors 2019,

19, 2044. [CrossRef] [PubMed]
11. Shinohara, M.; Yamada, T.; Uehira, K.; Sakai, S.I.; Shiobara, H.; Kanazawa, T. Development and Operation of an Ocean Bottom

Cable Seismic and Tsunami (OBCST) Observation System in the Source Region of the Tohoku-oki Earthquake. Earth Space Sci.
2021, 8, e2020EA001359. [CrossRef]

12. Kim, H.J.; Lee, U.; Kim, M.; Lee, S. Time-synchronization method for CAN–Ethernet networks with gateways. Appl. Sci. 2020,
10, 8873. [CrossRef]

13. Hongna, J.; Hongwei, J.; Zhongfei, B. The application strategy for intelligent wireless sensor network in flight test. In Pro-
ceedings of the 2019 14th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Changsha, China,
1–3 November 2019; pp. 815–819.

14. Lipiński, M.; van der Bij, E.; Serrano, J.; Włostowski, T.; Daniluk, G.; Wujek, A.; Rizzi, M.; Lampridis, D. White Rabbit
Applications and Enhancements. In Proceedings of the 2018 IEEE International Symposium on Precision Clock Synchronization
for Measurement, Control, and Communication (ISPCS), Geneva, Switzerland, 30 September–5 October 2018; pp. 1–7.

15. IEEE Std 1588-2019; IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control
Systems. IEEE: Piscataway, NJ, USA, 2020; pp. 1–499. [CrossRef]

16. Loschmidt, P.; Gaderer, G.; Simanic, N.; Hussain, A.; Moreira, P. White Rabbit-Sensor/Actuator Protocol for the CERN LHC
Particle Accelerator. In Proceedings of the 2009 IEEE Sensors, Christchurch, New Zealand, 25–28 October 2009; pp. 781–786.

17. Sánchez-Garrido, J.; Jurado, A.; Jiménez-López, M.; Balzer, A.; Prokoph, H.; Stephan, M.; Berge, D.; Rodríguez-Álvarez, M.; Díaz,
J. A white rabbit-synchronized accurate time-stamping solution for the small-sized cameras of the Cherenkov telescope array.
IEEE Trans. Instrum. Meas. 2020, 70, 2000314. [CrossRef]

18. IEEE Std 1588-2002; IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control
Systems. IEEE: Piscataway, NJ, USA, 2002; pp. 1–154. [CrossRef]

19. Han, J.; Jeong, D.-K. A practical implementation of IEEE 1588-2008 transparent clock for distributed measurement and control
systems. IEEE Trans. Instrum. Meas. 2009, 59, 433–439.

20. EDS-405A-PTP. Available online: https://moxastore.express-inc.com/EDS_405A_PTP_p/eds-405a-ptp.htm (accessed on
25 December 2023).

https://doi.org/10.1016/j.ins.2015.07.047
https://doi.org/10.1109/COMST.2016.2590438
https://doi.org/10.1109/ACCESS.2020.2984785
https://doi.org/10.1145/844128.844143
https://www.hms-networks.com/news-and-insights/news-from-hms/2023/05/05/industrial-network-market-shares-2023
https://www.hms-networks.com/news-and-insights/news-from-hms/2023/05/05/industrial-network-market-shares-2023
https://doi.org/10.3390/s22135021
https://www.ncbi.nlm.nih.gov/pubmed/35808516
https://doi.org/10.1109/IEEESTD.2008.4579760
https://doi.org/10.3390/s19092044
https://www.ncbi.nlm.nih.gov/pubmed/31052465
https://doi.org/10.1029/2020EA001359
https://doi.org/10.3390/app10248873
https://doi.org/10.1109/IEEESTD.2020.9120376
https://doi.org/10.1109/TIM.2020.3013343
https://doi.org/10.1109/IEEESTD.2002.94144
https://moxastore.express-inc.com/EDS_405A_PTP_p/eds-405a-ptp.htm

Sensors 2024, 24, 2369 25 of 26

21. IGS-804SM-SE-E. Available online: https://www.megatelindustries.com/ig8x4xsfpgbe.html (accessed on 25 December 2023).
22. Liang, Y.; Wang, X.; Li, J.; Zhang, H.; Tan, Y.; Wu, F.; Gao, D. IEEE 1588-Based Timing and Triggering Prototype for Distributed

Power Supplies in HIAF. IEEE Trans. Instrum. Meas. 2022, 71, 5502309. [CrossRef]
23. Zhang, J.; Zhang, W. A Disturbance Rejection Control Approach for Clock Synchronization in IEEE 1588 Networks. J. Syst. Sci.

