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Abstract: Mobile crowdsensing (MCS) systems rely on the collective contribution of sensor data from
numerous mobile devices carried by participants. However, the open and participatory nature of
MCS renders these systems vulnerable to adversarial attacks or data poisoning attempts where threat
actors can inject malicious data into the system. There is a need for a detection system that mitigates
malicious sensor data to maintain the integrity and reliability of the collected information. This paper
addresses this issue by proposing an adaptive and robust model for detecting malicious data in MCS
scenarios involving sensor data from mobile devices. The proposed model incorporates an adaptive
learning mechanism that enables the TCN-based model to continually evolve and adapt to new
patterns, enhancing its capability to detect novel malicious data as threats evolve. We also present
a comprehensive evaluation of the proposed model’s performance using the SherLock datasets,
demonstrating its effectiveness in accurately detecting malicious sensor data and mitigating potential
threats to the integrity of MCS systems. Comparative analysis with existing models highlights the
performance of the proposed TCN-based model in terms of detection accuracy, with an accuracy score
of 98%. Through these contributions, the paper aims to advance the state of the art in ensuring the
trustworthiness and security of MCS systems, paving the way for the development of more reliable
and robust crowdsensing applications.

Keywords: mobile crowd sensing; autoencoders; internet of things; deep learning; temporal
convolutional networks; malicious data detection

1. Introduction

Mobile crowd sensing (MCS) is a paradigm that involves leveraging the ubiquitous
presence of mobile devices, such as smartphones, tablets, and wearables, to collect data
from their built-in sensors and user inputs [1]. It entails the engagement of mobile users
who serve as contributors, operators, or consumers, supplying sensing data to an MCS
platform [2]. By outsourcing sensing activities to individual users, MCS lowers the deploy-
ment and maintenance costs compared with conventional sensor networks [3]. The main
idea behind MCS is to encourage people to perform activities and submit data using smart
devices (such as smartphones and mobile wearables) equipped with sensors that collect
tons of valuable data.

Mobile crowd sensing has emerged as a prominent paradigm for collecting data from
many mobile devices, enabling a wide range of applications, such as environmental moni-
toring [4], urban planning [5], and healthcare [6]. MCS empowers citizens to participate
in data collection efforts by rewarding them for their contributions, leading to smart and
sustainable spaces [7].

In the field of mobile crowd sensing (MCS), many issues need careful consideration
and creative solutions must be developed. Primarily, privacy and security concerns in MCS
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systems pose significant obstacles, requiring strong safeguards to protect user data from
unwanted access [8]. Furthermore, the task of guaranteeing the dependability and accuracy
of crowdsensed data presents significant challenges due to the inherent anonymity and
lack of consistency across data sources. The continuous energy consumption linked to MCS
operations presents an additional substantial challenge, endangering the battery longevity
of mobile devices at a concerning rate. Equally significant is the need to provide incentives
for active engagement in MCS initiatives.

Formulating efficient pricing techniques, correcting price disparities, and creating
appealing incentive systems pose complex issues. The recruitment and retention of par-
ticipants in multimedia content creation (MCS) initiatives present complex challenges
since dropout rates increase when people perceive inadequate incentives or are excluded
from the selection procedures [9]. The management of the many duties performed by
users in MCS campaigns introduces an additional level of complexity, especially when
considering different priorities and processing capabilities. Moreover, the increasing pop-
ularity of mobile crowd sensing highlights the urgent issue of malicious data injection.
Engaging in such malicious behaviors has the potential to significantly compromise the
precision and reliability of gathered data, thereby hindering the capacity to conduct precise
analysis and make informed decisions [10]. When faced with this significant obstacle,
the use of autoencoders presents itself as a potentially fruitful approach. An autoen-
coder neural network is an unsupervised learning framework with an input layer, one or
more hidden layers, and an output layer. Architecturally, autoencoders efficiently learn
compressed representation with small hidden layers [11]. Autoencoders can enhance
the integrity of MCS systems in the face of malicious intrusions by effectively acquiring
compressed representations.

Recently, temporal convolutional network autoencoders (TCN-AE) have been pro-
posed for anomaly detection for the Internet of Things [12,13]. TCN-AE has a deep neural
network architecture composed of an encoder and a decoder. The encoder comprises convo-
lutional layers. The reverse of the encoder is the decoder, which consists of deconvolutional
layers [14].

Despite the promising capabilities of autoencoders in anomaly detection, their use in
detecting malicious data in MCS remains unexplored. This paper proposes an adaptive
temporal convolutional network autoencoder-based model (ATCN-AE) for malicious data
detection for mobile crowdsensing applications. The model combines the strengths of
temporal convolutional networks (TCN) and autoencoders to effectively capture and detect
malicious data patterns in the temporal sequences collected from mobile devices.

The temporal nature of the data collected in mobile crowdsensing applications presents
unique challenges for detecting malicious activities. Temporal convolutional networks
(TCNs) have shown great promise in capturing temporal dependencies and patterns in
sequential data. By leveraging dilated convolutions, TCNs can capture long-range de-
pendencies, enabling them to extract relevant features from the temporal sequences [15].
Complementing the TCN component, an autoencoder is employed to further enhance the
TCN-AE performance in detecting malicious data. The proposed model incorporates an
adaptive learning mechanism to adapt to the dynamic nature of the mobile crowdsensing
environment. Adaptive learning enables the model to continuously update its parameters
and adapt to new patterns or emerging malicious activities, hence ensuring that the model
remains effective over time, even as the characteristics of malicious data evolve. The main
contributions of this paper are as follows:

1. To introduce a novel ATCN-AE model specifically designed for detecting malicious
data in MCS. The ATCN-AE leverages the power of adaptive temporal convolutional
networks and autoencoders to effectively capture and analyze temporal patterns in
MCS data, enabling the accurate identification of malicious activities.

2. The proposed ATCN-AE model demonstrates exceptional learning capabilities, en-
abling it to adapt to the dynamic nature of MCS data. By incorporating adaptive
temporal convolutions, the model can effectively capture temporal dependencies
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and anomalies in the data, enhancing its ability to identify and classify malicious
instances accurately.

3. The performance of the proposed ATCN-AE model is evaluated using a publicly
available dataset relevant to MCS. The experiments conducted on the dataset reveal
that the model effectively detects malicious activities in MCS scenarios.

The remainder of the paper is organized as follows. Section 2 reviews autoencoder-
based anomaly detection models in IoT and MCS systems. The section also presents some
works that employ the SherLock dataset for machine learning model training and evalua-
tion. Section 3 of the paper introduces the proposed model architecture and methodology.
It details the adaptive temporal convolutional network autoencoder model, including the
input, detection, and output components. The training and evaluation process is also
outlined. Section 4 presents the experimental results and discussion. It evaluates the perfor-
mance of the proposed ATCN-AE model on the dataset using various metrics. The results
are analyzed and compared with existing baseline models. The section examines how well
the model can detect malicious data in mobile crowdsensing applications. Section 5 draws
conclusions and outlines future work.

2. Related Works

In this section, we examine the related literature on proposed systems and techniques
for anomaly detection in IoT and MCS. This section specifically reviews the use of deep
learning models in detecting attacks and other malicious activities in sensing data.

