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Abstract: This paper proposes a novel method to improve the clock bias short-term prediction
accuracy of navigation receivers then solve the problem of low positioning accuracy when the satellite
signal quality deteriorates. Considering that the clock bias of a navigation receiver is equivalent to a
virtual satellite, the predicted value of clock bias is used to assist navigation receivers in positioning.
Consequently, a combined prediction method for navigation receiver clock bias based on Empirical
Mode Decomposition (EMD) and Back Propagation Neural Network (BPNN) analysis theory is
demonstrated. In view of systematic errors and random errors in the clock bias data from navigation
receivers, the EMD method is used to decompose the clock bias data; then, the BPNN prediction
method is used to establish a high-precision clock bias prediction model; finally, based on the clock
bias prediction value, the three-dimensional positioning of the navigation receiver is realized by
expanding the observation equation. The experimental results show that the proposed model is
suitable for clock bias time series prediction and providing three-dimensional positioning information
meets the requirements of navigation application in the harsh environment of only three satellites.

Keywords: receiver clock bias forecasting; random error; clock bias auxiliary positioning algorithm;
satellite navigation

1. Introduction

For a traditional Global Navigation Satellite System (GNSS), the navigation receiver
needs at least four satellites to perform three-dimensional positioning [1–3]. However,
GNSS satellite signals are significantly impacted by the environment. In challenging
environments such as densely populated urban areas with tall buildings, dense forests,
and mountains, standard GNSS receivers often struggle to acquire signals from at least
four satellites. Consequently, traditional positioning algorithms fail to perform three-
dimensional positioning. This limitation severely disrupts the consistency of the positioning
service and causes inconvenience [4–6]. Therefore, exploring solutions for GNSS receiver
positioning in harsh environments holds paramount practical significance. It ensures the
continuity of the positioning service and expands the range of applications for GNSS
receivers [7].

In order to improve the continuity of GNSS receiver positioning in harsh environments,
it is usually necessary to add additional hardware devices for external assistance [8,9],
such as a combined navigation system [10], pseudo-satellite [11], vision measurement
system [12], cellular signals [13], or barometric altitude measurement [14]. However, these
auxiliary methods increase the hardware cost of the positioning system. When the GNSS
receiver is positioned normally, in addition to solving the three-dimensional coordinates
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of the receiver, it can also provide the clock bias data from the receiver. As long as the
navigation receiver’s clock frequency is usually stable and accurate, a prediction model can
be built using historical clock bias data to forecast the clock bias for a period of time. In
view of this, the GNSS receiver clock bias can be treated as a virtual satellite; the positioning
process can be accomplished according to the clock bias prediction value. Compared with
other methods, the clock bias predicting auxiliary method is an internal auxiliary method,
with no need for additional hardware equipment. By simply embedding the demonstrated
algorithm in the navigation receiver, it is possible to implement high-accuracy positioning
in harsh environments. The application of the proposed method improves the adaptability
of GNSS receivers and in the meantime decreases hardware complexity [15,16].

Due to the influence of elements such as the crystal oscillator quality of the GNSS
receiver clock, the stability of the GNSS receiving signal transmission channel, and the
GNSS satellite coordinate error, the actual GNSS receiver clock bias time series has obvious
non-linear characteristics [17]. There are many methods that can be applied to such non-
linear and unsmooth time series modeling. The effectiveness and robustness of traditional
modeling and forecast methods such as fitting and extrapolation, the Grey System Model
(GM) [18], and Auto Regressive and Moving Average (ARMA) [19] have been proven.
With the recent developments in machine learning, the application of machine learning
algorithms to GNSS signal processing has received increasing attention [20]. For better
positioning accuracy, the Long Short-Term Memory neural network (LSTM) as a supervised
learning model was leveraged for clock bias prediction during GNSS signal outages [21,22].
Liang et al. applied the Non-linear Auto-Regressive model with exogenous input (NARX)
recurrent neural network to GNSS clock bias prediction, outperforming three traditional
models, which are the Quadratic Polynomial model (QP), GM, and Autoregressive In-
tegrated Moving Average model (ARIMA) [23]. To improve precision point positioning
(PPP) accuracy, Liao et al. introduced the famous open source time series forecast model
Prophet which was proposed by the Facebook company for clock bias prediction [24].
Based on the combination of Mind Evolutionary Algorithm (MEA) optimization and the
Back Propagation Neural Network (BPNN) algorithm, Bai et al. proposed a MEA-BP clock
prediction model with strong anti-interference ability [25]. Considering the characteristics
and limitations of different models, a combination analysis and prediction model based on
machine learning is an attractive choice.

