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Abstract: An innovative method for synthesizing optimum difference patterns of the spherical sensor
array is introduced, along with a sidelobe tapering technique. Firstly, we suggest employing the
spherical harmonics of degree ±1 to synthesize the spherical array difference pattern; secondly, we
study the mapping relationship between the difference pattern of the spherical sensor array and
the difference pattern of the uniformly spaced linear array (ULA) with odd-numbered elements;
finally, we enhance the Zolotarev difference pattern, which is a counterpart to the Dolph–Chebyshev
sum pattern that traditionally allows synthesis only for ULA with even-numbered elements. Our
modification extends its applicability to synthesize difference patterns for ULA with odd-numbered
elements. Leveraging the optimal difference pattern, a generalized Bayliss difference pattern synthesis
method designed for the ULA with odd-numbered elements is further proposed. To illustrate the
effectiveness of our approach, we present several design examples through experimental simulation.

Keywords: spherical sensor array; difference pattern; spherical harmonics; phase-mode processing;
sidelobe suppression

1. Introduction

Spherical sensor arrays have been extensively investigated within the phased array
antenna and the acoustic array community for several decades, spanning a diverse range
of applications. These applications cover super-resolution direction finding [1–3], source
localization [4,5], mobile communications, satellite communications [6–8], radar [9,10],
and numerous others [11]. When dealing with targets distributed in a broad area of three-
dimensional space, a spherical sensor array emerges as the optimal choice due to its superior
performance and the deployment efficiency of sensors. This preference is attributed to its
omnidirectional beam-steering capability across the entire three-dimensional space [12,13].

This paper focuses on the mono-pulse technique applied to spherical sensor arrays.
The mono-pulse technique is used for direction of arrival (DOA) estimation of a target.
In Figure 1, the sum and difference patterns are symmetrical and anti-symmetrical about
the z-axis. The ratio of the received signal to the sum and difference patterns varies with
the angle between the target and the z-axis, which can be used for DOA estimation and
tracking. The accuracy of DOA estimation is related to the width of the main lobe, and the
narrower the main lobe, the higher the estimation accuracy. In order to reduce the impact
of interference signals, both sum and difference patterns also need to meet low sidelobe
constraints. The main lobe width mainly depends on the array size, the optimization range
of this metric does not vary much for a defined array. Therefore, low sidelobes are often
the goal pursued by various methods for sum- and difference-pattern synthesis, and it is
also the main focus of this paper.

Numerous direct sum- and difference-pattern synthesis methods exist for uniformly spaced
linear arrays (ULAs) and uniformly spaced planar arrays, including the Dolph–Chebyshev
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sum pattern and the Zolotarev difference pattern [14]. The Zolotarev difference pattern,
developed by McNamara using Zolotarev polynomials, represents the optimal difference
pattern for ULAs with even-numbered elements [15–17]. In this context, the optimal
difference pattern denotes the pattern with the narrowest first null width and the largest
normalized difference slope on boresight for a specified sidelobe level (SLL). However,
McNamara’s method is limited to synthesizing arrays with even-numbered elements [18].
In an effort to overcome this limitation, S.R. Zinka proposed a generalized Bayliss difference-
pattern synthesis method by altering the array factor zeros of the Zolotarev difference
pattern; nevertheless, this method also confines syntheses to arrays with even-numbered
elements [19].
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Figure 1. Principle of DOA estimation based on sum- and difference-patterns. 
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Figure 1. Principle of DOA estimation based on sum- and difference-patterns.

Unlike linear and planar arrays, synthesizing patterns for spherical arrays and general
conformal arrays pose significant challenges and may even be deemed impossible. This
difficulty arises from the non-uniform spacing of elements and varying element orien-
tations typical in conformal arrays. Consequently, numerical-pattern synthesis methods
for conformal arrays have been a focal point, with numerous efficient approaches pro-
posed over the last two decades. Various techniques, such as Genetic algorithms [20],
particle swarm optimization [21], convex optimization [22,23], and adaptive array the-
ory [24] have been explored for conformal-array sum-pattern synthesis. Simultaneously,
iterative least-squares [25], convex optimization [9,26], and modified differential evolution
algorithms [27] have been examined for conformal-array difference-pattern synthesis. In
general, numerical synthesis methods do not guarantee optimal results and often involve
substantial computational complexity, given that the optimization problem is typically
solved iteratively.

