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Abstract: Relative localization (RL) and circumnavigation is a highly challenging problem that is
crucial for the safe flight of multi-UAVs (multiple unmanned aerial vehicles). Most methods depend
on some external infrastructure for positioning. However, in some complex environments such
as forests, it is difficult to set up such infrastructures. In this paper, an approach to infrastructure-
free RL estimations of multi-UAVs is investigated for circumnavigating a slowly drifting UGV0
(unmanned ground vehicle 0), where UGV0 serves as the RL and circumnavigation target. Firstly, a
discrete-time direct RL estimator is proposed to ascertain the coordinates of each UAV relative to
the UGV0 based on intelligent sensing. Secondly, an RL fusion estimation method is proposed to
obtain the final estimate of UGV0. Thirdly, an integrated estimation control scheme is also proposed
for the application of the RL fusion estimation method to circumnavigation. The convergence and
the performance are analyzed. The simulation results validate the effectiveness of the proposed
algorithm for RL fusion estimations and of the integrated scheme.

Keywords: multi-UAVs;UGV0; RL; UWB sensor; airborne sensor; optical flow sensor; switching
topology; circumnavigation

1. Introduction

Multi-UAV RL and navigation not only play an increasingly crucial role in civil and
military fields [1,2], but have also achieved notable successes in commerce, agriculture,
and medical rescue [3–5]. Among them, UAV positioning technology [6] is a core element
ensuring its safe and efficient operation. By controlling the circumnavigation of UAVs
around a central point, the system [7] can achieve precise positioning and navigation in
complex environments. In the application of circumnavigation, a multi-UAV RL system [8]
must be capable of responding to changing environments and mission requirements in real
time. Achieving a good real-time performance may necessitate more complex algorithms
and hardware. Therefore, in the design and implementation of a multi-UAV RL system,
it is essential to comprehensively address the aforementioned shortcomings and identify
corresponding solutions to enhance the robustness and adaptability of the system.

The most common methods include external positioning systems, such as the Global
Positioning System (GPS) [9,10] and anchor-based ultra-wideband (UWB) positioning [11,12],
which have notably enhanced positioning accuracies. However, in specific environments,
such as urban canyons, indoors, or during severe weather conditions, satellite signals may
be obstructed or interfered with, thereby limiting the reliability and accuracy of traditional
Global Navigation Satellite Systems (GNSSs) [13,14] in these situations. Furthermore, the
deployment of an external positioning system can lead to complexities in maintenance and
updating. In particular, in systems necessitating long-term operation, the maintenance of
both hardware and software can pose challenges.
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To address these challenges, researchers are integrating other positioning technologies
into UAV systems, including vision sensors [15–17]. The integrated use of these technolo-
gies enables UAVs to operate in more intricate and demanding environments, accomplish-
ing tasks such as navigating through urban buildings or conducting search and rescue
operations in forests. While this approach eliminates the need for infrastructure, visual
localization often entails extensive image processing and computational tasks, demanding
high-performance hardware and sophisticated algorithms. This can pose challenges in
meeting real-time requirements, particularly on resource-constrained UAV platforms.

On the other hand, there are also examples of infrastructure-independent solutions,
but they may be inadequate in certain aspects. In [18], a method for RL using radar is
proposed. Radar is capable of providing high-precision distance measurements and is
very useful for precise RL. However, its equipment cost is high, and it is sensitive to
ambient light and transparent objects. Radio Frequency Identification (RFID) systems are
suitable for tag recognition at short distances and are applicable for indoor positioning [19].
However, for applications with large-range, high-precision RL requirements, the accuracy
of the RFID system may be low. In [20], an RL algorithm based on the fusion of relative
navigation sensors was proposed. It mainly involves combining information from different
sensors, such as inertial navigation systems and magnetometers, to improve the robustness
of RL. Nevertheless, the design and calibration of sensor fusion algorithms are relatively
complex and can be susceptible to sensor errors. In [21], an RL algorithm based on visual–
inertial navigation fusion was proposed. Combining visual and inertial navigation can
overcome the sensor switching problem when transitioning between indoors and outdoors,
providing more comprehensive RL information. However, covering large areas may require
additional devices to capture enough feature points. The main idea of [22] is to present a
weight matrix, simplifying the average consensus algorithm over mobile wireless sensor
networks and thereby prolonging the network lifetime as well as ensuring the proper
operation of the algorithm. However, the majority of wireless sensor networks discussed
in this article are depicted as undirected graphs, which may not adequately address the
complexities and fluctuations present in real-world environments.

More recently, a consensus-based leader–follower algorithm was developed in mobile
sensor networks, where the goal for the entire network is to converge to the state of the
leader [23]. However, this article does not address the positioning issue. A control strategy
for a quadrotor elliptical target orbit based on uncertain and non-periodic updates of angle
measurements was proposed in [24]. At the translational level, only orientation data are
utilized, without incorporating the target’s prior position and velocity information. A
position estimator is developed for locating unknown targets. However, the influence
of measurement noise is not addressed. In [25], a UAV group circumnavigation control
strategy is proposed, in which the UAV circumnavigation orbit is an ellipse whose size can
be adjusted arbitrarily. However, the article does not include any research on RL-related
aspects. Unlike the work in [26], earlier research focused on utilizing multiple agents to
localize targets under fixed topology assumptions. This paper addresses the challenge
of cooperative localization in a time-varying topology without an infrastructure, such as
anchor points.