2.1. Anomaly Detection Using Deep Learning

In [16], Khanam et al. presented a classwise focal loss variational autoencoder
(CFLVAE), a deep generative-based model, to solve unbalanced network traffic problems
in intrusion detection systems for the Internet of Things (IoT). A well-balanced intrusion
dataset is used to create fresh samples for minority attack types and train a deep neural
network (DNN) classifier, improving intrusion detection accuracy. The CFLVAE-DNN has
a 3.77% false positive rate and 88.08% intrusion detection accuracy. The suggested model
detects low-frequency attacks for U2R (79.25%) and R2L (67.5%). The results show that
the model increases learning-based classifier intrusion detection accuracy and handles
unbalanced network traffic in IoT intrusion detection systems. However, the approach may
not be adequate for real-time intrusion detection systems due to data creation time.

Similarly, Lahasan et al. [17] put forward an optimized deep autoencoder model for
anomaly detection in IoT devices with limited hardware support. The authors propose
an optimized deep autoencoder model for intrusion detection. The model optimization is
performed in two layers. The first layer selects the most relevant input features, training
instances, and several hidden neurons simultaneously. The second layer develops the
optimized model by combining the accuracy of a K-nearest neighbors (KNN) classifier
with the complexity of the autoencoder architecture. The model is evaluated on the
N-BaIoT intrusion detection dataset and compared with other optimization algorithms,
including the arithmetic optimization algorithm (AOA), particle swarm optimization (PSO),
and reinforcement learning-based memetic particle swarm optimization (RLMPSO). The
optimized deep autoencoder achieves 99% anomaly detection accuracy with a lightweight
model architecture. On average, only 30 input features and 2 hidden neurons are required.
The model presented by the authors demonstrates superior performance compared with
the benchmark algorithms. The two-layer optimization strategy enables the development
of an accurate yet low-complexity intrusion detection model. Nonetheless, the authors do
not provide any information about the computational resources required to train and test
the model.

Salahuddin et al. [18] introduced a new time-based anomaly detection system called
Chronos to detect distributed denial of service (DDoS) attacks. Chronos employs an au-
toencoder model trained on time-based features extracted from network packets. The
features are aggregated over varying time windows to characterize different DDoS attacks.
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The CICDDoS2019 dataset containing DDoS attacks via TCP and UDP application layer
protocols is utilized. The impact of different time windows in extracting distinguishing
features for each DDoS attack type is evaluated. The authors examined how effectively
the time-based autoencoder approach can leverage these temporal features to detect and
classify DDoS attacks. However, the authors do not compare Chronos with other time-based
anomaly detection systems to benchmark performance.

Thill et al. [12] proposed an unsupervised anomaly detection algorithm called TCN-
AE that utilizes dilated convolutions to learn temporal patterns in time series data. The
TCN-AE model comprises a temporal convolutional network (TCN) combined with an
autoencoder architecture. The authors evaluated the algorithm on electrocardiogram (ECG)
recordings from patients with cardiac arrhythmia. However, the TCN-AE model is only
tested on this single dataset of ECG signals. The limited evaluation dataset makes it difficult
to assess how well the approach generalizes to other types of time series data, such as MCS.

In [14], Aloul et al. proposed a novel intrusion detection model combining adversarial
autoencoders (AAE) and K-nearest neighbors (KNN) classification. The model is designed
for deployment on resource-constrained IoT edge devices like small routers. The authors
employed the synthetic minority oversampling technique (SMOTE) to balance the class
distribution of the NSL-KDD dataset used for evaluation. The AAE performs representation
learning on the preprocessed data. The KNN algorithm then leverages these learned
features to classify network traffic as benign or anomalous. The model achieves 99.91%
accuracy on the NSL-KDD dataset. Nevertheless, the complexity of real-world IoT networks
with numerous connected devices may impact the performance of the model. The scalability
of the approach concerning increased network traffic and evolving attack types also requires
further analysis.

Also, Yang et al. [19] presented an autoencoder-based framework for DDoS attack
detection. The methodology consists of two key components—the feature extraction
component (FEC) and the online detection component (ODC). The FEC uses the Data Plane
Development Kit (DPDK) to extract relevant traffic features from raw packet data. The
ODC then leverages the autoencoder model to analyze each sample and identify anomalies
based on their reconstruction error. The framework only requires benign traffic to train
the detection model, which can automatically update itself. Experiments on synthetic
and public datasets demonstrate an 82.0% detection rate and a 0% false positive rate,
outperforming classical detection approaches. The model can also detect zero-day and
unknown DDoS attacks. Three datasets are utilized for evaluation: a synthetic dataset
with over 38,000 attack types, the UNB 2017 dataset, and the MAWI dataset. However, the
model may fail to detect DDoS attacks and payloads using encrypted traffic.

Likewise, Yang et al. [19] proposed an unsupervised AE framework that detects DDoS
and zero-day attacks in IoT networks. The framework comprises a feature extraction
component (FEC) and an online detection component (ODC). These components perform
feature extraction and anomaly detection, respectively. Lee et al. [20] employed edge
computing with a deep autoencoder model to detect impersonation attacks. The model
uses feature abstraction and iterative gradient-based optimization to update its parameters.
The authors evaluated the model with the AWID dataset. AWID contains simulated real-
world wireless network data with novel attack types, making it well-suited for evaluating
IoT intrusion detection systems. Experiments revealed that the model achieves 99.9%
accuracy and 99.9% detection rate. The unique wireless simulation environment and
incorporation of new impersonation attacks in AWID are critical for developing effective
detection models for modern IoT networks. However, the model requires a large amount
of training data to achieve high accuracy, which may not be feasible in some scenarios.

Using optimum thresholding, Dhole et al. [13] classified video events as anomalies or
benign data. The authors employed a convolutional LSTM autoencoder for the classification.
The model has two components: a spatial autoencoder and a temporal encoder-decoder.
The spatial autoencoder learns the structural patterns within each video frame, encoding
the spatial relationships. Reconstruction errors in the proposed model are reduced via
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backpropagation. Events are classified as benign when the reconstruction error is less than
the optimum threshold and anomaly when it is otherwise.

On the other hand, a framework for anomaly detection in industrial computer systems
(ICS) called KingFisher is presented by Bernieri et al. [21]. The framework uses a prob-
abilistic VAE (variational autoencoder) to track network traffic and real-time conditions
of physical devices at several network points. KingFisher analyzes single modules and
their correlated data to detect anomalies but requires no prior knowledge of the physical
model. In the training phase, the framework automatically learns the benign behavior of
the physical data.

In detecting anomalous network communications in IoT networks, Shahid et al. [15]
presented a sparse autoencoder for detecting anomalous network traffic in IoT systems.
The model aims to differentiate between legitimate and malicious communications. Bidi-
rectional TCP flows are extracted to characterize benign network behavior. Statistics on
packet sizes and inter-arrival times for the first N packets are calculated as input features.
The sparse autoencoders are trained on data from an experimental smart home network to
learn patterns of benign communications. Malicious flows for testing are obtained from
the IoTPOT honeypot infected with IoT malware. The model achieves attack detection
rates of 86.9% to 91.2% and low false positive rates from 0.1% to 0.5% on the test data.
Nonetheless, the approach may have difficulty detecting attacks using more sophisticated
evasion techniques resembling benign traffic patterns.