The phase-mode processing of circular arrays can be extended to spherical arrays, en-
abling the expression of the circular/spherical array pattern as the sum of a series of harmon-
ics. These characteristics have facilitated numerous applications for the circular/spherical
array, including broadband-pattern synthesis, direction finding, and super-resolution direc-
tion finding [28]. Recently, Koretz and Rafaely proposed a Dolph–Chebyshev sum-pattern
synthesis method for a spherical sensor array in the phase-mode domain [29]. In the case of
a symmetric response, the research was expanded to establish a linear transform between
the ULA and the spherical array. This allows the application of specific processing tech-
niques designed for the ULA to be available for spherical arrays [30]. The pattern synthesis
method presented in [29,30] can be analyzed into two steps: (1) selecting a specific series of
spherical harmonics (degree 0) to synthesize the desired pattern and further reformulating
the pattern as the summation of associated Legendre polynomials, and (2) examining the
relationship between the associated Legendre polynomials and the polynomial that defines
the Dolph–Chebyshev pattern or the generalized sum pattern of the ULA.
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In this paper, we present a direct optimal-difference-pattern synthesis method for
spherical arrays. Our fundamental approach shares similarities with the sum-pattern syn-
thesis procedure outlined in [29,30]. Initially, we suggest utilizing the spherical harmonics
of degree ±1 to synthesize the difference pattern of the spherical array. Subsequently, we
establish the mapping relationship between the difference pattern of spherical arrays and
the difference pattern of ULAs with odd-numbered elements. Lastly, the Zolotarev differ-
ence pattern is introduced and a generalized Bayliss difference pattern synthesis method
tailored for ULAs with odd-numbered elements is proposed. This work extends [31] by
providing difference patterns of arbitrary sidelobe level and envelope taper.

The structure of this paper unfolds as follows. In Section 2, we review the phase-
mode processing and the pattern-synthesis method in the phase-mode domain for the
spherical array. Section 3 introduces the proposed difference-pattern synthesis method,
while Section 4 provides the simulation results for further illustration. Finally, Section 5
encompasses concluding remarks.

2. Background

Consider the weighting function ω(kR, Ω) over the surface of a sphere with the radius
R, where k is the wave number and Ω ≡ (θ, ϕ) denotes the spatial coordinates in a spherical
coordinate system. The radiation pattern of the spherical array can be expressed in both
the spatial domain and in the phase-mode domain as follows:

B(Ω) =
∫

Ω′∈S2
ω∗(kR, Ω′)p

(
kR, Ω′, Ω

)
dΩ′ =

∞

∑
n=0

n

∑
m=−n

ω∗
nm(kR)pnm(kR) (1)

where p(kR, Ω′, Ω) represents the response of the sensor located at Ω′ to the wavefield
impinge from Ω; ωnm and pnm denote the spherical Fourier transforms of ω(kR, Ω) and
p(kR, Ω′, Ω), respectively.

In a case of a unit amplitude plane-wave case pnm can be expressed:

pnm(kR) = bn(kR)Y∗
nm(Ω) (2)

where Ynm(Ω) =
√

2n+1
4π

(n−m)!
(n+m)! Pnm(cos θ)ejmϕ denotes the spherical harmonics of order n

and degree m; Pnm(cos θ) is the associated Legendre functions; bn(·) is the mode amplitude
of order n and is a function of kR and the sphere configurations. For the cases of the
omnidirectional sensor (the spherical array composed of omnidirectional sensors is also
referred to as the open-sphere in the acoustics community) and the cardioid sensor, bn can
be expressed as presented in [11]:

bn(kR) =
{

4πin jn(kR) Omnidirectional sensor
4πin(jn(kR)− ij′n(kR)) Cardioid sensor

(3)

where jn(·) and j′n(·) represent the spherical Bessel function of first kind and its deriva-
tion, respectively.