In view of the non-linear characteristics of the GNSS receiver clock bias time series,
with the help of time series analysis theory, this paper demonstrates a novel clock bias
prediction model. The clock bias time series are decomposed into different components
by the Empirical Mode Decomposition (EMD) method; then, each of the components is
modeled and predicted according to their different characteristics using the BPNN method.
The specific detailed implementation process of the proposed algorithm is elaborated
and several verification field tests are carried out. The field test result shows that the
proposed algorithm performs illustriously in navigation receiver clock bias time series
predicting and could provide new insights into navigation positioning implementation in
harsh environments with only three satellites.

2. Theory and Algorithm Details

According to the traditional theory of time series analysis and decomposition, the
GNSS receiver clock bias series contain three parts: the trend item, period item, and random
item. Therefore, the corresponding formulas of clock bias can be expressed as follows:

b(t) = c(t) + p(t) + r(t), t ∈ [1, n] (1)

In the formula, c(t) represents the trend item, which reflects the slow change in the
clock bias series over a long period of time. p(t) represents the period item, reflecting
the similarity in the clock bias series after a period of time. r(t) represents random items,
reflecting the impact of other random factors.
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Our EMD-BPNN GNSS receiver clock bias prediction model chooses a strategy that
simplifies the time series analysis problem by decomposing to several parts and handling
them separately. The EMD method is firstly used to decompose the clock bias time series
and extract features like stable elements and residuals; then, the BPNN is established
to learn and forecast the decomposed items. In the end, the predicted components are
superimposed together to obtain the final GNSS receiver clock bias prediction result.

Due to the advantages such as intuitive analysis, adaptively basis function, and so
on, the EMD method is usually used to analyze non-linear and non-stationary signals.
The EMD method identifies and extracts signal features associated with various intrinsic
time scales of the signal starting from finer temporal scales to coarser ones which makes it
appropriate for the short-term prediction of navigation receiver clock bias series. With the
help of the EMD method, the original navigation receiver clock bias data are decomposed
into limited Intrinsic Mode Functions (IMFs) and residual quantity (RES) according to their
own characteristics. For an input clock bias time series X(t), the detailed decomposition
procedure is listed as follows:

Step 1: Find all the extremes of time series X(t), and use cubic spline interpolation to
fit upper envelop e1(t) and lower envelop e2(t) of the original signal. The average value of
them can be defined as follows:

e
(
t
)
=

e1
(
t
)
+ e2

(
t
)

2
(2)

Obtain c(t) by subtracting Equation (2) from the original signal:

c
(
t
)
= X

(
t
)
− e

(
t
)

(3)

Step 2: Check that c(t) satisfies the zero-mean IMF condition. If it does, treat c(t) as the
first IMF and denote it as f1(t). If not, treat c(t) as a new original signal and repeat step 1.

Step 3: Separate f1(t) from X(t) and then use the remainder RES1
(
t
)
= X

(
t
)
− f1

(
t
)

as the new original signal. Repeat the above steps to obtain n IMF components and stop the
decomposition until the final residual becomes a monotone function. The original signal
X(t) can be reconstructed from n IMF components and the final residual:

X(t) =
n

∑
i=1

fi(t)− RESn(t) (4)

The GNSS receiver clock bias signal is a typically non-linear and non-stationary signal;
it is decomposed into several IMF components each of which is stationary making future
prediction possible; what is more, the EMD procedure also makes the future extraction
much easier because the characteristics become more obvious after decomposition.

The BPNN algorithm, which can adapt networks parameters such as weights and
thresholds according to input training data, is utilized to forecast the decomposed IMF
components. Therefore, by approximating a non-linear system after learning and training,
it can give precise prediction to intricate non-linear signals like GNSS receiver clock bias
time series. BPNN comprises three layers: the input layer, hidden layer, and output layer; a
typical schematic diagram of a BPNN structure is shown in Figure 1; the notation pattern
indicates the network connectivity. The hidden layer serves as the conduit for conveying
vital information between the input and output layers. The iteration training process
primarily involves two steps: information forward propagation and error backpropagation.