In this paper, a directed graph model is employed to represent exchanged information.
As measurement failures may occur or a UAV could move beyond the sensing range
of its neighbors, the directed graph describing the information flow relationship is time-
varying. When a UAV strays beyond the operation area, it triggers a return-to-base protocol,
where the UAV autonomously navigates back to the designated area using predefined
waypoints or by following a path generated by the control system. To address the RL
problem in this scenario, a discrete-time RL direct estimation is proposed for each UAV. The
estimation of the relative position concerning its neighbors leverages distance and rate-of-
change measurements, the angle of arrival, and the velocities of both itself and its neighbor.
The displacements of neighbors during the intervals when distance and rate of change
measurements are lost are also taken into account. Moreover, an RL fusion estimation
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method is devised for each UAV. This fusion estimation involves fusing the relative position
estimates of the UAV concerning UGV0 and its neighbors. This approach enables UAVs
without direct distance or angle measurements to locate UGV0 with the assistance of
their neighbors. Subsequently, we apply the proposed RL fusion estimation algorithm to
circumnavigation. In contrast to [25], our system integrates RL fusion estimations with a
circumnavigation controller.

The primary contributions are outlined as follows:
(1) When the information flow graph between adjacent UAVs is unidirectional and

time-varying, this paper proposes a distributed state observer with state switching to
dynamically estimate the positions of UGV0. Only local measurements and limited infor-
mation exchanges between nearby UAVs are used to estimate the relative coordinates of a
group of UAVs concerning a single UGV0. The RL direct estimation error is bounded even
in the presence of measurement noise.

(2) To enhance the robustness of RL, consensus-based RL fusion estimation is proposed.
The boundedness of the RL fused estimation error is analyzed, and the experimental results
demonstrate the effectiveness of the proposed method. The proposed RL method enables
each UAV to continuously estimate its relative coordinates to UGV0, even in the absence of
any relative measurements concerning UGV0 or its neighbors.

(3) The effectiveness of the entire system was demonstrated through numerical simu-
lations of UAVs using RL fusion estimation for circumnavigation. The system integrates RL
into circumnavigation control through UWB ranging and communication networks. The
RL scheme proposed in this article applies not only to two-dimensional space but also to
three-dimensional space.

The remainder of this article is structured as follows: Section 2 presents the problem
formulation. Section 3 proposes an indirect RL method and consistency-based RL fusion
estimation. Section 4 discusses the use of RL fusion estimation for circumnavigation.
Section 5 conducts simulation experiments, and the article is summarized in Section 6.

2. Problem Formulation

This paper considers a network consisting of a single dynamic UGV and N UAVs,
labeled 0 and 1, 2, . . . , N, respectively. Define the position of each UAV as ψi. If j ∈ ζi, then
in the local coordinate system of UAVi, the relative position of j is ψij = ψj − ψi. Simul-
taneously, each UAV uses these relative estimates for circumnavigation. Let ζi represent
the neighbors of UAV or UGV0. When j ∈ ζi, UAVi can obtain the distance dij of UAVj.
Utilizing the obtained angle measurement information αij, UAVi can deduce the relative
position ψij under UAVj, as illustrated in Figure 1. Subsequently, leveraging the relative
position estimates of its neighbors, each UAV generates corresponding circumnavigation
control commands. During circumnavigation, the neighboring UAVj is effectively within
the sensing radius; i.e., dij is less than the sensing radius. Assuming a sampling period of
T, and denoting the sampling time as k, for simplicity, k is used to represent kT.

Assuming UAVs follow a standard particle model with UAV speeds denoted as vi, the
relationship between relative speed and position is given by ψij(k + 1) = ψij(k) + Tvij(k),
where vij(k) = vj(k) − vi(k) represents the relative speed of UAVj in the i coordinate
system. The angle measurement of neighbor j is denoted as αij(k), and this neighbor can
be the target UGV0. It is assumed that each UAVi has access to its own speed; distance,
represented by vij(k), dij(k); and angle measurement αij(k) in its own inertial frame. The
reference frame is denoted as Σi, i = {1, 2, . . . , N} and is the same as Σ0. This can be
achieved if the UAV is equipped with a compass. Furthermore, assume that each UAVi is
equipped with airborne sensors, allowing it to obtain the distance measurement α̇ij(k) and
change rate ḋij(k) of its neighbor UAVj, or the distance measurement α̇i0(k) and change rate
ḋi0(k) of UGV0. As shown in Figure 1, dij(k) = ψij(k) and ψ̇ij(k) = vij(k) can be obtained.
The goal is to develop an estimator so that each UAV can estimate its relative coordinate
ψi0(k) in UGV0’s frame Σ0. With these RL estimates and measurements of distance and
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orientation between UAVs, the next goal is to integrate RL into circumnavigation control.
Next, let us introduce graph theory.
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Figure 1. Local measurements and relative positions.

If each UAV is viewed as a node, their interrelationships can be represented by a
directed graph denoted as Γ = (u, E), where u = {1, 2, . . . , N} is the set of all nodes and u
corresponds to the set of N UAVs. If j ∈ ζi, then there is a corresponding arc (i, j) ∈ E in
the directed graph, and UAVi can measure the distance, angle, and its corresponding rate
of change. To study RL problems (e.g., estimating the position relative to UAVj), another
weighted directed graph ` = (uj, Ej, A) is also considered. Here, uj = {1, 2, . . . , N} is
the set of all nodes, Ej ⊆ uj × uj is the set of all arcs in the graph, A = [mij] ∈ RN×N

is the weighted adjacency matrix, and each element of the matrix is positive. Given
i ∈ uj, mii = 0, if there is an arc (i, j) in graph `, then mij > 0; otherwise, mij = 0. It is
worth noting that ` may be time-varying due to possible interruptions in the measurement.
Assume that the set Γ comprises all ordinary UAVs, referred to as the original set. UGV0 is
introduced as the source point to form a new set Γ = (u, E), known as the expanded set.
Here, u = {0} ∪ u, E = E0 ∪ E , where E0 denotes the edge set comprising UGV0 and its
surrounding neighbor UAVs. (i, j) ∈ E signifies that UAVi and UAVj can exchange speed
and data packets.