Similarly, Meidan et al. [22] presented an anomaly detection method called N-BaIoT
for detecting compromised IoT devices using deep autoencoders. The four-stage methodol-
ogy involves data collection, feature extraction, anomaly detector training, and continuous
monitoring. The autoencoders are trained on statistical features extracted from benign
network traffic. The model is applied to new data from an IoT device to identify anoma-
lies. The model captures raw traffic data by mirroring switch ports in an organization’s
network. The authors evaluated N-BaIoT by infecting nine commercial IoT devices in a
lab environment with Mirai and BASHLITE botnets. The model accurately detected the
attacks launched by the infected bots, achieving a 99.99% true positive rate and 0.0001%
false positive rate. In contrast, the approach may fail against advanced evasion attacks
designed to bypass anomaly detectors. It also requires significant computational resources
unsuitable for resource-constrained IoT devices.

Meanwhile, Wang et al. [23] developed a new anomaly detection approach called
S2-VAE for video data. It comprises two variational autoencoder models: stacked fully
connected VAE (SF-VAE) and skip convolutional VAE (SC-VAE). The SF-VAE is a shal-
low network that models the true data distribution as a Gaussian mixture. The SC-
VAE is a deeper generative model leveraging CNN, VAE, and skip connections to learn
video representations. The S2-VAE is evaluated on four public datasets: UCSD, Avenue,
UMN, and PETS. It is compared with Conv-AE and other state-of-the-art methods like
Sparse, MDT, SF, MPPCA, and MPPCA + SF. Experiments show improved performance by
S2-VAE in detecting local abnormalities in individual frames and global anomalies across
longer video sequences. Combining a simple distribution modeling network and a deeper
convolutional-VAE architecture enables robust video anomaly detection.

2.2. Anomaly Detection in Mobile Crowd Sensing

In [24], Mohammed et al. implemented a deep learning system that ensures target
localization in an error-prone environment. The three-phase approach comprises mean
reconstruction (MR), anomaly detection and correction (ADC), and convolutional denoising
autoencoder (CDAE). The model is validated in a radioactive setting using anomalous
sensor readings from randomly distributed nodes of interest. It achieves 5 times as much
accuracy, 50 times as much speed, and 3 times as much energy efficiency compared with
existing models. Notwithstanding, multi-sensor fusion is not explored for a full localization
framework. The approach focuses only on single-sensor data. Extending the model
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to integrate multimodal measurements could further enhance localization accuracy and
redundancy against individual sensor failures.

Hameed et al. [4] formulated an IOTA-based methodology using machine learning
algorithms to detect and prevent fake sensing activities in mobile crowd sensing. The
methodology involves two platforms: IOTA and Logit-boosted models. The Logit-boosted
models were applied to the IOTA bottleneck dataset and the new IoTA-Botnet 2020 dataset
to demonstrate the model’s performance in detecting fake sensing activities. Multiple
logit-boosted algorithms were used, including Logi-XGB, Logi-GBC, Logi-ABC, Logi-CBC,
Logi-LGBM, and Logi-HGBC. The authors used the IOTA bottleneck dataset to evaluate the
proposed model. Evaluations reveal that the Logi-CBC algorithm outperformed the other
algorithms regarding accuracy on the given dataset, achieving a detection accuracy of 99.8%.
The results suggest that the proposed methodology can be used for quality estimation and
incentive allocation in mobile crowdsensing systems. However, the potential limitations of
implementing the model in real-world mobile crowdsensing systems are not discussed.

On the other hand, Alharam et al. [25] evaluated classical machine learning models
for classifying sensor data as true readings, faulty sensor errors, or malicious attacks.
The algorithms examined included a decision tree (DT), support vector machine (SVM),
and random forest (RF). The authors emphasized the importance of data preprocessing
techniques, like data cleaning, feature selection, and normalization, to improve model
generalization. The preprocessed data are used to train the classifiers. Experiments are
conducted on a solar radiation dataset from a 200 m × 200 m area with 121 uniformly
distributed sensors. Among the evaluated models, random forest achieves the highest
accuracy of 97.9% on this dataset. However, deep learning techniques were not explored
by the authors. Testing more advanced deep neural networks could potentially improve
the reported results.

A hybrid approach combining deep learning and classical machine learning is in-
troduced for detecting and filtering out false data points in mobile crowdsensing (MCS)
systems by Afzal-Houshmand et al. [26]. The proposed approach is called FSD (forecasting-
based sensor data filtering). The authors use real and simulated datasets to evaluate the
performance of the proposed solution under various attack scenarios. The real dataset
is collected from a mobile sensing platform called SensingBus, which is a mobile sensing
platform that collects data from various sensors on mobile devices. The simulated dataset
is generated using the same statistical properties as the real dataset. The evaluation met-
ric used is F-Measure, which considers true/false positive rates and recall and precision
metrics. Analysis indicates that the solution outperforms existing resilient aggregation and
outlier detection schemes.

Similarly, Munoz-Organero et al. [27] presented a model for automatically detecting
street elements such as traffic lights, street crossings, and roundabouts using GPS data
from a mobile device while driving. The methodology involves preprocessing GPS data to
derive speed and acceleration–time series, an outlier detection algorithm to identify normal
driving locations, and deep learning-based analysis of speed and acceleration patterns at
each outlier to extract relevant features. Features are classified into traffic lights, street
crossings, and urban roundabouts. The model achieved a combined recall of 89% and a
combined precision of 88% for classifying elements belonging to any of the three target
classes in the first dataset. For the second dataset, the model achieved a combined recall
and precision of 82%. The proposed model uses an automatic feature extraction mechanism
based on a DBN (deep belief network) and a final classifier based on KNN and SVM.

Venkatesh et al. [28] presented a machine learning framework aimed at detecting
malware and classifying data theft in smartphones using Android usage data collected
via the SherLock framework. The architecture employs supervised tree-based models like
Extra Trees, random forests, decision trees, and XGBoost for malware detection, along with
an isolation forest for anomaly detection. Performance evaluation involves metrics like
accuracy for malware detection and F1 score for data theft classification. Data preprocessing
techniques are utilized to condense the feature set, ensuring model robustness across
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multiple users and diminishing training data. The architecture can classify the type of
data being stolen with 83% certainty. However, the study overlooks a detailed analysis
of the preprocessing methods used. Also, concerns arise regarding the effectiveness of
unsupervised methods in detecting malicious activity due to observed overlaps in density
distributions of crucial features.

Similarly, Memon et al. [29] explored Android malware detection using seven distinct
machine learning classifiers, including gradient-boosted trees, modified SVM kernels,
logistic regression, Bayes Net, and naive Bayes. Their study employed the SherLock
dataset, renowned for its size and comprehensiveness. Experiments were conducted on
a 17-node Apache Spark cluster, where gradient-boosted trees exhibited the lowest false
positive rate (9.2%) and superior precision across benign and malicious labels. Notably,
tree-based methods outperformed others in F1 score with an 81.0% accuracy, while SVM
showed subpar performance. However, the accuracy recorded by the authors is low, which
is mostly because of the shallow machine learning algorithms employed.

In [30], Zheng et al. identified optimal feature sets and methods for mobile app mal-
ware detection and prediction of app type and running state. Random forest emerges as
the top-performing method for both app classification and malware detection with a 91%
accuracy, closely followed by ANN and LSTM. LSTM excels with block statistics as features
but lags in malware detection, suggesting limited sequential patterns in running states.
Temporal features enhance classification performance, with block-based usage statistics be-
ing the most effective. Multi-label classification methods, accounting for label correlations,
yield marginal improvements. The study utilizes the SherLock dataset, capturing ongoing
attacks within low-privileged monitorable features. However, the focus on usage behaviors
and temporal patterns for prediction overlooks other potential contributors to malware
detection. While evaluating various classification techniques, the paper lacks comparisons
with existing benchmarks, hindering the assessment of its competitiveness.

