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Abstract: The performance of three-dimensional (3D) point cloud reconstruction is affected by
dynamic features such as vegetation. Vegetation can be detected by near-infrared (NIR)-based indices;
however, the sensors providing multispectral data are resource intensive. To address this issue,
this study proposes a two-stage framework to firstly improve the performance of the 3D point
cloud generation of buildings with a two-view SfM algorithm, and secondly, reduce noise caused
by vegetation. The proposed framework can also overcome the lack of near-infrared data when
identifying vegetation areas for reducing interferences in the SfM process. The first stage includes
cross-sensor training, model selection and the evaluation of image-to-image RGB to color infrared
(CIR) translation with Generative Adversarial Networks (GANs). The second stage includes feature
detection with multiple feature detector operators, feature removal with respect to the NDVI-based
vegetation classification, masking, matching, pose estimation and triangulation to generate sparse
3D point clouds. The materials utilized in both stages are a publicly available RGB-NIR dataset, and
satellite and UAV imagery. The experimental results indicate that the cross-sensor and category-wise
validation achieves an accuracy of 0.9466 and 0.9024, with a kappa coefficient of 0.8932 and 0.9110,
respectively. The histogram-based evaluation demonstrates that the predicted NIR band is consistent
with the original NIR data of the satellite test dataset. Finally, the test on the UAV RGB and artificially
generated NIR with a segmentation-driven two-view SfM proves that the proposed framework can
effectively translate RGB to CIR for NDVI calculation. Further, the artificially generated NDVI is able
to segment and classify vegetation. As a result, the generated point cloud is less noisy, and the 3D
model is enhanced.

Keywords: structure-from-motion; cross-sensor; image-to-image translation; conditional GAN;
vegetation segmentation

1. Introduction

Image-to-image translation techniques based on Generative Adversarial Networks
(GANs) are a solution to filling data gaps [1]. Among the available GAN algorithms, the
conditional GAN called Pix2Pix [2] can generate a corresponding image output based
on input image information. In addition, the modified two-view Structure from Motion
(SfM) algorithm can generate a 3D point cloud from two 2D images [3,4]. The process of
reconstructing a 3D model with SfM involves taking images from different viewpoints
(camera motion). These viewpoints can be related to each other by feature detection
and matching [5]. The process of feature detection [6] and matching is crucial [7] to
successfully estimating the pose and triangulating the features [8]. However, the perfor-
mance of three-dimensional (3D) reconstruction from images is affected by many factors.
Therefore, integrating additional data is often a practical necessity for better SfM-based
3D reconstruction.
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In general, the need for more data can be tackled by the integration of different sensor
data, by additional measurements, by data fusion or by new sensors. Similar machine
learning approaches have also been successfully used in construction and civil engineering
applications, such as using ultra-wideband sensors for structural health monitoring [9], and
further enhanced by extreme gradient boosting decision trees [10]. Likewise, the machine
learning analysis of fiber-optic sensor data has also been used to monitor structural health
by measuring strain and crack distributions [11], as well as perform the automatic and
real-time monitoring of pipeline corrosion [12].

For airborne and close-range imagery, different approaches have been proposed and
proven effective, including integrating Airborne Lidar (ALS) and Unmanned Aerial Vehi-
cles (UAVs) within a SfM framework for plantation forest management [13]; the prediction
of biomass with RGB and height measurements [14]; multiplatform SfM applications for sin-
gle high-resolution topography (HRT) with RGB SfM aerial and terrestrial images; and the
use of a Global Navigation Satellite System (GNSS) and Terrestrial Laser Scanner (TLS) [15].
When reconstructing 3D models of static targets (e.g., buildings) using SfM algorithms,
vegetation is often considered as noise and may decrease the performance significantly.
Therefore, identifying vegetation and adjusting the SfM operations accordingly should
improve the 3D reconstruction result of static targets. In general, the remote sensing applica-
tions of multispectral images beyond visible RGB bands are used to identify vegetation and
other ground covers [16–19], or to distinguish different kinds of vegetation like viticulture
(vine) [20] or rice [21]. However, some sensors, especially UAV cameras, are popular data
acquisition sources for SfM reconstruction that provide RGB bands only, meaning that the
detection of vegetation or other natural properties is limited. Consequently, supplementing
additional information with these types of images may help improve the performance of
SfM-based reconstructions.

The objective of this study was to improve the performance of 3D point cloud gen-
eration using UAV or close-range RGB images. To achieve this, the integration of new
techniques like image-to-image translation to overcome the lack of NIR data is necessary
as it can help better detect and mask vegetation areas on the images, which, as discussed
above, are considered noise and may decrease the effectiveness of point cloud generation.
In addition to the development, training and validation of a machine learning model for
image-to-image translation and a point cloud generation framework, this study also tests
the developed approach with different datasets and evaluates the results qualitatively
and quantitatively.

2. Related Work of GAN, Vegetation Segmentation and SfM

Artificial Intelligence (AI) in general and Machine Learning (ML) in particular have
gained more and more momentum in recent years. This momentum can be quantified
by the great number of different techniques addressing various problems. In general,
supervised AI ML techniques feed a model by providing input and then prediction. The
predicted output can then be compared to the expected output. Afterwards, users can
update the model to generate a different predictive output [22–24]. In contrast, Generative
Adversarial Networks (GANs) are a group of AI ML unsupervised techniques. In GANs, a
generator produces fake samples and a discriminator is used to distinguish between real
(input) and fake (generated) samples. This interaction between generator and discriminator
can be described as adversarial, with two models competing against each other [1].