Define the Laplacian matrix of the weighted directed graph ` as L`, and the diagonal
matrix P = diag{p1, p2, . . . , pN} ∈ RN×N as the degree matrix of `, where the diagonal
element is pi = ∑j∈ζi

mij, i = {1, 2, . . . , N}. To investigate the RL problem, a system
comprising N UAVs and UGV0 is associated with another graph. The graph ` composed
of N UAVs is a subgraph of Γ̄. Let ζ̄i represent the set of neighbor nodes of node i in Γ̄,
which may include UGV0. If UAVi can obtain direct observation of the UGV0 distance
di0(k) or angle measurement αi0(k), then 0 ∈ ζ̄i; otherwise, 0 /∈ ζ̄i. Define a diagonal
matrix β ∈ RN×N as the target adjacency matrix associated with Γ̄, with diagonal element
si, i = {1, 2, . . . , N}. If UAVj is the neighbor of UAVi, and UAVi can directly obtain the
distance and angle measurement of UAVj, then si > 0; otherwise, si = 0. For Γ̄, if there
exists a pathway from UGV0 to UAVi, we consider UGV0 to be jointly reachable.

3. Cooperative RL Algorithm

In this section, we propose a distributed RL algorithm based on mixed measurements.
It addresses the challenge of estimating the relative coordinates of a UAV in the local
frame of its neighbors. Through this approach, if UGV0 is a neighbor of the UAV, the
UAV can acquire relative measurements of UGV0. Subsequently, the UAV can directly
estimate its coordinates in the local frame of UGV0, termed a direct estimate. Conversely,
if UGV0 is not a neighbor of the UAV, the UAV cannot utilize the relative measurements
between UGV0 and itself to estimate its coordinates concerning UGV0. In this scenario,
if the UAV can access the relative coordinates of its neighbors and the neighbors know
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the relative coordinates of UGV0, the UAV can deduce the relative coordinates of UGV0
through its neighbors. Nevertheless, multiple neighbors could potentially aid the UAV in
establishing the relative coordinates of UGV0 through this method. To avoid dependence
on unique neighbors, it is essential to combine multiple estimates. Furthermore, even with
the availability of direct estimation, combining indirect estimation can enhance accuracy
and expedite convergence. Hence, a consensus-based fusion estimation method is devised
for each UAV in the second part of this section to fuse both direct estimates and all accessible
indirect estimates.

3.1. RL Direct Estimation Relies on Persistent Excitation

As we all know, UAVs can experience measurement and communication losses due to
harsh environments or sensor failures. In this subsection, we assume that UAVi (i = 1, 2, . . . , N)
can communicate with UGV0 and has access to distance measurement di0(k) and the rate of
change ḋi0(k) in certain time intervals, in addition to angle measurement αi0(k) and α̇i0(k).
A direct estimator is designed to estimate the relative coordinates ψij(k) of UAVi in the
local frame of UAVj.

Due to unreliability in local relative measurements, assume that UAVi obtains measure-
ments relative to UAVj, dij(k) and ḋij(k), or angle measurements αij(k) and α̇ij(k) at time k ∈
[k0, k1) ∪ [k2, k3) ∪ · · · , with a measurement break at k ∈ [k0, k1) ∪ [k2, k3) ∪ · · · . An indica-
tor function, denoted as σij(k), is defined to represent the status. When σij(k) = 1, UAVi can
acquire local relative measurements dij(k) and ḋij(k) or angle measurement αij(k) and α̇ij(k);

otherwise, σij(k) = 0. As illustrated in Figure 2, σij(k) =
{

1, k ∈ [k2t, k2t+1),
0, k ∈ [k2t+1, k2t+2), t = 0, 1, · · · .

Taking the derivatives on both sides of d2
ij(k) =

∥∥ψij(k)
∥∥2, we can obtain dij(k)ḋij(k) =

vT
ij(k)ψij(k). Two unit vectors are constructed from the angle measurement information

αij(k): the unit vector Φij(k) =
[
cos αij(k) sin αij(k)

]T pointing from UAVi to UAVj, and

the vector Ψij(k) =
[
− sin αij(k) cos αij(k)

]T obtained by rotating it 90° counterclockwise.
Because vectors Φij(k) and ψij(k) have the same direction, and Φij(k) and Ψij(k) are per-
pendicular to each other, the constraint equation Ψij(k)Tψij(k) = 0 can be obtained. When
σij(k) = 1, UAVi can obtain the estimation algorithm of ψ̂ij(k) through information from
measurements and communication. Estimates can become inaccurate due to UAV motion,
as the sensors are subject to interference. Assume that the estimated value ψ̂ij(k) before the
interruption is initially employed. Once communication and measurement are restored,
that is, when σij(k) = 1, UAVi will correct the deviation caused by the estimated value in
the case of σij(k) = 0. Considering sensor noise, the RL direct estimation of UAVi in the
local coordinate system of UAVj at time k is estimated as follows:

ψ̂ij(k + 1) = ψ̂ij(k) + T(vij(k) + τ(k))
[
KΥ̂ij(k)− (vij(k) + τ(k))Tψ̂ij(k)

]
 Υ̂ij(k) =

(
dij(k) + σ(k)

)
(ḋij(k) + σ̇(k)) δ = 1

Υ̂ij(k) =
(vij(k)+τ(k))

2
cos(αij(k)+∆(k)) sin(αij(k)+∆(k))
(α̇ij(k)+∆̇(k))+θ̇ij

· δ = 0
k ∈ [k2t, k2t+1) (1)

ψ̂ij(k + 1) = ψ̂ij(k) k ∈ [k2t+1, k2t+2).

where τ(k), σ(k), σ̇(k), ∆(k), ∆̇(k) represent the measurement noise of vij(k), dij(k), ḋij(k),
αij(k), α̇ij(k) at time k, respectively. K is a tunable constant gain. ψ̂ij(k) represents the
coordinate of UAVi in the local coordinate system ΣM

j of UAVj. When δ = 1, it indicates
the distance measurement is normal, and when δ = 0, it indicates the angle measurement
is normal. It will be demonstrated later that the RL direct estimation error is bounded in
the presence of noise.
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Figure 2. Diagram illustrating the indicator function.

Let the estimation error of the above observer (1) be denoted as ψ̃ij(k) = ψ̂ij(k)−ψij(k),
and the dynamic equation of the estimation error is

ψ̃ij(k + 1) =

{
[I − T(vij(k) + τ(k))(vij(k) + τ(k))T]ψ̃ij(k) k ∈ [k2t, k2t+1)

ψ̃ij(k) + T(vij(k) + τ(k)) k ∈ [k2t+1, k2t+2)
. (2)

Let us begin by introducing the concept of persistent excitation [27] before moving on
to the discussion of the convergence of error system (2). There exists a positive integer m,
α1, α2 such that for any k ∈ Z+, there is

α1 I ≤
k+m

∑
f=k

(
vij(k) + τ(k)

)(
vij(k) + τ(k)

)TT ≤ α2 I, (3)

where T is the sampling period. Next, let us analyze the physical meaning of persistent ex-
citation. Assuming that the speed of each UAV is continuously differentiable and bounded,
the upper bound obviously holds. Therefore, the main focus is on (3), the lower bound.
Expanding Equation (3), we can obtain

k+m

∑
f=k

(
vij( f ) + τ( f )

)(
vij( f ) + τ( f )

)T
=

[
∑k+m

f=k
(
vijx( f ) + τ( f )

)2
∑k+m

f=k
(
vijx( f ) + τ( f )

)(
vijy( f ) + τ( f )

)
∑k+m

f=k
(
vijx( f ) + τ( f )

)(
vijy( f ) + τ( f )

)
∑k+m

f=k
(
vijy(k) + τ( f )

)2

].

The two components of vij(k) are represented as vijx(k) and vijy(k), which are linearly
independent of f ∈ {k, · · · , k + m}. According to the inequality of Cauchy–Bunyakovsky,
for any k ≥ 0, the following formula(

k+m

∑
f=k

(
vijx( f ) + τ( f )

)(
vijy( f ) + τ( f )

))2

≤
k+m

∑
f=k

(vijx( f ) + τ( f ))2
k+m

∑
f=k

(vijy( f ) + τ( f ))2

holds. Both sides of the above inequality are equal if and only if vijx( f ) and vijy( f ) are
linearly related.

Theorem 1. According to Equation (1), when persistent excitation (3) holds for UAVi and if the
sampling period T satisfies the given criterion

0 < T <
2(v + τ)

K2 (4)
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then the estimation error of system (2) is bounded. The upper bound vi of the error is determined
by a specific value v̄, ensuring that the error satisfies 0 < ‖vij‖ ≤ 2v̄, the specified condition. To
proceed, suppose there exists a constant τ > 0 such that ‖τ(k)‖ ≤ τ.

Proof. Firstly, consider the system related to (2):

ε(k + 1) = [I − TKσij(k)(vij(k) + τ(k))(vij(k) + τ(k))T]ψ̃ij(k). (5)

Construct the Lyapunov function V
(
ψ̃ij(k)

)
= ψ̃ij(k)ψ̃T

ij(k), and the difference in the Lya-
punov function within m time steps can be expressed as

∆Vm(k) = V
(
ψ̃ij(k + m)

)
−V

(
ψ̃ij(k)

)

=
k+m

∑
f=k

C(k)
(
(vij(k) + τ(k))Tψ̃ij(k)

)2
.

(6)

In addition, applying the induction method to system (5), the f -step RL direct estima-
tion error range ‖ψ̃ij( f )‖ ≤ ‖ψ̃ij(k)‖+ τ( f )T(1 + K(2v̄ + τ))( f − k) is obtained. Now, (6)
can be expressed as

∆Vm(k) ≤
k+m

∑
f=k

C(k)
(
vij( f ) + τ( f )

)(
vij( f ) + τ( f )

)T

+ mτ( f )T
(
1 + K(2v̄ + τ( f ))

)(
2
∥∥ψ̃ij(k)

∥∥+ mτ( f )T
(
1 + K(2v̄ + τ)

))
.