Existing studies have proposed various models for detecting malicious activities in
MCS, primarily employing shallow machine learning algorithms [24–29]. The authors
of [30] utilized a long short-term memory (LSTM) for malware detection in Android
applications. However, these prior works have not addressed the challenge of identifying
potential malicious data when sensors such as accelerometers, gyroscopes, and magnetic
fields are leveraged in mobile crowdsensing (MCS) activities.

Furthermore, the literature lacks an adaptive model capable of recognizing evolving
patterns and detecting novel malicious data in the context of MCS. This gap is significant
as MCS systems rely on the collective contribution of data from numerous mobile devices,
making them susceptible to adversarial attacks or data poisoning attempts that could
compromise the integrity and reliability of the collected information.

Addressing this gap, our paper proposes an adaptive model based on temporal convo-
lutional neural networks (TCNs) for detecting malicious data in MCS scenarios involving
sensor data from mobile devices. The proposed TCN-based model aims to address the
limitations of existing approaches by providing an adaptive and robust framework that
can identify and mitigate potential threats in real time, ensuring the trustworthiness and
security of MCS systems. Table 1 summarizes the anomaly detection system reviewed in
this section.

Table 1. Summary of detection techniques used in existing anomaly data detection models.

Authors Techniques Dataset Application Domain

Aloul et al. [14] AAE NSL-KDD IoT
Shahid et al. [15] Sparse AE IoTPOT IoT
Khanam et al. [16] CFLVAE NSL-KDD IoT
Yang et al. [19] AE UNB 2017/MAWI IoT
Lee et al. [20] DAE AWID IoT
Mohammed et al. [24] CDAE AoI Readings MCS
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Table 1. Cont.

Authors Techniques Dataset Application Domain

Alharam et al. [25] DT/SVM/RF Solar Radiation MCS
Afzal-Houshmand et al. [26] LSTM/SVM SensingBus MCS
Munoz-Organero et al. [27] DBN/KNN/SVM GPS Data MCS
Venkatesh et al. [28] Random Forest/DT/XGBoost SherLock Dataset MCS
Memon et al. [29] SVM/LR/Naïve Bayes SherLock Dataset MCS
Zheng et al. [30] Random Forest/ANN/LSTM SherLock Dataset MCS
Our Proposed Model ATCN-AE SherLock Dataset MCS

3. Methods

In this paper, we perform malicious data detection on mobile crowdsensing activities
while adaptively learning the sensor data from smartphones. The following steps are
involved in the proposed approach, as shown in Figure 1.

Sensors 2024, 24, 2353 8 of 24 
 

 

trustworthiness and security of MCS systems. Table 1 summarizes the anomaly detection 
system reviewed in this section. 

Table 1. Summary of detection techniques used in existing anomaly data detection models. 

Authors Techniques Dataset Application 
Domain 

Aloul et al. [14] AAE NSL-KDD IoT 
Shahid et al. [15] Sparse AE IoTPOT IoT 
Khanam et al. [16] CFLVAE NSL-KDD IoT 
Yang et al. [19] AE UNB 2017/MAWI IoT 
Lee et al. [20] DAE AWID IoT 
Mohammed et al. [24] CDAE AoI Readings MCS 
Alharam et al. [25] DT/SVM/RF Solar Radiation MCS 
Afzal-Houshmand et al. 
[26] LSTM/SVM SensingBus MCS 

Munoz-Organero et al. 
[27] DBN/KNN/SVM GPS Data MCS 

Venkatesh et al. [28] Random Forest/DT/XGBoost SherLock Dataset MCS 
Memon et al. [29] SVM/LR/Naïve Bayes SherLock Dataset MCS 
Zheng et al. [30] Random Forest/ANN/LSTM SherLock Dataset MCS 
Our Proposed Model ATCN-AE SherLock Dataset MCS 

3. Methods 
In this paper, we perform malicious data detection on mobile crowdsensing activities 

while adaptively learning the sensor data from smartphones. The following steps are 
involved in the proposed approach, as shown in Figure 1. 

 
Figure 1. The flowchart of the proposed adaptive temporal convolutional network autoencoder
(ATCN-AE).

3.1. Dataset

The SherLock dataset [31] was utilized to validate our proposed model, offering a
vast repository of over 10 billion records, totaling six terabytes of data, accumulated from
50 volunteers across several years. This dataset, sourced from Samsung Galaxy S5 smart-
phones, encompasses time series data from various sensors alongside contextual details
like device location, motion, and battery usage. Notably, data collection encompassed
benign and malicious operations of the “Moriarty” application, with the latter involving
time-stamped attack activities, thus furnishing labeled malicious samples alongside benign
data. This controlled environment allows for the systematic recording and analysis of
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malicious behaviors, enhancing the dataset’s utility for understanding such activities in
Android smartphones.

This enriched dataset facilitated the development of models adept at identifying
anomalous behaviors rooted in sensor patterns and contextual cues. Conversely, benign
operations contributed to the dataset with benign data. The dataset shows diversity in
both sensing device models and the types of data recorded. It includes resource utilization
snapshots per running app, captured at high resolutions, as well as other smartphone usage
aspects such as call logs, SMS, Wi-Fi, and location data.

Moreover, the dataset’s utility extends to various applications, including basic malware
analysis and continuous user authentication method evaluation. With readings from
seven PUSH sensors and five PULL sensors, our focus was on utilizing the T2 PUSH sensor
data for model evaluation. As shown in Table 2, this subset, containing an accelerometer,
gyroscope, magnetic field, rotation vector, and barometer sensors, along with metadata
like uuid, userid, version, and timestamp, comprised 238 sensor features across thousands
of records. For our experiments, the initial 1325 records were utilized for model training
and evaluation.

Table 2. Selected files for use.

File Name Sensors Description

T2

• Accelerometer
• Gyroscope
• Magnetic Field
• Orientation
• Rotation Vector
• Barometer

• Samples collected for 4 s at 200 Hz
• Mean, median, and variance for each

respective axis
• Covariance between axis, middle sample
• FFT components and their statistics
• An extracted subset features from

orientation, rotation, and barometer sensors

Moriarty

• The sampling occurs at the moment when
the Moriarty malicious agent documents
the clue.

• This includes the type of action and
behavior, distinguishing between malicious
and benign actions.

Combining information from both Moriarty and T2 datasets, labeled data points were
generated, specifically those including T2 instances from Moriarty application sessions
featuring both benign and malicious data. This combined dataset was then integrated into
the data frame using user, start and end timestamps, and session identifiers, providing
comprehensive insights into each T2 record explaining the specific actions or sessions
conducted by Moriarty during data observations.