By substituting Equation (2) into Equation (1), and assuming that array is of finite
order N such that ωnm = 0 for n > N, the radiation pattern in the phase-mode domain can
be expressed:

B(Ω) =
N
∑

n=0

n
∑

m=−n
ω∗

nm(kR)bn(kR)Y∗
nm(Ω)

=
N
∑

n=0

n
∑

m=−n
ω∗

nm(kR)bn(kR)
√

2n+1
4π

(n−m)!
(n+m)! Pnm(cos θ)e−jmϕ

(4)

Remark: Equations (2) and (4) are valid for scalar sensors (such as microphone sensors
or sonar sensors) whose patterns exhibit rotational symmetry along the radial axis of the
sensor. When accounting for the mutual coupling effect, rotational symmetry properties can
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be approximately satisfied if the elements are distributed on the sphere’s surface according
to the spherical t-design or the Coulomb design, refer to [32]. In this paper, the spherical
t-design is specifically adopted. The rotational symmetry properties may not be satisfied in
the practical application, such as in Ref. [2] and our previous work (Ref. [26]), non-ideal
factors in engineering can be obtained using electromagnetic simulation methods and the
desired pattern and can be synthesized using numerical iterative optimization algorithms;
the methodology proposed in the paper can be applied to pre-theoretical designs and
performance evaluation in each case.

For the modal sum pattern with the look direction along the z-axis, indicating rotational
symmetry around the z-axis, only the degree m = 0 is considered, and ωn,0 is optimized to
obtain the optimal sum pattern, as detailed in [29].

3. Proposed Difference Pattern Synthesis Method
3.1. Spherical Sensor Array Difference Pattern

The general difference pattern for the look direction along the z-axis can be expressed:

Dx(θ, ϕ) = cos ϕDθ(θ) (a)
Dy(θ, ϕ) = sin ϕDθ(θ) (b)

(5)

where Dθ(0) = 0, so Dx(θ, ϕ) is zero in the yz-plane, the function is antisymmetrical about
the yz-plane, and the maximum slope of the function is in the xz-plane. The function
Dy(θ, ϕ) exhibits similar properties.

In order to construct the modal difference patterns as given in Equation (5) from
expression (4), only the degree m = ±1 is taken into consideration. In other words, the
phase-mode domain weights are ωnm = 0 for m ̸= ±1. We denote the modal difference
pattern as D(Ω):

D(Ω) =
N

∑
n=0

bn(kR)
[
ω∗

n,−1(kR)Y∗
n,−1(Ω) + ω∗

n,1(kR)Y∗
n,1(Ω)

]
(6)

Given that Yn,−m(Ω) = (−1)mY∗
n,m(Ω), if we set ωn,−1 = −ωn,1, then the modal

difference pattern (6) simplifies to

D(Ω) =
N
∑

n=1
bn(kR)

[
−ω∗

n,−1(kR)Yn,1(Ω) + ω∗
n,1(kR)Y∗

n,1(Ω)
]

=
N
∑

n=1
ω∗

n,1(kR)bn(kR)
[
Yn,1(Ω) + Y∗

n,1(Ω)
]

= cos ϕ
N
∑

n=1
2ω∗

n,1(kR)bn(kR)
√

2n+1
4π

(n−1)!
(n+1)! Pn,1(cos θ)

= cos ϕDθ(θ)

(7)

where Dθ(θ) represents the weighted summation of the associated Legendre functions in
the expression. Since Pnm(±1) = 0 for m ≥ 1, we can deduce that Pn,1(cos θ)|θ=0,π = 0 and
Dθ(0) = Dθ(π) = 0. The function Dθ(θ) is weighted with cos ϕ so the maximum slope is in
the xz-plane and the function is zero in the yz-plane. The expression D(Ω) in Equation (7)
provides a difference pattern for the xz-plane, and by setting ωn,−1 = ωn,1, we can obtain a
difference pattern for the yz-plane. We now shift our focus to the design of Dθ(θ) to achieve
the optimal difference pattern for the spherical array.