GANs are primarily used for image translation, including translation from 2D to 3D,
image-to-image translation or are specialist for one topic. A variety of GAN modifications
and applications have been proposed, including dealing with unmatched datasets (Distance
GAN [25]) and samples of different domains (∆-GAN [26]), as well as generating a range
of possible outcomes like the range from day to night (BicycleGAN [27]). The translation
from 2D to 3D can be accomplished by depth estimation based on a single image input
(T2Net [28]), or directly to a 3D model (3D-RecGAN [29]) or 3D shape (PrGAN [30]).



Sensors 2024, 24, 2358 3 of 26

Image-to-image translation can be applied to increase the resolution (AffGAN [31]),
to generate thermal images (IR2VI [32]), to explore different color spaces (manifold-
WGAN [33]), contrasts (ContrastGAN [34]), image conditions (DNA-GAN [35]), energies
(EBGAN [36]) or cross domains (DTN [37]). Some studies have used GAN for image-
to-image translation to generate visible-like images from synthetic aperture radar (SAR)
(SAR-GAN [38]) or Himawari for green band generation [39]. For images without any
NIR channel, image-to-image translation algorithms can be used to generate a pseudo-
NIR band in order to collect information about vegetation. This is particularly useful for
vegetation [40], crop [41], forest [42] or fruit [43]-related applications.

The feature detection step of the SfM algorithm can benefit from the adjustment of
the initial key points and image alignment with the application of a neural network [44].
Alternatively, an adjustment to the camera setup, like Multi-Camera SfM, can increase the
efficiency, robustness and accuracy of the SfM algorithm [45]. In contrast, the limitation of
the data may reduce the manual labor and computational resources used while successfully
extracting building information from satellite imagery resources [46].

In a different study, object-based segmentation was employed to identify palm trees
in order to monitor the growth and development of every single tree on a plantation [47].
The segmentation of the generated or sensed point cloud can be achieved instantly and
unsupervised, for instance, as part of the reconstruction analysis [48]. Extracting vegetation
directly from RGB UAV images is possible, but the results are often limited and have
certain conditions [49,50].

When performing dense matching for point cloud generation, a commonly adopted
approach is eliminating occlusions and other unwanted objects (such as vegetation) to focus
on the target (e.g., buildings) only. This can be achieved by semantic-guided reconstructions
(SGRs) [51]. Another approach is separating extracted features into different groups to
reduce the interference of vegetation change in target detection [52]. In this regard, the
application of Semantic Flow Field-guided DSM Estimation (SFFDE) can generate an
elevation map (with vegetation) on the one hand, and on the other hand, filter vegetation
out to generate a building mask [53].

In addition, the correct segmentation of vegetation (and removing them) is an impor-
tant issue. However, most close-range and UAV images usually consist of no NIR channels,
which makes vegetation segmentation a challenging task. Therefore, this study developed
a two-stage framework for vegetation-segmented two-view SfM. The proposed two-stage
framework can simulate color infrared images from original RGB bands to be used for
vegetation segmentation with a GAN-based image translation algorithm. As a result, the
vegetation segmentation will improve the feature detection and image matching in the
two-view SfM operation and produce better 3D point cloud data of buildings or other
static targets.

3. Methods, Materials and Experiment
3.1. Methods and Strategy

The two-stage workflow is roughly illustrated in Figure 1 and can be separated into
four key ideas or into two stages. Firstly, color infrared (CIR) is generated from RGB data
by image-to-image translation. The multispectral dataset is then used to calculate the NDVI
to segment vegetation. This is performed so that vegetation occludes the target and so
that the vegetation is highly dynamic. In addition, vegetation is a weak feature (in the
image-matching phase of 3D reconstruction) because of its homogenous texture and lack of
individuality. As a result, feature detection and matching are performed with respect to
the NDVI classification. After that, the point cloud generation with pose estimation and
triangulation is based on the remaining features.

The first stage covers the first two key ideas introduced in Figure 1. This includes the
application of image-to-image translation to generate CIR from RGB. The first step consists
of the pre-processing of the training data, combining very high-resolution satellite images
with camera images. Next, color infrared (CIR) is created for training. Then, testing and
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validation is performed to choose the best model and predict the CIR from the remaining
RGB data (Figure 2). The second stage covers the last two key ideas introduced in Figure 1,
which involves the calculation of the NDVI and feature detection and matching with
the NDVI, as illustrated in Figure 3. This includes the removal of features classified as
vegetation based on the NDVI. Finally, a sparse point cloud is generated with respect to the
available sensor data.
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Figure 1. Two-stage framework separated into the machine learning technique (gray) and the applica-
tion in three steps (green). Firstly (gray), the CIR image is generated from RGB with image-to-image
translation. Then (light green), the NDVI is calculated with the generated NIR and red band. Af-
terwards, (medium green), the NDVI segmentation and classification is used to match the detected
features accordingly. Finally (dark green), pose estimation and triangulation are used to generate a
sparse 3D point cloud.
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The conditional machine learning image-to-image translation technique Pix2Pix
(Figure 2b) takes pair-wise input in order to train the translation from one image to another
image. Therefore, the input needs to be preprocessed first (Figure 2a). The input consists of
an RGB and NIR dataset from cameras and a satellite. The cameras used in the EPFL dataset
are a Nikon D90 (Nikon. Tokyo, Japan)for the RGB and Canon T1i (Canon, Tokyo, Japan),
with a filter used for both cameras. The satellite imagery applied in this study is Pleiades
1B tri-stereo with a multispectral as well as panchromatic band. Firstly, the datasets are
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divided into training, testing and validation, and then processed. The training input size of
the Generator (U-Net) applied in this study (Figure 2b) is 265 × 265 × 3. The generator
generates CIR from RGB. Then, the discriminator decides if the fake is better than the
ground truth by applying a PatchGAN and Adam optimizer. The desired band (Figure 2a),
NIR, is generated from CIR, which is composed of NIR, red and green. After training,
model selection is based on the FID and confusion matrix, as well as the overall robustness
of the FID graph. Then, the testing and validation of the selected model with CIR, NIR
and the NDVI, cross-sensor-wise, are performed. The output of the first stage is a CIR
composite image predicted by the selected model.
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feature processing (yellow) and the output (blue).