Complex. 2018, 31, 1437–1448. [CrossRef]
24. Ye, K.; Yan, Y.; Wu, H. Time synchronization algorithm for networked control systems based on stochastic search. IEEE Trans. Ind.

Inform. 2021, 18, 26–34. [CrossRef]
25. Eidson, J.C. Practical Issues in Implementing IEEE 1588. In Measurement, Control, and Communication Using IEEE 1588; Grimble,

M., Johnson, M., Eds.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; pp. 146–147.
26. Correll, K.; Barendt, N.; Branicky, M. Design Considerations for Software Only Implementations of the IEEE 1588 Precision

Time Protocol. In Proceedings of the 2004 Conference on IEEE 1588, Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems, Gaithersburg, MD, USA, 27–29 September 2004.

27. Lao, K.; Yan, G. Implementation and Analysis of IEEE 1588 PTP Daemon Based on Embedded System. In Proceedings of the 2020
39th Chinese Control Conference (CCC), Shenyang, China, 27–29 July 2020; pp. 4377–4382.

28. Giorgi, G.; Narduzzi, C. Performance analysis of Kalman-filter-based clock synchronization in IEEE 1588 networks. IEEE Trans.
Instrum. Meas. 2011, 60, 2902–2909. [CrossRef]

29. Xu, X.; Xiong, Z.; Sheng, X.; Wu, J.; Zhu, X. A new time synchronization method for reducing quantization error accumulation
over real-time networks: Theory and experiments. IEEE Trans. Ind. Inform. 2013, 9, 1659–1669. [CrossRef]

30. Chen, W.; Sun, J.; Zhang, L.; Liu, X.; Hong, L. An implementation of IEEE 1588 protocol for IEEE 802.11 WLAN. Wirel. Netw. 2015,
21, 2069–2085. [CrossRef]

31. Xu, X.; Xiong, Z.; Wu, J.; Zhu, X. High-precision time synchronization in real-time Ethernet-based CNC systems. Int. J. Adv.
Manuf. Technol. 2013, 65, 1157–1170. [CrossRef]

32. Liu, J.; Li, X.; Liu, M.; Cui, X.; Xu, D. A new design of clock synchronization algorithm. Adv. Mech. Eng. 2014, 6, 958686. [CrossRef]
33. Nguyen, V.Q.; Nguyen, T.H.; Jeon, J.W. An adaptive fuzzy-PI clock servo based on IEEE 1588 for improving time synchronization

over Ethernet networks. IEEE Access 2020, 8, 61370–61383. [CrossRef]
34. Zhang, X.; Zhang, S.; Dong, W.; Wang, K. A Novel Time Synchronization Method for Smart Grid Based on Improved Wolf Colony

Algorithm-Cuckoo Search Optimized Fuzzy PID Controller. IEEE Access 2022, 10, 116959–116971. [CrossRef]
35. Freire, I.; Novaes, C.; Almeida, I.; Medeiros, E.; Berg, M.; Klautau, A. Clock synchronization algorithms over PTP-unaware

networks: Reproducible comparison using an FPGA testbed. IEEE Access 2021, 9, 20575–20601. [CrossRef]
36. Lévesque, M.; Tipper, D. Improving the PTP synchronization accuracy under asymmetric delay conditions. In Proceedings of the

2015 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication (ISPCS),
Beijing, China, 11–16 October 2015; pp. 88–93.

37. Freire, I.; Sousa, I.; Bemerguy, P.; Klautau, A.; Almeida, I.; Lu, C.; Berg, M. Analysis of Controlled Packet Departure to Support
Ethernet Fronthaul Synchronization via PTP. In Proceedings of the 2018 IEEE International Symposium on Precision Clock
Synchronization for Measurement, Control, and Communication (ISPCS), Geneva, Switzerland, 30 September–5 October 2018;
pp. 1–6.

38. Hadžić, I.; Morgan, D.R. On Packet Selection Criteria for Clock Recovery. In Proceedings of the 2009 International Symposium on
Precision Clock Synchronization for Measurement, Control and Communication, Brescia, Italy, 12–16 October 2009; pp. 1–6.