To further streamline the problem, we reformulate Dθ(θ) in a more compact form:

Dθ(θ) =
N

∑
n=1

ω̃nPn,1(cos θ) = ω̃T
NpN(θ) (8)
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where ω̃n = 2ω∗
n,1(kR)bn(kR)

√
2n+1

4π
(n−1)!
(n+1)! , n = 1, · · · , N. The column vectors ω̃N and

pN(θ) are composed of the elements ω̃n and Pn,1(cos θ), respectively.
The associated Legendre functions Pnm(cos θ) can be decomposed as in [33]:

Pnm(cos θ) = cT
nmdn(θ) (9)

where cnm ∈ C2n×1 is the coefficient vector, and dn(θ) ∈ C2n×1 is the Fourier series.
The coefficient vector cnm can be derived from cn,m−1 and cn,m−2 using the recurrence
expressions outlined in reference [33]. For the special case of n = 1, cn,1 is an imagi-
nary vector and exhibits conjugate symmetry characteristics, i.e., cnm can be expressed as
cn,1 =

[
Jĉ∗n,1; 0; ĉn,1

]
, and J is the exchange matrix. Thus, Pn,1(cos θ) can be decomposed

as Pn,1(cos θ) = 2iĉT
n,1sn(θ), sn(θ) = [sin θ, sin 2θ, · · · , sin nθ]T , and the vector pN(θ) in (8)

can be further decomposed as the following:

pN(θ) = [P1,1(cos θ), P2,1(cos θ), · · · , PN,1(cos θ)]T =


2iĉT

1,1, 0T

2iĉT
2,1, 0T

...
2iĉT

N,1

sN(θ) = CNsN(θ) (10)

where CN is a real lower-triangular full-rank matrix. By substituting Equation (10) into (8),
Dθ(θ) can be expressed:

Dθ(θ) = ω̃T
NpN(θ) = ω̃T

NCNsN(θ) (11)

We will demonstrate that the spherical array difference pattern in (11) is analogous to
the difference pattern of the ULA with 2N + 1 elements. Considering the ULA with 2N + 1
elements (only the standard linear array is considered in this paper, i.e., the elements are
spaced uniformly with d = λ/2), the weighting function an for the difference pattern is
antisymmetrical and the excitation of the element at the origin is a0 = 0, so the excited
element number is actually 2N. The difference pattern of the ULA with 2N + 1 and 2N + 2
elements can be expressed:

F2N+1
d (ψ) =

N
∑

n=−N
anei2πdn sin θ/λ =

N
∑

n=1
an sin(nψ) =

(
aN)TsN(ψ) (a)

F2N+2
d (ψ) =

N+1
∑

n=−N
bnei2πd(n−1/2) sin θ/λ =

N+1
∑

n=1
bn sin

((
n − 1

2

)
ψ
)
=

(
bN+1

)T
ŝN+1(ψ) (b)

(12)

where ŝN+1(ψ) =
[
sin ψ

2 , sin 3ψ
2 , · · · , sin

(
L+1

2

)
ψ
]T

, and ψ = 2πd sin θ
λ . bn, n = −N, · · · , N + 1

is the weighting function with a 2N + 2-elements ULA difference pattern, which is also
antisymmetrical.

If we set CN
Tω̃N = aN , then the spherical array difference pattern in Equation (11) and

the ULA difference pattern in Equation (12) (a) become identical with the transformation
ψ = 2πd sin θ/λ. Since CN is a full-rank matrix, ω̃N can be uniquely solved. Subsequently,
ωnm(kR) and the weighting function ω(kr, Ω) will be determined sequentially.

When the look direction steers away from the z-axis, the desired pattern can be
obtained using the following expression:

D(Ω) =
N

∑
n=0

n

∑
m=−n

ωrot∗
nm (kR)bn(kR)Y∗

nm(Ω) (13)

where ωrot
nm is given by
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ωrot
nm =


ωrot

n,−n
ωrot

n,−n+1
...

ωrot
n,n

 =


Dn
−n,−n Dn

−n,−n+1 · · · Dn
−n,n

Dn
−n+1,−n Dn

−n+1,−n+1 · · · Dn
−n+1,n

...
...

. . .
...

Dn
n,−n Dn

n,−n+1 · · · Dn
n,n




0
ωn,1

0
ωn,1

0


= ωn,−1

[
Dn
−n,1 Dn

−n+1,1 · · · Dn
n,1

]T
+ ωn,1

[
Dn
−n,−1 Dn

−n+1,−1 · · · Dn
n,−1

]T

(14)

where Dn
mm′ ≜ Dn

mm′(α, β, γ) denotes the Wigner-D function, and (α, β, γ) represents the
Euler rotation angle from the z-axis to the look direction [11].