3.1.1. The first Stage
3.1.2. The second Stage

The Structure from Motion (SfM) with Normalized Differential Vegetation Index
(NDVI) segmentation operation is summarized in Figure 3. The first step consists of
segmentation and classification with the NDVI based on the Pix2Pix-generated CIR image
(Figure 3, green). The next step is the feature detection with multiple feature detector
operators applied (Figure 3, orange). Afterwards, features classified as vegetation are
removed and masked out, then feature matching is performed. The final step is pose
estimation with the remaining features and triangulation to generate the point cloud.

3.2. Materials
3.2.1. RGB-NIR Training Dataset

The RGB-NIR scene dataset from EPFL [54] consists of 9 categories with approximately
50 scenes as RGB and NIR per category (Table 1). The versatility of the close range and large
scale as well as the various scenes make the EPFL dataset appropriate for many different
applications and training scenarios.

Table 1. EPFL RGB-NIR scene dataset. The categories in alphabetic order. In addition, the total
number of images (RGB + NIR) and the number, respectively, of RGB and NIR.

Category Category Category

Country 104 (52) Indoor 112 (56) Street 100 (50)
Field 102 (51) Mountain 110 (55) Urban 116 (58)
Forest 106 (53) OldBuilding 102 (51) Water 102 (51)

3.2.2. UAV Dataset for Testing

The developed vegetation segmentation two-view SfM reconstruction framework
was tested on a UAV image dataset captured using a DJI P3Pro UAV equipped with a
RGB camera. The camera senses a 5.1K video resolution at a rate of 50 frames per second.
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The scene shows buildings (the target) among trees in front and a city skyline in the
background. The view is mainly blocked by several tall trees in the foreground, which
makes the reconstruction challenging. Firstly, the trees occlude part of the buildings and
cast shadows. Secondly, the tree features detected in this area are highly similar, so that
miss-matches are likely to occur. Finally, nature is in general more dynamic, so that slight
changes caused by wind or sunshine, and weather in general, have a greater impact and
may affect the feature matching significantly. However, the UAV is limited to RGB images,
so an image translation operation to simulate CIR images would overcome this limitation.
This would enable the developed algorithm to calculate the NDVI with the NIR band
extracted from the simulated CIR data for vegetation segmentation, which would improve
the feature matching and 3D point cloud generation performance.

3.2.3. VHR Satellite Imagery for Training and Validation

The tri-stereo pair of Pleiades-1B very high-resolution satellite imagery shown in
Figure 4 and the pairs detailed in Table 2 were used for the training and validation of the
image-to-image translation. Pleaides captures images with a resolution of 0.5 m for the
panchromatic (PAN) and 2.8 m for the multispectral (MS) bands. The scene exhibits a wide
range of land cover types, including water streams, several highways, buildings, as well
as a vegetation-covered mountain chain leaning into the city area. The original Pleiades
images consist of the RGB and NIR band, which can be used to train and check (ground
truth) the data.
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Table 2. Pleiades tri-stereo pairs including the view, the acquisition data and incident angle.

View Date Incident Angle

Nadir
2019-08-27T

12.57◦9:18:44.807

Forward
2019-08-27T

17.71◦08:43:17.817

Backward
2019-08-27T

16.62◦08:47:06.900

3.2.4. Study Target for Validation

The target building is shown in Figure 5a. Validation with respect to the target is
conducted in three ways. Firstly, visual validation is performed with a strict focus on the
target, the stadium (Figure 5b). The area consists of 9 tiles in three rows; each tile has
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256 × 256 pixels. Secondly, the terrain section (c) consists of the lower portion of the target
(a) with a size of 2320 × 463 pixels. Thirdly, a histogram-based case study including a
visual validation is performed.
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Figure 5. The target for validation captured by Pleiades VHR satellite. (a) The target stadium;
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The prediction of this target within its environment is challenging for several reasons.
The vegetation areas shown in red (b) or in brighter pixels in (c) and (d) consisting of
single trees, trees in rows and randomly dense trees. In addition, the green court inside
the stadium, green around the stadium and lawn between the streets are also vegetated
areas. The non-vegetated areas are mainly streets and highways, the stadium with highly
reflective solar panels and a variety of different commercial and residential buildings.

3.3. Experiments
3.3.1. Preprocessing

The first stage of the framework aims to generate CIR from RGB with image-to-
image translation. The preprocessing of the camera (EPFL dataset) differs slightly from
that of the satellite imagery. The satellite imagery is normalized from 16-bit to 8-bit.
Then, the panchromatic band is used to pansharp the multispectral imagery. The Cou-
pled Nonnegative Matrix Factorization (CNMF) algorithm [55] is used to perform the
pansharpening process.

Then, all images for training are processed by slicing and adding padding to generate
256 × 256 × 3 RGB and CIR tiles. Firstly, CIR is created out of the NIR, red and green bands
and the size is adjusted so that the images are dividable by 256 with padding. The number
of tiles for the PAN are sufficiently large enough, being 7221, 6888 and 7052, within the
first run just by slicing (Table 3). However, the MS and EPFL need to increase the number
of tiles for training, testing and validation (Table 3). Therefore, morphological operators
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(Figure 6) are applied to increase the number of tiles. Tiles 1 are the whole image morphed
with flipping, mirroring and mirroring the flipped image (Figure 6a–d). The second row
(Tiles 2) of morphological changes are rotations to left and right including the mirroring of
each tile, respectively (Figure 6e–i).