(7)

Observing (2) and (5), we can see that if ψ̃ij(k) = ε(k), then for any k ∈ [k2t, k2t+1),
ψ̃ij(k2t) = ε(k2t) is satisfied. In the k ∈ [k2t, k2t+1) interval, ε(k) remains unchanged,
while ψ̃ij(k) is time-varying. However, it can be seen from (2) that when k = k2t+2,
ψ̃ij(k2t+2) = ψ̃ij(k2t+1). To sum up, it can be deduced that as long as ψ̃ij(0) = ε(0), then for
any k ∈ [k2t, k2t+1), ψ̃ij(k) = ε(k).

In addition, according to the definition of σij(k), when k ∈ [k2t, k2t+1), σij(k)ψ̃ij(k) =
ψ̃ij(k). When k ∈ [k2t+1, k2t+2), σij(k)ψ̃ij(k) = 0. It can be seen from (3) that the RL di-
rect estimation error of (5) is bounded in the case of noise interference. That is, there
exists α > 0, C(k) > 0 that satisfies for any k ≥ 0, ‖ε(k)‖ ≤ C(k)e−αk, if and only if
there exists α1 > 0, α2 > 0, T > 0, and (3) holds for any k ≥ 0. To now, the RL di-
rect estimation error bound can be expressed as follows. Combining (4) and (7) leads
to ∆Vm(k) ≤ σij(k)ψ̃ij(k) + α1C(k)e−αk + α2, where σij(k) > 0, α > 0, C(k) > 0. There-
fore, when k ∈ [k2t+1, k2t+2), ψ̃ij(k) ≤ α1C(k)e−αk + α2. It can be proven that when
k ∈ [k2t, k2t+1), ψ̃ij(k) ≤ (1 + α1)C(k)e−αk + α2; the proof of Theorem 1 is complete.

3.2. Fusion-Based RL Estimation

In the previous Section 3.1, we assumed that local relative measurements (dij(k), rate
of change ḋij(k), and αij(k), α̇ij(k)) are unreliable, with measurement values available only
at certain moments. An estimator was then designed for the UAVi to position UGV0. If
UGV0 is a neighbor of UAVi, then UAVi can obtain its direct estimate ψ̂i0(k) in the local
coordinate system of UGV0. However, due to harsh environments or temporary sensor
failures, a UAV may lose its local relative measurements. Worse still, some UAVs may not
always have relative measurements with respect to UGV0 because UGV0 is outside their
sensing range. In this case, cooperation among neighbor UAVs is needed to help UGV0
localize. In this subsection, an RL indirect estimation method is developed for each UAVi
to estimate its relative coordinates with respect to UAVj, even when it may lack direct
measurements for UGV0 or experience measurement failures over time.
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If UAVi can estimate its coordinate x̂ir relative to neighboring UAVr, UAVr can also
share its estimate Zr with UAVi. As a result, UAVi can indirectly obtain its estimate relative
to UAVj through UAVr, as illustrated in Figure 3. The formula is as follows:

x̂ij(k) = x̂ir(k) + Zr(k). (8)

Expanding on both direct and indirect RL algorithms, we also explore RL fusion
estimation between UAVs to achieve target positioning. RL fusion estimation serves a
dual purpose. It aids UAVs lacking direct target measurements, enhancing their ability to
locate targets. Simultaneously, it bolsters the robustness of relying on RL direct estimation.
Utilizing information gathered by UAVs and integrating both direct (1) and indirect (8) RL
estimators, an RL fusion estimation method is proposed. Each UAVi employs the following
estimation method to update its final estimate, as expressed in the formula:

Zi(k + 1) = Zi(k) + T
(
vij(k) + τ(k)

)
+ ∑

j∈ζi(k)
βij(k)[x̂i0(k)− Zi(k)]. (9)

Consequently, each UAVi updates its fused estimate using (9), irrespective of its ability to
directly obtain relative measurements about UGV0.

ℱ!"

ℱ!#

ℱ$#

ℱ%#

𝑈𝐴𝑉!

𝑈𝐴𝑉%

𝑈𝐴𝑉$

𝑍$

𝑥'!%

𝑥'!$

Figure 3. Obtain the indirect RL estimate x̂ij(k) from UAVi to UAVj through UAVr.

Theorem 2. If the conditions of Theorem 1 are met; if it is assumed that, for every node pair (i, j) in
Γ(k) that appears infinitely many times, the persistent excitation (3) is satisfied; if each node in Γ(k)
is uniformly jointly reachable from UGV0; and if the fusion weight satisfies 0 < ∑j∈ζi(t) βij(k) < 1,
then the fusion estimate Zi(k) of each UAVi asymptotically converges to its true coordinates. In the
presence of measurement noise, the RL fused estimation error is bounded.

Definition 1 (Stability of a discrete system input state [28]). Consider a nonlinear system given
by equation x(k + 1) = f (x(k), u(k)). If there exists a function classKL: β : R≥0×R≥0 → R≥0
and a classK function γ such that for any control input u ∈ lm

∞ and any ξ ∈ Rn, the following
formula |x(k, ξ, u)| ≤ β(|ξ|, k) + γ(‖u‖) holds for any positive integer k, then the system in
Definition 1 is said to be input-to-state stable (ISS).

Lemma 1 ([28]). If A is a Schur matrix, then the discrete system x(k + 1) = Ax(k) + Bu(k)
is ISS.