3.2. Zolotarev Difference Pattern of 2N + 1 Elements

As a counterpart to the Dolph–Chebyshev sum pattern, the Zolotarev difference
pattern is an optimal-difference pattern for the even-numbered ULA developed by McNa-
mara using the Zolotarev polynomials [16]. The procedure for synthesizing the Zolotarev
difference pattern for a ULA with 2N + 2 elements is summarized as follows:

(1) For a specified sidelobe ratio (SLR) or the main-lobe width, the Jacobi modulus
parameter m, which is related to the specified SLR or main-lobe width, is calculated.
Subsequently, the Zolotarev polynomial Z2N+1(x, m) is evaluated using the numerical
method, and its expansion in the standard polynomial form is obtained:

Z2N+1(x, m) =
N+1

∑
n=1

znx2n−1 (15)

For the computational aspects of the procedure, detailed information can be found
in [16]. Knowledge of the elliptical integrals, the Jacobi module and Jacobi eta, zeta,
and elliptical functions is essential. Open-source tools for calculating these functions are
accessible [34]. Figure 2 provides an example of Zolotarev polynomials Z11(x), the function
oscillates between −1 and 1 when x ∈ [−1, 1].
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(2) Let x = sin(ψ/2)/ sin(πd/λ), and substitute it into the above polynomial, let
cn = zn/(sin(πd/λ))2n−1, then the desired Zolotarev difference pattern can be expressed:

Z2N+1(ψ) =
N+1

∑
n=1

cn sin2n−1
(

ψ

2

)
(16)
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(3) Equate F2N+2
d (ψ) in Equation (12) (b) to Z2N+1(ψ) and determine the coefficient bn,

then, the element excitation can be calculated from bn.

However, the Zolotarev difference pattern is only available for the even-numbered
ULA. When comparing the 2N + 1 and 2N + 2 elements ULA difference patterns given
by Equation (12) (a) and (12) (b), respectively, the primary distinction lies in the harmon-
ics series. The difference pattern F2N+1

d (±π) = 0 is fixed, whereas F2N+2
d (±π) is vari-

able. For the Zolotarev difference pattern of the even-numbered ULA,
∣∣∣F2N+2

d (ψ)
∣∣∣∣∣∣

ψ=±π

= |Z2N+1(ψ)||ψ=±π= 1. It should also be noted that the number of roots in the visible re-

gion for the optimum difference pattern F2N+1
d (ψ) and F2N+2

d (ψ) is the same. Consequently,
the optimal difference pattern F2N+1

d (ψ) can also be derived from Z2N+1(ψ).
Let x = sin(βψ/2)/ sin(πd/λ) (where β is the parameter to be solved), such that

F2N+1
d (ψ)

∣∣∣
ψ=−π

and F2N+1
d (ψ)

∣∣∣
ψ=π

will be mapped to the minimum root x1 and the max-

imum root x2N+1 of Z2N+1(x), respectively. In other words, x1 = sin(−βπ/2)/ sin(πd/λ) and
x2N+1 = sin(βπ/2)/ sin(πd/λ). Thus, β can be determined by solving β = 2 sin−1(x2N+1)/π.

The optimal difference pattern for the ULA with 2N + 1 elements can now be obtained
using the same procedure as described above for the ULA with 2N + 2 elements, with the
only difference being the mapping of ψ to x in step 2.

3.3. The Generalized Bayliss Difference Pattern of 2N + 1 Elements

In [19], a generalized Bayliss n array distributions method was introduced for even-
numbered ULA by altering the array factor zeros of the Zolotarev difference pattern. The
updated array factor zeros are defined as the following:

ψ
Bayliss
n =

{
σBψZolatarev

n n ≤ n
ψB

n n ≥ n
(17)

where ψZolatarev
n and ψ

Bayliss
n denote the array factor zeros of Zolotarev and the generalized

Bayliss difference pattern, respectively. The so-called dilation factor σB and the far-end
zeros ψB

n are defined:

ψB
n = ±

(
n + α+1

2

)
2π
M , n = n, n + 1, · · · , ceil[(M − 2)/2]

σB =
ψB

n
ψZolatarev

n

(18)

where M represents the number of elements, α is the parameter controlling the envelop
tapering. ψ

Bayliss
n is obtained from the line source difference pattern, and thus can be utilized

for both even-numbered and odd-numbered ULAs. However, this study only considered
an even-numbered ULA since the Zolotarev difference pattern for the odd-numbered ULA
was not available [19].