Table 3. The pre-processed available images. The Pleiades dataset consists of two groups, the multi-
spectral (MS) and the panchromatic (PAN). The MS and EPFL data are processed with morphological
changes (Figure 6) to generate more tiles for training.

Pleiades MS PAN
Size Sliced Tiles 1 Tiles 2 Total Size Sliced

Img1 (70) 5285 × 5563 462 1386 7392 9240 21,140 × 22,250 7221
Img2 (74) 5228 × 5364 441 1322 7498 8820 20,912 × 21,452 6888
Img3 (93) 5189 × 5499 462 1386 7392 9240 20,756 × 21,992 7052

EPFL

Images Tiles 1 Tiles 2 Tiles total
369 4452 17,808 22,260
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3.3.2. Training and Model Selection

Each training model is firstly tested with the Fréchet Inception Distance (FID), which
focuses on similarity [56]. This study adopts the idea of [39] and extends the model selection
process. Firstly, the training is run over 200 epochs and every 25th epoch’s model is saved
(Table 4 Training 9). This is evaluated with the FID and Generator Loss (Figure 7) to
detect the most suitable model range based on the FID and Generator Loss (Loss GEN).
In the proposed framework, a random 10% or 26 × 26 of each NIR patch is used for FID
calculations and the Loss GEN is captured using the loss function during training. The
graph of Training 9 shown in Figure 7 suggests that besides the variation, there is a need to
search for the best-performing model. In this case, the most appropriate model range is
located around epoch 75 (red rectangle in Figure 7). As a result, further training is limited to
100 epochs. These training attempts limited to the EPFL dataset are summarized in Table 4.
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As listed in the table, the training time for 9 categories (Training 9) was long. However,
reducing Training 1 to one category and Training 2 to two categories with respect to the
target, which consists of vegetation and non-vegetated areas, reduced the training time
significantly. A further reduction to 16 images per category or 3840 tiles reduced the time
to approximately 6 h per category.

Table 4. EPFL RGB-NIR dataset and training variation. There are 22,260 training tiles for 9 categories
and around 50 h of training for 100 epochs. The table also shows training with only one (Streets)
category (Training 1) and two (Streets and Forest) categories (Training 2). Tiles 1 and Tiles 2 are the
products of the morphological changes described in Figure 6.

EPFL Training 9 Training 1 Training 2

Images 369 16 32
Tiles 1 4452 240 480
Tiles 2 17,808 768 1536

Tiles Total 22,260 3840 7680
Time 50 h 48 min 6 h 42 min 13 h 1 min
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The training and testing for model selection are summarized in Table 5. The perfor-
mance is evaluated for every epoch with FID and the graph is displayed in Figure 8 for
each run, respectively. FID testing is conducted consistently with 6 images (EPFL) per
category or 1440 tiles by randomly selecting 10% of each NIR patch. The results of the FID
are plotted with different colors in Figure 8.

Table 5. Training and testing for model selection.

Overall Streets Streets, Forest Streets, Forest, MS and PAN

Training Tiles 22,260 3840 7680 15,360
Numb. Categories 9 1 2 4
Time 50 h 48 min 6 h 42 min 13 h 1 min 25 h 51 min

EPFL RGB-NIR 9 categories 1 category 2 categories 2 categories
MS × × × 1 image
PAN × × × 1 image

The training for the model selection is divided into four training runs, including using
the entire EPFL dataset, using only the Streets category, using the Streets and Forests categories,
and finally, combining the Streets and Forests of EPFL with the MS and PAN of the Pleiades
dataset. The times needed for training with the different categories described are recorded and
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listed in Table 5. Furthermore, the numbers of categories applied and the resulting time, as well
as the testing set, are listed. Likewise, the table also lists the number of categories with respect
to the dataset, EPFLE RGB-NIR, Pleiades MS or Pleiades PAN. Pleiades MS and Pleiades PAN
consist of three images in total, so have three categories each.
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This study balanced out testing and validation over all categories, rather than fol-
lowing the idea of a percentage split. The first run used all 9 categories by splitting and
completely utilizing the EPFL dataset in training, testing and validation. Training run
9 (Overall) processed 22,260 tiles, took more than 50 h and covered all 9 categories of the
EFPL dataset. The FID evaluation of the overall EPFL is plotted in orange in Figure 8 and
exhibits an unstable performance. The lowest FID of 1.889 is still much higher than all the
others. As a result, the overall EPFL is excluded from further evaluation.

The other three training trials are much more similar and stable in terms of their FID
performance, so further evaluation is conducted in order to determine the most appropriate
model for our application. The Confusion Matrix (CM) evaluates the performance of the
NDVI classification. This study uses four parameters of the CM to evaluate the remaining
training trials (Table 6). The epochs with the best FID and CM are indicated by columns
with respect to the training run color (Figure 8). Further, the evaluation with the confusion
matrix is used to select the best model from the remaining three training trials (Table 6).
The lowest FID values of each training are 1.889 (Overall), 1.132 (Street), 0.839 (Street and
Forest) and 1.663 (Street, Forest, MS and PAN). The best model selection is marked for
each training, except the overall for FID and CM evaluation. The training model selection
with FID and CM indexes is summarized in Table 6. The parameters used to evaluate the
performance of the NDVI with the confusion matrix are the accuracy, precision, F1-score
and kappa coefficient. Further, the model with the lowest FID is compared with the model
with the best classification results. Interestingly, epoch 89 of the Street training performance
is the best, both for the FID and CM. In addition, Street is the best in terms of accuracy,
precision and F1-score. However, the kappa coefficient shows that the result is less robust
and more random. The repeatability of the prediction is of great importance in this study.