39. Hadžić, I.; Morgan, D.R. Adaptive Packet Selection for Clock Recovery. In Proceedings of the 2010 IEEE International Symposium
on Precision Clock Synchronization for Measurement, Control and Communication, Portsmouth, NH, USA, 27 September–1
October 2010; pp. 42–47.

40. Chaloupka, Z.; Alsindi, N.; Aweya, J. Clock synchronization over communication paths with queue-induced delay asymmetries.
IEEE Commun. Lett. 2014, 18, 1551–1554. [CrossRef]

41. Giorgi, G.; Narduzzi, C. Precision packet-based frequency transfer based on oversampling. IEEE Trans. Instrum. Meas. 2017, 66,
1856–1863. [CrossRef]

42. Puttnies, H.; Danielis, P.; Timmermann, D. PTP-LP: Using Linear Programming to Increase the Delay Robustness of IEEE
1588 PTP. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates,
9–13 December 2018; pp. 1–7.

43. Ha, Y.; Pak, E.; Park, J.; Kim, T.; Yoon, J.W. Clock Offset Estimation for Systems with Asymmetric Packet Delays. IEEE/ACM Trans.
Netw. 2023, 31, 1838–1853. [CrossRef]

44. Idrees, Z.; Granados, J.; Sun, Y.; Latif, S.; Gong, L.; Zou, Z.; Zheng, L. IEEE 1588 for clock synchronization in industrial IoT and
related applications: A review on contributing technologies, protocols and enhancement methodologies. IEEE Access 2020, 8,
155660–155678. [CrossRef]

45. STM32F4 RM0090. Available online: https://www.st.com/resource/en/reference_manual/dm00031020-stm32f405-415
-stm32f407-417-stm32f427-437-and-stm32f429-439-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf (accessed on
25 December 2023).

46. Shan, C.; Chen, Z.; Li, Y.; Yuan, H. All DPLLs based on fuzzy PI control algorithm. In Proceedings of the 2011 Second International
Conference on Mechanic Automation and Control Engineering, Hohhot, China, 15–17 July 2011; pp. 7150–7153.

https://www.megatelindustries.com/ig8x4xsfpgbe.html
https://doi.org/10.1109/TIM.2022.3194857
https://doi.org/10.1007/s11424-018-7050-y
https://doi.org/10.1109/TII.2021.3067899
https://doi.org/10.1109/TIM.2011.2113120
https://doi.org/10.1109/TII.2013.2238547
https://doi.org/10.1007/s11276-015-0898-z
https://doi.org/10.1007/s00170-012-4246-5
https://doi.org/10.1155/2014/958686
https://doi.org/10.1109/ACCESS.2020.2983421
https://doi.org/10.1109/ACCESS.2022.3219933
https://doi.org/10.1109/ACCESS.2021.3054164
https://doi.org/10.1109/LCOMM.2014.2341604
https://doi.org/10.1109/TIM.2017.2672478
https://doi.org/10.1109/TNET.2022.3229407
https://doi.org/10.1109/ACCESS.2020.3013669
https://www.st.com/resource/en/reference_manual/dm00031020-stm32f405-415-stm32f407-417-stm32f427-437-and-stm32f429-439-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/dm00031020-stm32f405-415-stm32f407-417-stm32f427-437-and-stm32f429-439-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf

Sensors 2024, 24, 2369 26 of 26

47. STM32_PTPd. Available online: https://github.com/mpthompson/stm32_ptpd (accessed on 25 December 2023).
48. Novaes, C.; Freire, I.; Klautau, A.; Almeida, I.; Medeiros, E. Analysis of Kalman Filtering for Clock Synchronization in PTP-

Unaware Networks. In Proceedings of the 2021 IEEE Latin-American Conference on Communications (LATINCOM), Santo
Domingo, Dominican Republic, 17–19 November 2021; pp. 1–6.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/mpthompson/stm32_ptpd

	Introduction
	Related Works
	QIDA Compensation Methods
	Design Methods of the Clock Servo

	Background and Problem Statement
	Delay Asymmetry Analysis
	Frequency Compensation Clock

	Design of the Clock Servo
	Minimum Window Filter
	Fuzzy-PI Controller

	Experimental Platform
	System Introduction
	BG Traffic Model

	Results and Discussion
	Effect of Different Parameters on Synchronization Performance
	PI Coefficients
	BG Traffic
	Switch Hop Count

	Comparison with Other Methods

	Conclusions
	References