Lemma 2 ([29]). Matrix Lj + Bj is positively stable, indicated by eigenvalues with positive real
parts, if and only if UAVj is jointly reachable in Γ.
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Proof. For any given i = {1, 2, . . . , N}, let yi(k) = Zi(k) − ψij(k). Then, (9) can be
rewritten as

yi(k + 1) = yi(k) + ∑
j∈ζi(k)

βij(k)
[
yj(k)− yi(k)

]
+ uij(k), (10)

where the uij(k) = ∑j∈ζi(t) βij(k)ψ̃ij(k) + Tτ(k) part serves as the input signal. Aggregating
all the equations in i = {0, 1, 2, . . . , N}, (10) can be expressed in matrix form as

yij(k + 1) =
((

I −Lj −Bj
)
⊗ Ip

)
yij(k) + uij(k), (11)

where yij(k) = [yT
0 (k)y

T
1 (k) · · · yT

N(k)]
T, uij(k) = [uT

0 (k)u
T
1 (k) · · · uT

N(k)]
T. p is two or three,

determined by the dimensions of the environmental space. Lj represents the weighted
Laplacian matrix of the graph Γ, and B j is the adjacency matrix of j associated with Γ.

Firstly, considering the unforced system in

yij(k + 1) =
((

I −Lj −Bj
)
⊗ Ip

)
yij(k), (12)

it can be verified that all eigenvalues of Lj + Bj strictly lie within the unit circle centered
at the origin. Therefore, Lj + Bj is a Schur matrix. As UAVi and UGV0 are uniformly
and jointly reachable, according to Lemmas 1 and 2, when k→ ∞, all components of the
solution of (12) uniformly converge exponentially to a certain common value. It can be
concluded that when k→ ∞, yi(k)→ c (c is a constant), indicating the exponential stability
of (12).

Consider (11) next. According to Definition 1, for any k ≥ 0, ‖yij(k)(yij(0), uij(k))‖ ≤
β(‖yij(0)‖, k) + γ(‖uij(k)‖). According to Theorem 1, for any positive constant βij(k),
‖uij(k)‖ ≤ ∑j∈ζi(k) βij(k) + Tτ(k). Since γ(·) is a function of classK, it follows that when
k → ∞, γ(‖uij(k)‖) → c. Because yij(0) is bounded and β(·, ·) is a function of classKL,
when k→ ∞, β(‖yij(0)‖, k)→ 0. Therefore, ‖yij(k)(yij(0), uij(k))‖ → c when k→ ∞. The
proof of Theorem 2 is complete.

4. Integrated Solutions for RL and Circumnavigation

In this section, we propose an integrated solution combining RL and circumnavigation
to facilitate the rotation of multi-UAVs around UGV0 while maintaining a circular formation.
This capability is particularly valuable in practical scenarios like surrounding and entrap-
ping a hostile target. As depicted in Figure 4, it relies on distance di(k) = ‖Zi(k)− p∗‖
and angle measurements αij(k). An adaptive estimator will be formulated to attain rela-
tive positioning with the assistance of a specifically designed bounded input ui(k). Let
qi(k) = Zi(k) − p∗ denote the relative position to the UGV0. q̂i(k) is expressed as an
estimate of qi(k). Note that ui(k) should also satisfy ‖ui(k)‖ ≤ U to address the circumnav-
igation problem (13), where U is the maximum velocity.

Given UGV0 at any location p∗(k), the objective is to enable the UAV to orbit around
UGV0. The formula is as follows:

lim
k→∞

Zi(k) = p∗(k), (13)

where Zi(k) represents the position of UAVi at time step k. For trajectory planning purposes,
consider a discrete-time integrator model with bounded velocity: Zi(k + 1) = Zi(k) +
Tui(k), where T is the sampling period.

Based on this, a circumnavigation control law involving RL fusion estimation is proposed:

ui,k =

u0,k −
[(

d̂2
i (k)− d2

i (k)
)

I − βE
]
q̂i(k) δ = 1(

d̂i(k)− di(k)
)

Φij(k) + αΨij(k) δ = 0
, (14)

where β is any non-zero real scalar and E is the rotation matrix. d̂i(k) represents the
estimated value of di(k). Additionally, a constant positive scalar α is introduced. By
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integrating the previously developed RL algorithm (9) with the circumnavigation control
algorithm (14), we propose an integrated RL fusion estimation and circumnavigation
control algorithm.

Range，angle
data package

Circumnavigation

Controller

Velocity estimate

Mixed Measurements 
based RL

Saturation

Multi-UAVs
U

𝑑!"(𝑘),𝑑̇!"(𝑘),𝛼!" 𝑘 , 𝛼̇!"(𝑘)

𝑣!"(𝑘)

𝑍!,$

𝑞,$

𝜓!"(𝑘)

𝑢! ,$

Figure 4. An integrated RL and circumnavigation solution.

5. Simulation

In this part, we consider a cooperative RL fusion estimation involving five mobile
UAVs and a slow UGV0 and subsequently apply the estimated values to circumnavigation
control. The simulation workflow diagram is illustrated in Figure 5.

Lora Quad-Core Floating 
Point Processor

UWB and Airborne 
Sensors

Micro-sized 
Circumnavigation

Control
Optical Flow Sensor

𝑑!"(𝑘),𝑑̇!"(𝑘), 𝛼̇!"(𝑘)

𝑣!"(𝑘), 𝛼!"(𝑘)

True value

𝑢! ,$

Figure 5. Workflow diagram for circumnavigation control.