Street seems to perform the best in terms of accuracy and FID similarity. However, the
training with Street, Forest, MS and PAN is much more stable and provides more robust results.
Therefore, epoch 64 with a kappa coefficient of 0.7767 seems to be the most reliable model
for the prediction of RGB2CIR in this study. As a result, epoch 64 of Street, Forest, MS and
PAN training is considered to be the most appropriate in terms of robustness, accuracy and
repeatability, and is therefore selected for prediction and further validation and application.
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Table 6. FID summary and CM for training model selection.

Street Street and Forest Street, Forest, MS and PAN

Model 89 98 94 83 64
CM

Accuracy 0.8136 0.5781 0.7645 0.6830 0.7125
Precision 0.7285 0.5423 0.6798 0.6120 0.6349
F1-score 0.8429 0.7033 0.8093 0.3660 0.4251
Kappa 0.6273 0.1563 0.5290 0.7593 0.7767

FID 1.132 3.057 0.839 1.663 1.905

3.4. Vegetation Segmentation and Structure from Motion

The second stage, as introduced in Figure 3, focuses on the generation of a sparse
point cloud with vegetation-segmentation-driven two-view Structure from Motion (SfM).
Firstly, the Normalized Differential Vegetation Index (NDVI) is calculated for segmentation
and classification. Then, feature detection is performed and points identified as vegetation
are removed. Outliner removal and inlier matching with masking are further performed.
Finally, pose estimation, triangulation and sparse point cloud generation are conducted.

This study uses, as mentioned, Pleiades satellite imagery as one of the datasets. On
the one hand, it is used for training, and on the other hand, it is used for testing and
validation. The color infrared (CIR) image was further pansharpened with the panchromatic
(PAN) band, as shown in Figure 9, to produce NDVI images with higher spatial details.
Pansharpening is a fusion technique used to generate imagery with a high spectral and
spatial resolution (Figure 9b,c).

Sensors 2024, 24, x FOR PEER REVIEW 12 of 29 
 

 

Model 89 98 94 83 64 
CM      

Accuracy 0.8136 0.5781 0.7645 0.6830 0.7125 
Precision 0.7285 0.5423 0.6798 0.6120 0.6349 
F1-score 0.8429 0.7033 0.8093 0.3660 0.4251 
Kappa 0.6273 0.1563 0.5290 0.7593 0.7767 

FID 1.132 3.057 0.839 1.663 1.905 

3.4. Vegetation Segmentation and Structure from Motion 
The second stage, as introduced in Figure 3, focuses on the generation of a sparse 

point cloud with vegetation-segmentation-driven two-view Structure from Motion (SfM). 
Firstly, the Normalized Differential Vegetation Index (NDVI) is calculated for segmenta-
tion and classification. Then, feature detection is performed and points identified as veg-
etation are removed. Outliner removal and inlier matching with masking are further per-
formed. Finally, pose estimation, triangulation and sparse point cloud generation are con-
ducted. 

This study uses, as mentioned, Pleiades satellite imagery as one of the datasets. On 
the one hand, it is used for training, and on the other hand, it is used for testing and vali-
dation. The color infrared (CIR) image was further pansharpened with the panchromatic 
(PAN) band, as shown in Figure 9, to produce NDVI images with higher spatial details. 
Pansharpening is a fusion technique used to generate imagery with a high spectral and 
spatial resolution (Figure 9b,c). 

(a) PAN 

 

 
 

(b) MS CIR 

 
 

(c) PAN CIR 

 
 

   

Figure 9. CIR pansharpening on the target. The high-resolution panchromatic image is used to in-
crease the resolution of the composite CIR image while preserving spectral information. From top 
to bottom, (a) panchromatic, (b) color infrared created from multi-spectral bands, and (c) pansharp-
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Figure 9. CIR pansharpening on the target. The high-resolution panchromatic image is used to
increase the resolution of the composite CIR image while preserving spectral information. From top to
bottom, (a) panchromatic, (b) color infrared created from multi-spectral bands, and (c) pansharpened
color infrared are shown.

After preprocessing, feature detection and matching are the next steps. Strong features
are so unique that they are, by description, outstanding and exceptional. Corners are good
candidates and segmentation can help to classify and remove week features. However,
this process decreases the number of features significantly [7]. Therefore, multiple feature
detector operators are applied to increase the number of features [3]. Vegetation features
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often decrease the feature matching performance, especially when dealing with remotely
sensed images, because of their dynamic appearances and characteristics in different
images, even with only insubstantial imaging parameters. Therefore, it may be helpful
to exclude vegetation features from the image matching process during the point cloud
generation processes. In this regard, using the NDVI as an index to separate vegetated
and non-vegetated areas is a viable and convenient approach and should improve the
performance of image matching and the resultant point cloud data. The identification of
features within dense vegetated areas based on the NDVI is demonstrated as an example
in Figure 10. Firstly, the CIR images clearly show the vegetation within the area around the
target stadium in red (Figure 10a). The calculated NDVI (b) with legend emphasizes the
robustness and usefulness of performing vegetation detection with the NDVI. The final
image (c) is a composite image of the RGB image, in which the vegetation is marked in
green and the SURF features classified as vegetation are marked as yellow asterisks.
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The final stage of the two-view SfM point cloud reconstruction is detecting and
describing features with the SURF, FAST (BRIEF) and ORB algorithms. Points are removed
if they are located in the vegetation areas. Afterwards, the remaining non-vegetated feature
points are checked for outliers and these are removed as well (masking). This masking is
accomplished over H-matrix estimation. Then, the next step is feature matching with Brute
Force with respect to the type of descriptor. Finally, pose estimation and triangulation,
including essential and fundamental matrix estimation with the remaining features, are
performed to generate 3D point clouds.