Now that we have derived the difference pattern for the odd-numbered ULA, the
generalized Bayliss pattern can also be obtained from (16), with the caveat that the end zeros
should be replaced with ±π. Given that the spherical array difference pattern (11) and the
ULA difference pattern (12) (a) are identical through the transformation ψ = 2πd sin θ/λ,
the Zolotarev difference pattern and the generalized Bayliss difference pattern for the
spherical array can also be synthesized using the same transformation relationship.

4. Simulations

In this section, we present some design examples for the ULA, spherical aperture, and
spherical sensor array through computer simulations.
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4.1. The Difference Pattern of the ULA

Firstly, we consider the case of the ULA. The array is composed of 17 elements (N = 8),
with element spacing as half-wavelength. In order to verify that the proposed method
achieves optimal results, a convex optimization method is used here as a comparison. The
problem of synthesizing a difference pattern for the ULA with the narrowest beamwidth
and largest normalized difference slope on boresight for a specified sidelobe level can
be formulated:

max
w

{
d

dψ

[
wTsN(ψ)

]∣∣∣
ψ=0

}
subject to

{∣∣wTsN
(
ψj
)∣∣2} ≤ S

(
ψj
)
, ψj ∈ Θ, j = 1, · · · , J

(19)

where Θ represents the sidelobe region; ψj ∈ Θ, j = 1, · · · , J are the discrete angular grid
points representing Θ; J is the number of inequality constraints; S

(
ψj
)

is the upper bound
for the sidelobe level in the direction ψj. The pattern synthesis formulations in (19) can
be reformulated as a convex optimization problem [35] and be efficiently solved using
numerical methods with existing free software, such as the CVX Toolbox with version
2.2 [36]. The convex optimization method ensures that the optimal is reached; thus, the
pattern given by CVX is optimal.

We set the sidelobe region and N in (19) to be the same as the Zolotarev difference
pattern, solved the convex optimization problem, and plotted the pattern in Figure 3. The
SLRs are set to −25 dB and −35 dB, respectively. The desired SLRs are achieved using the
two methods, and the convex optimization-based difference pattern is overlapped with
the Zolotarev difference pattern for the two simulation conditions. The figure confirms
that both the proposed method and the numerical method in Ref. [35] achieve the same
optimum difference pattern with equal sidelobe.
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Figure 3. Zolotarev and convex optimization difference patterns for SLR = 25 dB and SLR = 35 dB,
respectively.

In Figure 4, the algorithm proposed in this paper synthesizes the Zolotarev pattern
for ULA with 17 elements, while the method described in reference [16] synthesizes the
Zolotarev pattern for ULA with 18 elements. The sidelobe constraint for both cases is set to
25 dB, and the polynomial utilized is the Zolotarev polynomial Z17(x). It is evident that the
ULA with 18 exhibits a narrower first null beamwidth and a larger normalized difference
slope than the ULA with 17 elements, owing to its larger array aperture. The array factor
zeros of the two arrays appear alternately.
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Figure 4. Zolotarev difference patterns of SLR = 25 dB for ULA 17 and 18 elements.

In the next example, the algorithm proposed in this paper synthesizes the generalized
Bayliss pattern for ULA with 17 elements, while the method described in reference [16] syn-
thesizes the generalized Bayliss pattern for ULA with 18 elements. The sidelobe constraint
for both cases set to 25 dB. Figure 5 illustrates the generalized Bayliss difference patterns
for ULA of 17 elements and 18 elements for different values of α, assuming N = 8 and
n = 4. As observed, for a given α, the two arrays exhibit similar envelop tapering, and the
sidelobe closer to ψ = 0 are comparable to the corresponding Zolotarev difference pattern.
The tapering rate of the far-end sidelobes is correlated with α, with a higher α resulting in a
greater tapering rate.
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Figure 5. The generalized Bayliss difference patterns with n = 4 for ULA of 17 and 18 elements:
(a) α = 0.5; (b) α = 1.