3.2. Preprocessing

Prior to training our proposed model, we conducted data preprocessing to eliminate
noisy or irrelevant data points, a common practice in deep learning workflows to enhance
model performance. The autoencoder framework, comprising encoder and decoder com-
ponents, was employed for dimensionality reduction and feature selection. Specifically,
the encoder compressed the high-dimensional input data into a lower-dimensional latent
representation. The size of the latent space, often referred to as the bottleneck layer in
autoencoders, dictates the extent of dimensionality reduction achieved. Our proposed au-
toencoder retains only the most pertinent features or combinations of features. By reducing
the dimensionality of the latent space, the autoencoder effectively sifts through the input
data, discarding noisy or irrelevant features while preserving those that contribute most
significantly to the underlying data structure. Following this process, the selected features
consist of data from the accelerometer, gyroscope, and magnetic field sensors.
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Continuing with our preprocessing approach, we took steps to ensure that the selected
features were on a consistent scale. This process was conducted to improve the convergence
and effectiveness of the model during training. To achieve this, we employed Min-Max
normalization, which scales the data to a predefined range of 0 to 1. The Min-Max equation
is depicted in Equation (1).

X_normalised =
X− X_min

X_max−X_min
(1)

where X is the original feature value, X_min is the minimum value of the feature. The
feature values are transformed to a range of 0 and 1 by subtracting the minimum value and
dividing by the range.

We ensured that the optimal range of data values was picked to represent benign data
by randomly selecting the training and testing data. After that, the first 40,000 data entries
on the shuffled benign data were concatenated with the malicious to create the training and
testing dataset. The timestamp of each data is used to sort the dataset. We employed the
percentage split method to evaluate the performance of the proposed model. The dataset
was partitioned into two subsets: 80% of the data was allocated to the training set, while
the remaining 20% constituted the test set. The model was trained on the training dataset,
and its performance was subsequently evaluated on the unseen sensor data from the test
set. This approach enabled us to obtain an estimate of the model’s generalization capability
on previously unseen data samples. The percentage split method was selected for its
computational efficiency as it required training the proposed model only once, thereby
reducing the overall computational overhead.

While the percentage split method is subject to potential bias introduced by a single
train-test split, it was deemed appropriate for the proposed model due to the substantial
size of the T2 file containing the data from the selected features (accelerometer, gyroscope,
and magnetic field sensors) in the SherLock dataset.

3.3. The Proposed Model

In this section, we delve into the details of our model, offering insights into the algo-
rithm of the proposed ATCN-AE model, its architecture, and the constituent components
that comprise it.

3.3.1. Preliminaries

The notation and the associated description used in the ATCN-AE are given in Table 3.
It provides a comprehensive overview of the symbols and their meanings. The autoencoder
is trained to reconstruct the input pattern at the output stage of the network. The ATCN-AE
accepts input X ∈ Zd and initially maps it to the hidden layer h = fΘ = σ(WX + b) with
the parameters Θ = {W, b}. A reverse mapping of f : y = fΘ(h) = σ

(
Wh + b

)
with

Θ′ =
{

W, b′
}

is employed for input reconstruction. The parameters define the encoder W,
learned from the hidden layer to the output layer. The relationship between the decoder
and the parameters in the encoder can be represented by W = WT [32]. The ATCN-AE
employs the backpropagation algorithm to minimize the reconstruction error e between
each input xt and its associated output yi by altering the parameters of the encoder W and
the decoder, W, as presented in Equation (2).

e(X, y) =
1

2N

N

∑
i

t‖Xi − yi‖2
2 (2)



Sensors 2024, 24, 2353 11 of 23

Table 3. Proposed adaptive temporal convolutional network autoencoder (ATCN-AE) notations.

Notations Description

X Input data
h Hidden layer output
f Mapping function

W Weights matrix
b Biases vector
Θ Parameters {W, b}
σ Activation function
y Reconstructed output

W ′ Decoder weights matrix
b′ Decoder biases vector
e Reconstruction error
t Input data sample
i Output data sample
N Number of samples
L Overall loss function
Lr Reconstruction loss
Lp Prediction loss
st Input vector at time t

MSE Mean squared error

Let S =
(
s1, s2, ..., sn)T =

(
s1, s2, ..., st) ∈ Rn×t, represent a multivariate time series

dataset and n features where t denotes the timestamp of each value. We use
st =

(
s1, s2, ..., st) ∈ Rn×t to represent an input vector at a time t in MCS; the input

series is multivariate and has several features at each time step. Hence, the proposed model
pre-processes the input data as a three-dimensional tensor with multi-channels. The MSE of
the entire time length is calculated using the loss function L. Meanwhile, the reconstruction
loss is denoted by Lr and the prediction loss Lp. The proposed autoencoder model aims to
minimize the sum of both losses: Ls = Lr + Lp. The pseudo-code for our adaptive temporal
convolutional network autoencoder is shown in Algorithm 1.

Algorithm 1: Adaptive Temporal Convolutional Network Autoencoder (ATCN-AE)

Input: X = model, dataset, labels
Output: Malicious sensor data

1. hidden_layers(h) = st = Θ = {W, b}
2. reconstructed_output(y) = h = Θ′ = {W ′, b′}
3. W ′ = WT = reconstructed_output(y)
4. sensor_data_mse = mse.get_sensor _data(W ′ = WT)
5. for each i in range (X, y) do
6. Θ = sensor_data_mse[malicious_sensor_data_mse.len()− i]
7. predicted_labels = get_labels(mse, sensor_data)
8. st = get_st(labels, predicted_labels)
9. if malicious_sensor_data < st then

10. malicious_sensor_data = sensor_data
11. endif
12. end for
13. return malicious_sensor_data

3.3.2. The Proposed ATCN-AE Architecture

The proposed ATCN-AE comprises four components: the input, the preprocessing,
the detection, and the output components, as displayed in Figure 2. The input component
of the model architecture consists of data from the accelerometer, gyroscope, magnetic field
sensors, and the Moriarty application, which is passed to the preprocessing component of
the ATCN-AE architecture.
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The proposed ATCN-AE model requires a labeled training dataset containing samples
of both benign and malicious sensor data to learn effective detection capabilities. The
malicious labels used during training can include known malicious activities like data
integrity breaches or exploitation attempts. While the model is trained on recognized
malicious activities, at test time, it can detect novel, unseen malicious operations that share
similar underlying patterns with the malicious data seen during training. The embedding
space learned by the autoencoder architecture allows for identifying anomalies that diverge
from a benign population behavior. The target labels (0 for benign data and 1 for mali-
cious data) were transformed into two-dimensional shapes of convolutional layers with
two pooling layers for the encoder.

The detection component comprises the temporal convolutional layers, fully con-
nected layers, pooling layers, convolutional layers, and upsampling layers. The temporal
convolutional layers are part of the temporal convolutional network (TCN) component.
They consist of dilated convolutional layers, which allow the network to capture temporal
dependencies over a wide range of contexts. Dilated convolutions enable the model to
learn relationships between sensor data points that are far apart in the sequence. The fully
connected layers are used in both the encoder and decoder components of the autoencoder.
These layers connect every neuron in one layer to every neuron in the next layer. In the
encoder, fully connected layers are involved in compressing the input data into a latent
space representation. The pooling layers are also part of the encoder component. They
are used to downsample the feature maps generated by convolutional layers, reducing
their spatial dimensions while retaining important features. In our architecture, they are
employed before the fully connected layers to reduce dimensionality further.