4. Results and Discussions
4.1. Training and Model Testing

The training strategy and model selection process, as described in Section 3.3.2, is
carried out in a stepwise procedure. The trained model is generated cross-sensor-wise
and based on four categories. The validation is accomplished with a Confusion Matrix
(CM) to evaluate the performance of the selected model with NDVI classification and is
summarized in Table 7. The selected model is generated with 15,360 tiles at epoch 64.
In addition, 10% or 1536 of each category are randomly selected for category-wise and
balanced validation.

Table 7. Model testing for validation separating MS and PAN results. Pleiades MS and PAN,
respectively, for the Forward (74) and Backward (93) view, including the average (AVG). In addition,
the absolute Difference (Diff abs) and relative difference (Diff %) used to compare MS and PAN.

Pleiades Accuracy Recall F1-Score Kappa

MS74 0.5886 0.5486 0.7085 0.1772
MS93 0.5956 0.5528 0.7120 0.1912

AVG MS 0.59 0.55 0.71 0.18

PAN74 0.9466 0.9035 0.9493 0.8932
PAN93 0.9024 0.8366 0.8048 0.9110

AVG PAN 0.92 0.87 0.88 0.90

Diff abs 0.33 0.32 0.17 0.72
Diff % 35.9 36.8 19.3 80

As listed in the table, the results of the two pansharpened sets (PAN74, PAN93) are more
accurate than the multi-spectral ones by 35.9% (MS74, MS93). The two pansharpened sets
achieve accuracies of 0.9466 and 0.9024 and kappa coefficients of 0.8932 and 0.9110, respectively.

4.2. Color Infrared Simulation Validation

A Pleiades satellite image was used to validate the effectiveness of the developed
model for simulating color infrared images (Figures 11 and 12). The target consists of
a stadium and its environment (as shown in Figure 5). A larger sub-image (Figure 12a)
covering different types of vegetation and vegetation arrangement was also tested. The
quadratic tile mainly focuses on the stadium and close environment. The test images
were excluded in the training phase when developing the model. The original infrared
band of the Pleiades images can be treated as ground truth (GT) to evaluate the predicted
(simulated) CIR result.

The predicted CIR, NIR and NDVI images and the ground truth of the target and
its vicinity are first used for visual comparison and to validate the CIR simulated results
(Figure 11). As shown in Figure 11, by comparing the predicted CIR (b) and the ground
truth (c), the details are overall preserved. However, some surfaces like the solar panels or
flat roof tops have a slight red discoloration instead of being solid gray. The NIR band (d)
extracted from the predicted CIR exhibits slightly blurred edges compared to the ground
truth (e). The comparison of the NDVI prediction (f) and ground truth (h) shows an
overestimation of vegetation, especially areas with narrow areas of vegetation close to
non-vegetated areas, like streets and trees close to the street.
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Figure 11. Comparison between the prediction and the ground truth (GT) of the CIR, NIR and NDVI
(incl. legend) of the main target (a stadium) and vicinity.
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Figure 12. Comparison between the prediction and the ground truth (GT) of the CIR, NIR and NDVI
generated from a pansharpened RGB satellite sub-image.

The larger sub-image (Figure 12a) covers different landcover types; these are, from left
to right, smaller buildings, a major highway, a park area with a stadium, supply facilities
for the stadium with solar panels, smaller roads and high-rise buildings with a parking
area, etc. The predicted CIR and the subsequent extracted NIR and NDVI calculated from
the simulated CIR image all seem to have higher intensity values than the ground truth,
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but the prediction still preserves the overall trend and details. A histogram investigation is
conducted to further quantitively analyze the simulation performance.

4.3. Histogram evaluation

Histograms provide, in contrast to the visual validation of Section 4.2, a quantitative
comparison of the predicted (simulated) images and ground truth. The histogram itself
provides information about the intensity range and distribution (CloudCompare, version
2.12.1). The comparison of the ground truth and prediction emphasizes their similarities
and differences beyond a visible inspection and provides the opportunity for a more
comprehensive analysis.

The predicted CIR (and extracted NIR) and the ground truth around the target stadium
building and its vicinity are displayed in Figure 13. Each tile of the NIR and NDVI
images simulated from the original Pleiades multi-spectral (MS) bands and its ground
truth (Figure 13a,b) displays 256 × 256 pixels. By visual comparison, it appears that the
NDVI calculated from the predicted NIR is slightly blurred compared to the one calculated
from the original. In addition, the simulated image seems to have higher NDVI values
(brighter) than the ground truth. However, analyzing the histograms shown in Figure 13c
reveals that both histograms have similar distributions but in different ranges. Figure 13d–f
display the NDVI ground truth images and the simulated counterparts predicted from a
PAN Pleiades image divided into nine tiles. The prediction shows clear border noise, in
addition to an increase in the intensity values of the vegetation. The histogram comparison
indicates that although the ranges of the ground truth and predicted NDVI are different,
their distribution patterns are similar.

The comparison of the ground truth and prediction with histograms and visual inspec-
tions of the CIR, NIR and NDVI from MS and PAN pansharpened the image subsets with
similar scene contents (Figure 14). Firstly, MS in Figure 14I–III displayed three different
scenes with a size of 256 × 256, showing the CIR, NIR and NDVI for the ground truth
(GT) and prediction (P), in addition to the histogram. The first row shows a rural area
mainly consisting of different types of vegetation and a water stream. The vegetation is
captured well and is similar to the ground truth; however, the river seems to be blurred in
the simulated image. The second row shows a similar number of buildings and vegetation
(agriculture). The areas with a high chlorophyl content (bright red) are identified best,
whereas low or non-chlorophyl areas are blurred and miss-classified as vegetation. Row
III shows more buildings, and the prediction gets closer to the ground truth; however, it
is still blurry. In the PAN cases, row IV, V and VI show three examples simulated from
the PAN-sharpened (s) to (jj). Row IV shows a rural area covered partially by a cloud.
Interestingly, the prediction enhances the contrast, so the prediction shows much more
clear features than the ground truth. This contrast enhancement and the benefits are shown
in row V as well. Row VI follows that trend too; however, it has difficulty predicting the
natural curvy water stream entirely.