5.1. Results of RL Fusion Estimation Simulations

In this section, a simulation of the RL of five mobile UAVs and a slowly moving UGV0
in two-dimensional space is conducted. The information flow graph Γ(k) between the five
UAVs and UGV0 is allowed to switch between two graphs periodically, Γ(1) and Γ(2), as
illustrated in Figure 6, or switch between three graphs randomly, Γ(1), Γ(2), and Γ(3), as
illustrated in Figure 7. It can be confirmed that in the information flow graph, UGV0 is
jointly reachable. UAV 1 and 3 periodically acquire direct measurements of UGV0, while
UAV 2, 4, and 5 do not; they rely solely on indirect estimates through their neighbors. To
validate the proposed estimation scheme, the target UGV0 is positioned at the origin, and
the five UAVs are subjected to the following dynamic control:

ẋ1(k) =
[
− sin k
cos k

]
, ẋ2(k) =

[
0
1
4

]

ẋ3(k) =

1
6
0

, ẋ4(k) =

0
1
8

, ẋ5(k) =
[
−2 sin k
2 cos k

]
.
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Furthermore, the initial positions of the five UAVs are labeled as (−1, −2), (6, 8), (8, 9),
(11, −2), and (1, 9), respectively. The initial position of UGV0 is (0.3, 0).

To validate the feasibility of the proposed RL fusion estimation scheme, we designated
UGV0 as the relative target for estimation. In the first simulation, the trajectory diagram
is depicted in Figure 8. In the second simulation, we let all of the UAVs move randomly
within the range [−50, 50]. Communication protocols were used to ensure that UAVs were
aware of each other’s positions and velocities, allowing them to maintain safe distances.
Upon receiving position and velocity updates from neighboring UAVs, each UAV processes
this information to determine the relative positions and velocities of nearby UAVs. By
comparing this information with its trajectory, a UAV can assess the risk of potential
collisions and take appropriate action to avoid them. With unlimited energy, UAVs can
perform their tasks without the need to consider energy efficiency or battery life. They can
fly for extended periods, cover long distances, and execute complex maneuvers without
the risk of power depletion.

UAV1
UGV0 2

3 4 5

UAV1

UGV0 2

3 4 5
𝑘

Γ(𝑘)

21 3 4 5 6

Γ(1)

Γ(2)
Γ(1)

Γ(2)

Figure 6. The periodic switching graph Γ(k) that switches between two different topologies Γ(1) and Γ(2).

UAV1
UGV0 2

3 4 5

UAV1
UGV0 2

3 4 5

𝑘

Γ(𝑘)

21 3 4 5 6

Γ(1)

Γ(2)

Γ(3)

UAV1
UGV0 2

3 4 5

Γ(1)

Γ(2)

Γ(3)

Figure 7. The three graphs Γ(1), Γ(2), and Γ(3), among which Γ(k) randomly switches.
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x/m

y
/m

UGV0

UAV1

UAV2

UAV3

UAV4

UAV5

Figure 8. Movement trajectories of the five UAVs and UGV0.

For the first simulation, it can be verified that, in the case of a time-varying information
flow graph, each UAV is uniformly jointly reachable to UGV0. Additionally, it can be
confirmed that the persistent excitation (3) is satisfied. For the second simulation, it is
challenging to strictly confirm the condition that each UAV is consistently jointly reachable
to UGV0 and that the persistent excitation (3) is satisfied. The estimator described in (9) is
employed to estimate the coordinates of each UGV0. The direct and indirect estimates are
amalgamated to derive the ultimate fusion estimate Zi(k). According to Theorem 2, each
UAV has its estimate Zi(k) that converges to the true coordinates ψi0(k) of UGV0. Here, let
Zi(k) represent the final fusion estimate. For simplicity, the corresponding real RL is xi0(k).
Therefore, the evolution of estimation errors is represented by ‖erri0(k)‖ = ‖Zi(k)− xi0(k)‖.
In the first and second simulations, the evolution of estimation errors for periodically and
randomly switching simulations is depicted in Figure 9b,e and Figure 10a,b, respectively.
It can be observed that even in the presence of noise, the fusion estimation error remains
bounded uniformly. The RL fusion estimation errors are bounded with 0.6m in both cases.
Our proposed method demonstrates robustness in simulation results, performing well in
both prescribed trajectories and random scenarios.

In addition, in order to validate the effectiveness of the proposed RL fusion estimation
scheme, we conducted comparative experiments. Figure 9a–c depict the simulation results
of periodic switching, while Figure 9d–f show the results of random switching. Among
them, (a), (d), and (c), (f) represent the corresponding error estimation curves under the
methods in paper [30] and paper [31], respectively. (b) and (e) depict the error curves
corresponding to the method proposed in this article. In the simulation results of the first
simulation, a comparison of the graphs in (a) and (b) reveals that the error of the algorithm
proposed in this paper is significantly smaller than the error of the method in paper [30].
Simultaneously, the algorithm proposed in this paper demonstrates faster convergence
compared to that in paper [30]. Further, in the comparison between graphs (b) and (c),
although the error in paper [31] is lower, its convergence speed is significantly slower.
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Figure 9. The first simulation. (a) Results of RL fusion estimation errors under periodic switching
conditions using the method in [30]. (b) Results of RL fusion estimation errors under periodic
switching conditions using the proposed method. (c) Results of RL fusion estimation errors under
periodic switching conditions using the method in [31]. (d) Results of RL fusion estimation errors
under random switching conditions using the method in [30]. (e) Results of RL fusion estimation
errors under random switching conditions using the proposed method. (f) Results of RL fusion
estimation errors under random switching conditions using the method in [31].