On the other hand, the convolutional layers are used in both the encoder and decoder
components. These layers apply convolution operations to input data, extracting features
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through filters or kernels. In the encoder, the convolutional layers contribute to feature
extraction, while the decoder aids in reconstructing the original input data. The weights and
biases of the convolutional layers of the proposed model were initialized. Then, the Adam
optimization algorithm was set before the learning rate was defined as the hyperparameter.
The input sequences were fed into the model, and the loss between the reconstructed output
and the original input was computed. The Adam algorithm was used to backpropagate
the gradients through the model before updating the model parameters. This process was
repeated for 100 epochs to achieve convergence. Since the mean square error is calculated
using benign data, it represents the error of the model. To this end, we set the maximum
MSE as the threshold of the proposed autoencoder model.

To further enhance the performance of the ATCN-AE model, fine-tuning techniques
were applied by adjusting the learning rate to optimize its performance on the specific
task of malicious data detection in mobile crowd sensing. The aim was to improve the
generalization capability of the ATCN-AE model. After training the model, we evaluated
its performance on the test dataset by inputting the testing sequences into the trained
model and computing the reconstructed output. We then calculated the loss between the
reconstructed output and the original input sequences. The performance of the model was
analyzed using evaluation metrics such as accuracy, precision, recall, and F1 score to see
how well it detects malicious sensor data.

Meanwhile, the decoder component reconstructed the original input data from the
compressed representation and progressively upsampled it to generate a reconstructed
output. The decoder comprises a series of upsampling and two-dimensional deconvolu-
tional layers, which receive outputs from the convolutional layers and pooling layers. The
decoder output approximates the initial input fed into the encoder, forming a complete
autoencoder system. Specifically, the upsampling layers are employed in the decoder to
increase the spatial dimensions of the feature maps, effectively reconstructing the origi-
nal input data from the compressed representation. These layers help restore the spatial
information lost during the encoding process.

The proposed architecture incorporates adaptive learning mechanisms to adapt to the
dynamic nature of the mobile crowdsensing environment. The adaptive learning feature
helps improve the robustness of the model and ensures its effectiveness in detecting novel
forms of malicious data in MCS. Furthermore, the TCN component captures temporal
patterns and dependencies in the input data. It consists of two layers of temporal convo-
lutional blocks. Each block typically includes a dilated convolutional layer, which allows
the network to capture information from a wide range of temporal contexts. The dilated
convolutions enable the model to learn dependencies between sensor data points far apart
in the sequence. The TCN architecture is designed to extract relevant features from the
input data, which the autoencoder component will further utilize. The output from the
TCN is then passed through the encoder component, which captures the most important
features of the input sequence in the sensor data while reducing its dimensionality.

The output component of the proposed ATCN-AE architecture consists of the sigmoid
function. The sigmoid function breaks the input value between 0 and 1, mapping it to a
probability-like output. It is employed in the formulated ATCN-AE model because of its
effectiveness in binary classification where the goal is to assign an input instance to one of
two classes (such as benign or malicious data). The output of the sigmoid function can be
interpreted as the probability of the input belonging to the positive class (class 1—malicious
data). A value closer to 1 indicates a higher probability of the input being classified as
malicious data, while a value closer to 0 suggests a higher probability of the input being
classified as benign data. To perform the binary classification, the ATCN-AE model employs
a threshold value set at 0.5. If the output of the sigmoid function is greater than or equal
to 0.5, the input is classified as belonging to the positive class (class 1—malicious data).
Conversely, if the output is less than 0.5, the input is classified as belonging to the negative
class (class 0—benign data).
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By incorporating the sigmoid function in the output component of the ATCN-AE
architecture, the model effectively maps the high-dimensional sensor data input to a
probability-like output, enabling the binary classification of the data as either benign or
malicious. This approach leverages the strengths of the sigmoid function in handling
binary classification tasks, making it a suitable choice for the proposed model’s objective
of detecting malicious data in mobile crowdsensing scenarios involving sensor data from
mobile devices.

The model was developed and tested using Google Colab because of its flexible cloud-
based environment. Implementation was performed in Python 3.11, leveraging the Keras
deep learning library for its coding simplicity compared with TensorFlow. The training
and evaluation were performed on an Intel Core i7 CPU (Intel, Santa Clara, CA, USA) with
NVIDIA GeForce 940MX GPU (NVIDIA, Santa Clara, CA, USA) support, 16 GB RAM, and
a Windows 10 64-bit operating system (Microsoft, Redmond, WA, USA). This computing
configuration enabled efficient exploration and analysis of different model architectures
and hyperparameters. The collaborative nature of the notebooks and the availability of
GPUs allowed for rapid prototyping and experimentation. Overall, Google Colab provided
an effective platform for implementing, iterating, and evaluating the proposed model.

4. Results and Discussion

In this section, we delve into the results obtained from our experiments and provide
a comprehensive discussion of their implications. We analyze the performance of our
proposed model, the adaptive temporal convolutional network autoencoder (ATCN-AE), in
comparison with baseline methods. Through an in-depth examination of the findings, we
aim to elucidate the strengths, weaknesses, and potential avenues for further improvement
of our approach to detecting malicious data within mobile crowdsensing environments. We
also present a comparative analysis of our experiment’s results against baseline approaches,
serving as benchmarks to assess the efficacy of our model.

4.1. Performance Evaluation

The performance of the proposed ATCN-AE model is evaluated using a range of
evaluation metrics, including accuracy, precision, recall, F1 score, and the area under the
receiver operating characteristic curve (AUC-ROC). These metrics comprehensively assess
how accurately the model classifies benign and malicious data instances. Table 4 presents
the confusion matrix from the ATCN-AE.

Table 4. Confusion matrix from the adaptive temporal convolutional network autoencoder
(ATCN-AE).

Predicted Class

Benign (0) Malicious (1)

True class
Benign (0) 1103 (TN) 6 (FP)
Malicious (1) 16 (FN) 200 (TP)

From Table 4, the number of true positives represents the correctly classified malicious
instances. In this case, the model correctly predicted 200 instances as malicious. False
positives occur when the model predicts an instance as malicious when it is benign. In the
confusion matrix, 16 instances are wrongly classified as malicious. False negatives arise
when the model incorrectly classifies a malicious instance as benign. Here, six instances
are falsely classified as benign. True negatives represent the instances that are correctly
classified as benign. The model correctly predicted 1103 instances as benign. Furthermore,
the evaluation of the proposed ATCN-AE using metrics including accuracy, precision,
recall, F1 score, and the sample averages is shown in Table 5 and visualized in Figure 3.
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Table 5. Evaluation metrics of the adaptive temporal convolutional network autoencoder (ATCN-AE).

Accuracy Precision Recall F1 Score

Prediction 0.98 0.92 0.97 0.94
Micro Average 0.96 0.96 0.96 0.96
Macro Average 0.95 0.95 0.93 0.97
Weighted Average 0.96 0.96 0.96 0.96
Sample Average 0.96 0.96 0.96 0.96
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The accuracy of the model is calculated by dividing the sum of true positives and true
negatives by the total number of instances, as presented in Equation (3).

Accuracy =
TN + TP

TN + FP + TP + FN
(3)

For this model, the accuracy is calculated as (1103 + 200)/(1103 + 6 + 200 + 16), re-
sulting in an accuracy of 98%, which indicates that the model accurately classifies 98.4%
of the instances in the dataset. This relatively high accuracy shows that the model distin-
guishes between benign and malicious data well. Precision measures the proportion of
correctly identified malicious data out of all instances predicted as malicious, given by
Equation (4).