4.2. The Difference Pattern of the Spherical Aperture

Now, let us return to the design of the spherical array difference pattern. The Zolotarev
difference pattern for a spherical array with N = 8 is depicted in Figure 6, assuming
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SLR = 25 dB, the pattern resembles the ULA with 17 elements shown in Figure 4, albeit
with different horizontal axes.
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Figure 6. The Zolotrarev difference pattern for spherical array with N = 8 and SLR = 25 dB: (a) three-
dimensional plot; (b) cut plot.

The generalized Bayliss difference patterns for the spherical array with α = 0.5 and
α = 1 are depicted in Figure 7 and Figure 8, respectively. It is evident that the patterns
resemble those of the ULA with 17 elements shown in Figure 5a,b, although the horizontal
axes differ.
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Figure 7. The generalized Bayliss difference pattern for spherical array with N = 8, n = 4, α = 0.5,
and SLR = 25 dB: (a) three-dimensional plot; (b) cut plot.

In the next example, the Zolotarev difference patterns with the look direction towards
(θ, ϕ) = (30◦, 45◦) are presented in Figure 9. These patterns are obtained through coor-
dinate rotation in the phase-mode domain, as given by Equation (13), and the original
difference patterns are shown in Figure 8.
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Figure 8. The generalized Bayliss difference pattern for spherical array with N = 8 n = 4, α = 1, and
SLR = 25 dB: (a) three-dimensional plot; (b) cut plot.
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Figure 9. The difference patterns with the look direction towards (θ, ϕ)=(30◦, 45◦).

The excitation amplitude functions corresponding to the omnidirectional sensor array
and the cardioid sensor array sphere configurations are depicted in Figures 10–12, assuming
kR = 7. It can be observed that the excitation amplitude function of the omnidirectional
sensor array is symmetrical about the equator for both the Zolotarev difference pattern
and the generalized Bayliss difference pattern. In the case of the cardioid sensor array, the
main contributions of the excitation amplitude function appear in the upper hemisphere,
and the power is concentrated for the Bayliss difference pattern, while the power is not
concentrated for the Zolotarev difference pattern.
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Figure 10. The excitation functions for the spherical array composed of omnidirectional sensors (a)
and cardioid sensors (b) corresponding to the pattern shown in Figure 6.
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4.3. The Difference Pattern of the Spherical Sensor Array

Finally, a comparison is made between beamforming in the spherical harmonics
domain and the spatial domain. A spherical array is considered, consisting of 144 nearly
uniform sampling elements distributed on the sphere surface following the spherical-t
design [37], as illustrated in Figure 13. The weights of the elements are computed using the
method described in [29], where the optimal array weights are sampled to calculate the
weights’ values at the sensor positions for the two types of sensors.
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Figure 13. Spherical array with 144 elements.

The space-domain Zolotarev difference pattern and the generalized difference pattern
with α = 0.5 and α = 1 for spherical arrays composed of omnidirectional sensors and
cardioid sensors are illustrated in Figure 14. The patterns in Figures 6b, 7b, and 8b are
utilized as reference patterns. It can be observed that the space-domain difference pattern
for the spherical array composed of omnidirectional sensors and cardioid sensors closely
resembles the reference patterns, which are synthesized in the phase-mode domain.
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Figure 14. The space-domain Zolotarev difference pattern (a) and the generalized difference pattern
with α = 0.5 (b) and α = 1 (c) for various spherical sensor configurations with 144 nearly uniform
sampled elements.

5. Conclusions

Building upon the phase-mode processing of spherical array and the application of
Zolotarev polynomials, this paper introduces a method for synthesizing Zolotarev and
generalized Bayliss difference patterns for the spherical sensor arrays and odd-numbered
ULAs. Several design examples are provided, utilizing the experimental simulations to
validate the efficacy of the proposed method. The main contribution of this paper lies
in the theoretical modeling and performance analysis applied to the early stage of array
design, and the synthesis results can be used as the initial value of the numerical synthesis
methods when dealing with various non-ideal factors. We focus on the common case
of scalar sensor arrays such as microphone sensors or sonar sensors. When the vector
spherical harmonics are adopted, the results can be extended to vector sensor arrays such
as electromagnetic sensors.
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