A comparison of the results in Figure 9d,e, illustrating the first simulation’s outcomes,
reveals that the algorithm proposed in this study exhibits a substantially lower error than
the method presented in paper [30]. Additionally, our approach achieves faster convergence
compared to paper [30]. While the error in [31] is lower, the rate of convergence is relatively
slower, as evident in graphs (e) and (f). This demonstrates the robustness of our proposed
cooperative RL method in various scenarios. Despite the errors in Figure 9a being one or
two orders of magnitude larger than those in Figure 9b, they remain unacceptable as they
are on the meter scale. The errors in (d) and (e) are also similar. In the presence of noise
and data loss, the fusion estimator mitigates the impact of these factors to some extent. The
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additional information in indirect estimation contributes to expediting the convergence
of RL fusion estimation. The RL fusion estimation scheme errors between Figure 9b,e in
the first simulation and Figure 10a,b in the second simulation were compared. While the
convergence speed of the second simulation is slower, it still satisfies the convergence
criteria. It can be seen that based on the proposed method, RL fusion estimation scheme
errors are bounded by 0.6 m. However, the errors using the method in [30,31] can be up to
1.5 m, which are much larger than those of the proposed method.
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Figure 10. The second simulation. (a) Results of RL fusion estimation errors under periodic switching
conditions using the proposed method. (b) Results of RL fusion estimation errors under random
switching conditions using the proposed method.

5.2. Integration of RL Fusion Estimation and Circumnavigation Control [25]

In this section, we will validate the integrated RL and circumnavigation scheme
proposed in Section 4 through numerical simulations to confirm its robustness. Consider a
five-UAV team, where each UAV is able to measure the distance or angle to UGV0. The
control goal is to enable five UAVs to hover around UGV0. In the third simulation, we
verified the scheme proposed when UGV0 slowly drifts with an angular velocity equal
to 0.005 rad/s. The UAV maintains its distance in a neighborhood of the desired range
from UGV0. It is worth noting that the speed of UGV0 is consistently much lower than
that of the other UAVs. In this scenario, we assume that p∗(0) = [−20, −20] is the initial
position of UGV0. The initial positions of the UAVs are set as [15, −8], [−20, 10], [−12, −6],
[16, −13] and [18, 10], respectively. We can observe from Figure 11 that the UAV is capable
of orbiting around UGV0 very well. Under these conditions, positive constants β = 5 and
α = 4 are chosen to satisfy the given criteria. As depicted in Figures 12–16, all trajectories
converge to zero, validating our theoretical analysis.

x/m

y
/m

Figure 11. Simulation of a slowly drifting UGV0. The green circle denotes the initial position of
UGV0, while the other circles indicate the initial positions of the UAVs.
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Figure 12. Trajectory diagram depicting the relative positions between UAV1 and UGV0.
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Figure 13. Trajectory diagram depicting the relative positions between UAV2 and UGV0.
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Figure 14. Trajectory diagram depicting the relative positions between UAV3 and UGV0.
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Figure 15. Trajectory diagram depicting the relative positions between UAV4 and UGV0.
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Figure 16. Trajectory diagram depicting the relative positions between UAV5 and UGV0.

To demonstrate the effectiveness of the integrated RL and circumnavigation solution,
tests were conducted with five UAVs. The graph in Figure 17 illustrates the reduction
in distance between UAVs and UGV0. It is evident that the plane distance consistently
decreases rapidly until the circumnavigation radius of 0.7 m is reached, greater than the
minimum spacing of 0.2 m. In summary, the experimental results demonstrate the superior
performance of the integrated RL and circumnavigation solution. It is anticipated that
similar integration concepts can be further applied to more practical scenarios.

k/step

d
i(k

)/
m

UAV1
UAV2
UAV3
UAV4
UAV5

Figure 17. The rapid and stable approach of UGV0.

6. Conclusions

This paper proposes an RL fusion estimation and distance- or angle-based UAV
circumnavigation control scheme that does not rely on infrastructure or the GPS. The
proposed algorithm enables a UAV to locate UGV0 using only the distance or the azimuth
angle, without any explicit distinction between the measured data. Integrated algorithms
of RL estimators and circumnavigation controllers are explored. The concepts in this
algorithm can also be extended to scenarios where the UAV’s motion is subject to non-
holonomic constraints. A possible generalization is discussed in [32]. Finally, an integrated
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cooperative RL and circumnavigation control algorithm is proposed by combining the RL
and circumnavigation control algorithms. Numerous simulation experiments have verified
the effectiveness of the proposed algorithm.

Given the recent innovation and research outcomes in artificial intelligence (AI),
we will explore opportunities to enable and improve functionalities in UAVs using AI
techniques in the future. Both AI and UAV technology have become popular in recent
times, along with research to bring the two fields together. Many problems inherent in
UAVs today can be solved with the use of AI. Future research directions include addressing
challenges in three-dimensional space and enhancing the algorithm’s convergence speed to
reduce tracking and estimation errors within a limited timeframe. Additionally, considering
a more general UAV model and accounting for the impact of noise are crucial aspects of
future investigations. Another avenue for research involves exploring scenarios with UAV
swarms and UGVs. Estimating the location of UGVs may be easier in the case of UAV
swarms, as different UAVs can share their estimates of the UGV’s location. These shared
estimates can expedite the estimation of UGV positions. Additionally, collision avoidance
technology should be taken into account when deploying UAV swarms. Furthermore, it is
essential to ensure that the distance between UAVs does not exceed their communication
range, preventing the disruption of the connection link between them.
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