Precision =
TP

TP + FP
(4)

The precision is calculated as 200/(200 + 16), resulting in a precision of approximately
92%. This evaluation means that out of all instances predicted as malicious, around 92%
are truly malicious. Recall, also known as sensitivity or true positive rate, measures the
proportion of correctly identified malicious data out of all true malicious instances using
Equation (5).

Recall =
TP

TP + FN
(5)
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The recall is calculated as 200/(200 + 6), resulting in approximately 97%, meaning
the model captures 97% of the true malicious instances. F1 score, on the other hand, is the
harmonic mean of precision and recall, providing a balanced measure of the performance
of the model. It is calculated using Equation (6).

F1-Score = 2× Precision× Recall
Precision + Recall

(6)

Using the calculated precision and recall values, the F1 score is approximately 94%.
Micro, macro, weighted, and sample averages summarize the performance of the model
across all classes. The micro average considers the total true positives, false positives, and
false negatives of all the classes. The macro average calculates the average performance for
each class without considering class imbalance. The weighted average considers the class
distribution in the dataset, providing higher weightage to classes with more instances. The
sample average is a simple average of the metrics for each class.

The micro average, accuracy, precision, recall, and F1 score are all 0.96, which indicates
consistent performance across all classes. The macro average accuracy is 0.95, indicating
good overall performance. However, the macro average recall is 0.93, slightly lower than
the macro average precision of 0.95, indicating a potential imbalance in class performance.
The weighted and sample averages are similar to the micro average, reflecting the balanced
performance of the model.

Overall, the results indicate high accuracy and precision in detecting benign and
malicious data. However, there is room for improvement in the precision and F1 score,
suggesting that the model may benefit from further refinement to enhance its ability to
capture all instances of malicious data. We further evaluate the prediction of the proposed
ATCN-AE model based on the test loss, test mean absolute error, FPR, and TPR, as displayed
in Table 6.

Table 6. Evaluation metrics of the adaptive temporal convolutional network autoencoder (ATCN-AE).

Prediction Score

Test loss 0.171
Test MAE 0.960
FPR 0.013
TPR 0.873

The test loss value of 0.171 indicates the average discrepancy between the model
predictions and the true labels on the test dataset. The low test loss shows that predictions
made by the model are closer to the ground truth labels, indicating better performance
in capturing the patterns and features of the data. Meanwhile, the test MAE value of
0.96 represents the average absolute difference between the predictions on the test dataset
and the true values. It measures the magnitude of the errors made by the ATCN-AE
model in predicting malicious data. Within this evaluation, the low MAE indicates that the
predictions made by the model are, on average, closer to the true values, demonstrating
high accuracy in predicting malicious data.

Furthermore, the false positive rate is a performance metric that measures the pro-
portion of incorrectly classified benign data out of all true benign data instances. For the
ATCN-AE model, the FPR value of 0.013 indicates that only 1.3% of the true benign data
are incorrectly classified as malicious by the ATCN-AE model. The low FPR is desirable as
it signifies that the model effectively identifies benign data and minimizes false positives.
On the other hand, the true positive rate quantifies the proportion of correctly identified
malicious data out of all true malicious instances. Here, the TPR value of 0.873 indicates
that the model correctly identifies 87.3% of malicious data. The higher TPR highlights that
the model is effective, which, in the context of malicious data detection, can identify a
significant portion of the true malicious data instances.
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Another significant parameter of the ATCN-AE model is the reconstruction error.
The threshold determines the sensitivity of the model to malicious data detection. Our
experiment observed that the larger the threshold margin, the more malicious samples are
misclassified as benign samples. Consequently, this decreases FPR and increases FNR. In
contrast, a smaller threshold increases FPR and decreases FNR. Since we require the model
to have a low false alarm, we set a significant threshold of 0.5 and obtained an FPR of 0.013.

The receiver operating characteristic (ROC) curve and the corresponding area under
the curve (AUC) value of 0.97 provide a comprehensive assessment of the model’s ability to
discriminate between benign and malicious data instances, as shown in Figure 4. The high
AUC score demonstrates the model’s excellent discriminative power, further validating its
effectiveness in the malicious data detection task.
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Figure 5 depicts the loss and accuracy curves of the proposed model. As Figure 5
illustrates, the model learns and improves its performance; the loss decreases while the
accuracy increases. This relationship between the loss and accuracy of the ATCN-AE model
is a function of the training and validation process. We monitor the performance of the
model using loss and accuracy on the validation dataset, which is calculated at the end of
each training epoch. We trained the model with 100 epochs and obtained a decreasing loss
and increasing accuracy before convergence during the training.
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training and testing datasets as the number of epochs increases. The validation loss on
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the training data shows consistent improvement while maintaining similar trends on the
validation data, suggesting that the model is not overfitting and can generalize well to
unseen sensor data. The low validation loss of 0.2 as the model converges at 100 epochs
denotes a better performance, showing that the predictions by the model are closer to
the true class. Meanwhile, the validation accuracy represents the percentage of correctly
predicted instances in the validation dataset. It measures the classification performance
of the model on unseen data. The high validation accuracy between 96.4% and 96.8%
demonstrates that the model performs well and makes more accurate predictions even
with fewer epochs.
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the training and testing dataset.

The result in Figure 7 illustrates the predictions made by the proposed adaptive tem-
poral convolutional network autoencoder (ATCN-AE) model on a dataset of mobile sensor
data instances. The data points are classified as either “Normal” (benign) or “Malicious”
based on the model’s output. The majority of the data points, represented by green markers,
form a dense cluster near the bottom of the plot, indicating that the ATCN-AE model has
classified these instances as benign sensor data conforming to expected patterns learned
during training. Conversely, several data points marked with red “x” symbols are scattered
at higher values along the y-axis, corresponding to instances identified as malicious by the
model due to their significant deviation from the learned patterns of normal sensor data.
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Figure 7. Malicious data detection by the proposed adaptive temporal convolutional network
autoencoder (ATCN-AE) model.

The clear separation between the two classes of data points in Figure 7 highlights
the effectiveness of the ATCN-AE model in distinguishing between benign and malicious
sensor data instances within the mobile crowdsensing environment. The data distribution
reveals that the ATCN-AE model achieves a high level of accuracy in detecting malicious
data instances while minimizing false positives and false negatives, as supported by
the results in Table 6. The dense clustering of normal data points indicates accurate
classification of benign sensor data, with only a few potential false negatives within the
normal cluster. Similarly, the well-separated malicious data points show the effective
identification of anomalous instances.

4.2. Comparison with State of the Art

To benchmark the proposed adaptive temporal convolutional network autoencoder
(ATCN-AE) against the existing literature, we compare its performance with several prior
studies on the task of detecting malicious data within IoT and mobile crowdsensing envi-
ronments. Specifically, our comparison focuses on similar autoencoder models and models
that employ the SherLock dataset. Results presented in Table 7 demonstrate that our
ATCN-AE model achieves approximately 98% accuracy in classifying benign and malicious
data. This result signifies a marked improvement over existing baseline models such as the
Sparse autoencoder (91.2%) [15], CFLVAE (88.1% accuracy) [16], and AE-D3F (82.0%) [19]
as visualized in Figure 8. Additionally, our proposed model surpasses the performance of
models utilizing the SherLock dataset, as evidenced by studies [28–30], achieving accuracies
of 82%, 83%, and 81%, respectively.
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Table 7. Comparison of the proposed ATCN-AE with existing detection models.