The examples presented above demonstrate that the proposed machine learning
model can effectively simulate color infrared (CIR) images from RGB images; therefore,
the NIR band can be extracted to calculate the NDVI for the segmentation of vegetation-
covered areas. This can be very useful for images acquired using sensors or cameras
without infrared channels such as regular UAV images. The comparison between the
predicted NDVI and the ground truth calculated using the original infrared band of
Pleiades very high-resolution satellite images (both multi-spectral and pansharpened
versions) further demonstrates that the NDVI values calculated from the generated CIR
images are highly correlated to the true NDVI values and should be capable of identifying
vegetation-covered areas.
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Figure 13. Histogram and visual inspection of the CIR and NDVI simulated using MS and PAN
images on the target stadium. (a–c) Ground truth (GT) and NDVI predicted using one tile with the
size of 256 × 256 from MS Pleiades and their histograms. (d–f) Ground truth of CIR, NIR, NDVI
and predicted NIR and NDVI images from nine tiles of the PAN Pleiades images and histograms for
NDVI comparison.
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Figure 14. Histogram and visual inspection of MS (I–III) and PAN (IV–VI) examples of Zhubei city.

4.4. Structure from Motion on UAV Prediction and Application

The proposed two-stage workflow has an overall aim of improving 3D point cloud
generation for static targets such as buildings from RGB images, especially UAV images.
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The developed two-stage point cloud reconstruction framework was tested on a real dataset
collected using a regular RGB camera onboard a DJI UAV. The UAV data consist of a target
building occluded by trees. As mentioned previously, detecting and masking vegetation-
covered areas should help to improve 3D point cloud generation. Since there are no infrared
channels in the test UAV dataset, the developed image-to-image translation procedure
was applied to simulate the CIR images of the dataset. Then, the predicted NIR band was
extracted to calculate NDVI values for segmenting vegetation areas from the scenes before
the SfM operation for 3D reconstruction.

In general, the segmentation-driven SfM algorithm starts with feature detection and
matching with respect to the NDVI-based vegetation-masked images. The vegetation
segmentation and masking reduce weak features, whereas the application of multiple
feature detector operators, namely SURF, ORB and FAST, increases the number of useful
features. Then, feature matching with Homography matrix masking is performed to
preserve the quality of the matched features. Finally, the last task is pose estimation and
triangulation to generate point clouds.

The UAV scenes shown in Figure 15 display the prediction of CIR (b) from RGB (a), with
padding on the bottom and right of the image. The extracted NIR (c), with removed padding,
and the NDVI (d) are calculated based on the extracted NIR and original red band. The CIR
shown in Figure 15b is a mosaic of 40 tiles (including the padding), which were originally
divided for computing efficiency. All three translated images (b-d) seem to exhibit a clear
“edge enhancement” effect and noise related to the padding, which are side effects of the CIR
simulation. Figure 15e,f provide an isolated and closer look at the area marked by the orange
box in (a) as two 256 × 256 titles. It is also noted that the illumination conditions, shadows,
and colors can affect the CIR simulation result. For example, the green wall painting on the
right building in (e) was mistakenly treated similarly to the trees (f).

Initially, an average of 149,181 features were detected (Table 8). After vegetation
segmentation, an average of 133,808 features remained. This led to a difference of 10.31%,
or 15,373.5 features. In other words, about 10% of feature points were removed, but the
remaining features were more robust for image matching.

Table 8. Number of points without or with the processing vegetation segmentation using the NDVI
calculated using the NIR and red bands of the CIR image simulated from the original RGB UAV scene.

Features Initial After Difference

Image 1 148,717 133,186 15,531 10.44%
Image 2 149,646 134,430 15,216 10.17%

AVG 149,181 133,808 15,373.5 10.31%

The results of the two-view SfM reconstruction in direct comparison are shown in
Figure 16, without segmentation in Figure 17 and with segmentation applied in Figure 18.
Without vegetation segmentation are shown in Figure 17a as a sparse point cloud and (b) as
a point cloud colored by elevation. The density analysis and its histogram are, respectively,
displayed in Figure 17c,d. The accumulated numbers of points are listed in Figure 17e. It
was also noticed that among the reconstructed sparse point cloud, only 26,673 of the target
points were partially occluded by vegetation. The initial point cloud needed the removal
of 65.76% or 51,236 points to produce a “cleaner” point cloud. The Point Cloud colored by
elevation emphasizes the influence and the level of occlusion that was, in this case, caused by
vegetation. The density analyses shown in (c) and (d) were accomplished using the number
of neighbors with a radius of 0.5 m for each point, respectively. The histogram shows the
counts of 40 classes of the number of neighbors. The vegetated areas, some corners of the
building and the satellite antenna show higher point density. However, the majority of the
target, the building, show an overall low point density, as the histogram underlines.
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view of the area marked with an orange box in (a) is displayed as two 256 × 256 tiles in RGB (e) and
the predicted CIR (f).
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Figure 17. Two−view SfM 3D sparse point cloud without the application of NDVI−based vegetation
removal on the target CSRSR. (a) Sparse point cloud with no further coloring; (b) point cloud colored
by elevation; (c) density analysis and the corresponding histogram (d). In addition, Table (e) shows
the accumulated number of points over the three operators (SURF, ORB and FAST) and the initial
and manually cleaned and processed point cloud.