Detection Models Accuracy

Shahid et al. [15] 91.2%
Khanam et al. [16] 88.1%
Yang et al. [19] 82.0.%
Venkatesh et al. [28] 82.0%
Memon et al. [29] 83.0%
Zheng et al. [30] 81.0%
Proposed ATCN-AE 98.0%

Sensors 2024, 24, 2353 21 of 24 
 

 

Table 7. Comparison of the proposed ATCN-AE with existing detection models. 

Detection Models Accuracy 
Shahid et al. [15] 91.2% 
Khanam et al. [16] 88.1% 
Yang et al. [19] 82.0.% 
Venkatesh et al. [28] 82.0% 
Memon et al. [29] 83.0% 
Zheng et al. [30] 81.0% 
Proposed ATCN-AE 98.0% 

 
Figure 8. Comparison of the proposed ATCN-AE with existing detection models [15,16,19,28–30]. 

The comparative evaluation highlights the capabilities of our ATCN-AE model in 
learning effective representations to detect anomalous patterns in crowdsensed data. Our 
proposed model outperforms previous approaches, underlining the significance of 
explicitly modeling temporal dependencies and leveraging deep learning for enhanced 
security in mobile crowdsensing systems. 

Overall, the proposed adaptive temporal convolutional network autoencoder for 
malicious data detection model presents a promising solution to address the growing 
concern of detecting malicious data in mobile crowdsensing applications. By leveraging 
the temporal information, capturing relevant features with TCNs, compressing the data 
with autoencoders, and adapting to the dynamic nature of the environment, the proposed 
model aims to enhance the security and reliability of mobile crowdsensing systems. 

The experimental results and evaluation confirm the effectiveness and potential of 
our ATCN-AE model in detecting malicious data in mobile crowdsensing environments. 

The key novelty of the approach presented in this paper is the introduction of an 
adaptive temporal convolutional network autoencoder (ATCN-AE) model specifically 
designed for detecting malicious data in mobile crowdsensing (MCS) systems. The 
proposed model combines the strengths of temporal convolutional networks (TCNs) and 
autoencoders in a novel architecture to effectively capture and analyze temporal patterns 
in MCS data, enabling accurate identification of malicious activities. 

Existing anomaly detection methods, such as those reviewed in the paper, have 
limitations when applied to MCS systems. Many approaches do not explicitly model the 
temporal dependencies present in the sensor data collected by mobile devices, which can 

Figure 8. Comparison of the proposed ATCN-AE with existing detection models [15,16,19,28–30].

The comparative evaluation highlights the capabilities of our ATCN-AE model in
learning effective representations to detect anomalous patterns in crowdsensed data. Our
proposed model outperforms previous approaches, underlining the significance of explicitly
modeling temporal dependencies and leveraging deep learning for enhanced security in
mobile crowdsensing systems.

Overall, the proposed adaptive temporal convolutional network autoencoder for
malicious data detection model presents a promising solution to address the growing
concern of detecting malicious data in mobile crowdsensing applications. By leveraging
the temporal information, capturing relevant features with TCNs, compressing the data
with autoencoders, and adapting to the dynamic nature of the environment, the proposed
model aims to enhance the security and reliability of mobile crowdsensing systems.

The experimental results and evaluation confirm the effectiveness and potential of our
ATCN-AE model in detecting malicious data in mobile crowdsensing environments.

The key novelty of the approach presented in this paper is the introduction of an adap-
tive temporal convolutional network autoencoder (ATCN-AE) model specifically designed
for detecting malicious data in mobile crowdsensing (MCS) systems. The proposed model
combines the strengths of temporal convolutional networks (TCNs) and autoencoders in
a novel architecture to effectively capture and analyze temporal patterns in MCS data,
enabling accurate identification of malicious activities.

Existing anomaly detection methods, such as those reviewed in the paper, have
limitations when applied to MCS systems. Many approaches do not explicitly model the
temporal dependencies present in the sensor data collected by mobile devices, which can
be crucial for detecting malicious activities that may exhibit specific temporal patterns.
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Additionally, some methods are not adaptive and may struggle to keep up with the dynamic
nature of MCS environments where data characteristics and attack vectors can evolve
over time.

The proposed ATCN-AE incorporates an adaptive learning mechanism that enables
the model to continuously update its parameters and adapt to new patterns or emerging
malicious activities in the MCS environment. This adaptive nature enhances the model’s
robustness and ensures its effectiveness over time, even as the characteristics of malicious
data evolve. Unlike many existing anomaly detection models designed for general IoT
or network traffic scenarios, the ATCN-AE is tailored specifically for the MCS domain. It
is designed to handle the unique challenges of detecting malicious data in the context of
mobile crowd sensing where sensor data from numerous devices needs to be analyzed for
temporal patterns and anomalies.

The experimental results presented in the paper demonstrate the effectiveness of the
ATCN-AE model in detecting malicious data in an MCS scenario, achieving an accuracy of
98% and outperforming existing baseline models. The comparative analysis highlights the
significance of explicitly modeling temporal dependencies and leveraging deep learning
for enhanced security in mobile crowdsensing systems.

5. Conclusions and Future Work

Mobile crowd sensing (MCS) has become an effective paradigm for large-scale sensing
by engaging regular citizens. However, its open and distributed nature makes MCS sys-
tems highly susceptible to malicious data injection attacks that can severely compromise
reliability. Developing capabilities to detect such malicious data accurately is therefore
critical. This paper proposes a novel deep learning model called adaptive temporal convo-
lutional network autoencoder (ATCN-AE) designed for enhanced malicious data detection
in MCS-based systems. We introduce the hybridization of adaptive temporal convolutional
networks (TCN) and autoencoders to effectively identify malicious data from mobile sensor
data. The TCN component leverages dilated causal convolutions to capture long-range
patterns and dependencies in the sensor data. It allows for the identification of the dis-
criminative features indicating malicious activities. The autoencoder learns a compressed
representation of the output from the TCN and reconstructs the original input. By compar-
ing the reconstruction to the input, anomalies can be detected based on the error. Extensive
experiments on the real-world SherLock dataset reveal the effectiveness of ATCN-AE,
achieving 98% accuracy in classifying benign and malicious sensor data. Our comparative
analysis highlights better performance over existing detection models.

In future work, we aim to expand the evaluation across more diverse MCS datasets.
Additional temporal convolutional and autoencoder architectures can be explored to opti-
mize detection capabilities further. Advancing MCS security through deep learning is an
important research direction, and this paper makes promising strides. Robust crowdsensing
systems will enable smarter cities, enhanced infrastructure monitoring, and novel context-
aware services. While the proposed model focuses on detecting malicious data in mobile
crowdsensing systems, many other types of sensors could be used in these systems, such as
GPS, Wi-Fi, or Bluetooth. Future work could explore how to integrate these other types of
sensors into the model. Also, the proposed model was evaluated using a large-scale dataset;
it was not evaluated in a real-world setting. Future work could explore how to deploy the
model in a real-world mobile crowdsensing system and evaluate its performance in that
context. Last, the proposed model uses a combination of temporal convolutional blocks
and an autoencoder; many other types of autoencoder architectures could be explored. This
could include variational autoencoders (VAEs), generative adversarial networks (GANs),
or other types of neural networks.
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