The results of the two-view SfM reconstruction with vegetation segmentation are
shown in Figure 18a as sparse point clouds, (b) as a point cloud colored by elevation,
(c) the density analysis and (d) its histogram. The accumulated numbers of features
detected without and with vegetation segmentation are summarized in Table 8. In addition,
a comparison of without NDVI and with NDVI is summarized in Table 9, including the
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initial, the cleaned and the difference between the generated and processed point clouds.
As expected, the number of points with the NDVI-based vegetation removal process is
smaller than without. Likewise, the amount of noise manually removed is similar. However,
the quantitative density analysis and visual analyses both show that the two-view SfM
reconstruction can produce more plausible results on images treated with the vegetation
segmentation and removal process, further demonstrating the advantage of the approaches
proposed in this study.
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Figure 18. Two−view SfM reconstructed 3D sparse point cloud with vegetation segmentation and
removal process based on simulated NDVI of the target building. (a) Sparse point cloud with no
further coloring; (b) point cloud colored by elevation; (c) density analysis and (d) the histogram. In
addition, (e) lists the accumulated number of points over the three operators (SURF, ORB and FAST)
after segmentation, with 0.5 NDVI as the threshold to mask vegetation in SURF and ORB, and the
initial and manually cleaned point cloud.
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Table 9. Initial and cleaned sparse point cloud with and without NDVI-based vegetation segmentation
and removal process.

PCL without NDVI with NDVI Difference

Initial 77,909 72,643 5266
Difference 51,236 65.76% 50,275 69.21% 781 15.83%
Cleaned 26,673 22,188 4485

Finally, the direct comparison shown in Figure 16 emphasizes the benefits of the
framework proposed in this study. It can be seen that the occlusion of vegetation dominates
in the foreground (a) of the scene, which took significant computational resources but also
may have had a negative impact on the dense matching operation. Furthermore, it can
be observed that the vegetation has a higher point density than the target (building). On
the other hand, with the NDVI data generated in the proposed framework, the occlusion
caused by vegetation is significantly reduced. The resultant point cloud in Figure 16b
shows more clear building edges and corners, not to mention that computational resources
were spent on the actual targets rather than on unwanted objects.

5. Conclusions and Suggestions

This study successfully enhanced a building point cloud from RGB UAV data with
machine-learning-based image-to-image translation and two-view SfM algorithms. The
developed machine learning procedure effectively translates original RGB UAV images to
color infrared in order to help segment and remove vegetation from the original images to
improve building point cloud generation. The implementation of the two-stage framework
consisted of three fundamental steps, which included using resource-aware cross-sensor
training to generate a robust model for RGB to color infrared translation, model verification
and performance analysis, and image segmentation with the newly generated data to
improve SfM.

The cross-sensor training and model selection used to train the machine learning
model to predict CIR from RGB is a conditional GAN (Pix2Pix). The predicted CIR is
then used to extract NIR and red bands, in order to calculate the NDVI. The proposed
framework takes several key elements into consideration. Firstly, the relation between
the number of categories and time shows that with less categories and less tiles, less time
and resources are needed; meanwhile, the performance is kept stable. This leads to the
application of fewer categories and a cross-sensor training idea. The cross-sensor training
enhances the applicability, as well as increases the model’s robustness and performance. The
evaluation of the results shows that the predicted CIR results can reach binary classification
accuracies of 0.9466 and 0.9024 and have kappa coefficients of 0.8932 and 0.9110, respectively.
Histogram-based evaluation demonstrates that the predicted NIR band is consistent with
the original NIR data of the satellite test dataset.

The proposed algorithm and the developed machine learning model were applied to
an UAV RGB image dataset without ground truth. The UAV dataset lacks the NIR band,
meaning that the image-to-image translation of RGB2CIR fills that gap. The predicted
CIR was then incorporated to generate 3D point clouds of a building target with a two-
view SfM. The selected model successfully translated RGB to CIR data. The prediction
and NDVI-based vegetation segmentation show reasonable results with minor padding
and shadow noise issues. Nevertheless, the reconstruction shows decreased density in
vegetated areas and the increased density of the target. The result also demonstrates that the
proposed vegetation-driven two-view SfM framework can effectively reduce the influence
of vegetation and generate more adequate point cloud data of the targets.

The cross-sensor training offers a variety of applications. However, data availability
and copyright can be a challenge. In addition, the computational resource requirements
and time can limit the applicability of the proposed approach. Nevertheless, the proposed
two-stage two-view SfM reconstruction with vegetation segmentation and removal based
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on simulated NDVI values is still a viable and effective solution. The proposed solution
improves the quality of the 3D building point cloud data generated from regular RGB
images using SfM algorithms and does not require sophisticated sensors or expensive
equipment. It is notable that the resolution gap of the cross-sensor training sample and
the quality of the prediction are related. It is recommended that the cross-senor training is
carried out carefully.

Additional points are worth investigating and incorporating into the proposed frame-
work to further enhance the model’s performance in the future. For example, the further
fine tuning of the categories of training images for machine learning is recommended,
including training with a clear progression of high to low-resolution images. The use
of a post-processing step to handle the boarder noise would also be interesting. With a
focus on vegetation categories, the additional processing of green objects and shadows
or illumination changes could further improve the model’s performance. In addition, the
shadows cast by clouds are considered as occlusions; therefore, the removal of clouds and
shadows would further improve point cloud generation with SfM algorithms.

In terms of motion-based scene structure reconstruction, the application of epipoles
rather than only relying on features may provide a faster and more stable pose estima-
tion [57]. On top of that, normalization often decreases the resolution of images, especially
for satellite data. The application of deep features like SuperPoint in combination with
SuperGlue may overcome this issue [58]. SuperPoint is a self-supervised machine learning
operator that seems to be a convenient and adjustable solution. Alternatively, correspon-
dence can be established with an AI scoring network [59] or pruning performed with
global texture [60].
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