The basic unit of a BPNN is a neuron; the activation function of a neuron can be
defined as follows:

y = f
( n

∑
i=1

ωixi − θ

)
(5)
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In Equation (5), θ is the threshold, ωi is the weight of the i-th neuron, and n is the
total number of neurons in the layer. The activation functions utilized are usually the
Signum function or Sigmoid function; the gradient descent method is the most frequently
used training optimization algorithm. The specific configuration of BPNN would be set
according to the actual dataset and training status.
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Figure 1. Typical schematic diagram of a BPNN structure.

In order to achieve a high-quality performance of the GNSS receiver in harsh condi-
tions, we delved into the mathematical model and specific implementation process of the
navigation receiver clock bias prediction model. Let the GNSS pseudo-range measurement
equation, when the number of observable satellites is M, be defined as follows [15], in the
condition of single-epoch pseudo-range positioning under varying ionosphere delays.

ρi = |r − ri|+ b + εi =[
(xi − x)2 + (yi − y)2 + (zi − z)2

]1/2
+ b + εi

(6)

where ρi and εi represent the pseudo-range measurement value and measurement error,
respectively, ri = (xi, yi, zi) represents the satellite coordinates, and i means the i-th satellite
in a total number of M. GNSS receiver coordinates r = (x, y, z) and clock bias b are
unknown parameters that need to be solved. In the solving process, Equation (6) is firstly
analyzed using a Taylor series expansion at approximate coordinates (x0, y0, z0) of the GNSS
receiver, omitting terms of second order or higher, to obtain the linearized observation
equation [16].

L = HX + ν (7)

where L ∈ Rm×1 represents the pseudo-range bias vector, X ∈ R4×1 contains the correction
amounts δx, δy, and δz of the GNSS receiver’s approximate coordinates (x0, y0, z0) and clock
bias parameter b, H ∈ RM×4 is the coefficient matrix, and v is the error item.
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Owing to Equation (7) containing four unknowns, at least four satellites are required for
solving. However, in certain adverse conditions where GNSS satellite signals are obstructed,
the receiver can only receive signals from three satellites. Under such circumstances, the
system has only three observation equations, which is insufficient to solve the four unknown
parameters, resulting in the GNSS receiver being unable to function properly.

To address the challenge of GNSS receiver positioning with only three available satel-
lites, this paper incorporates a clock bias prediction model into the observation equation.
The three-dimensional positioning capability of the receiver is achieved through the expan-
sion of the observation matrix.

The extended system equation is obtained by replacing the actual measured value b
with predictive value b′; we can derive the following:

L′ = H′X′ + ν′ (8)

In Equation (8), X′ ∈ R3×1 consists of correction value δx , δy , and δz , L′ and H′

represent the pseudo-range bias vector and observation matrix after extension, respectively,
and ν′ is the error item:

L′ =

 ρ1 − |r − r1| − b′
...

ρM − |r − rM| − b′

, H′ =

 l1 m1 n1
...

...
...

lM mM nM

 (9)

In the formula, the meaning of ρi and |r − ri| is the same as that in Equation (6), and li,
mi, and ni are the direction cosine between the receiver and satellite i:

li =
xi − x0

|r − ri|
, mi =

yi − y0

|r − ri|
, ni =

zi − z0

|r − ri|
(10)

It is evident that, with the help of integration of the clock bias prediction model, the
number of unknowns to be resolved has decreased from four to three. Consequently,
in scenarios with only three satellites, the GNSS receiver can achieve three-dimensional
positioning successfully.

To fulfill the position solving according to Equation (8), matrix H′ must be invertible.
It is required that the GNSS receiver’s location is not collinear with any two satellites. In
this way, the vector X′ and its norm ∥X′∥ are as follows:X′ = (H′)−1L′

∥X′∥ =
(

δ2
x + δ2

y + δ2
z

)1/2 (11)

The GNSS receiver coordinates can be obtained by multiple iteration. By comparing
∥X′∥ to the given threshold, whether the positioning algorithm converges can be verified. If
∥X′∥ exceeds the threshold, the receiver’s approximate coordinates (x0, y0, z0) are modified
according to Equation (12).

x1 = x0 + δx, y1 = y0 + δy, z1 = z0 + δz (12)

Then, (x1, y1, z1) are used as the new approximate coordinates to participate in res-
olution. When ∥X′∥ drops below the specified threshold, it indicates that the receiver’s
positioning accuracy meets the accuracy requirements and the position computation pro-
cess is finished.

Combined with the above analysis, Figure 2 gives a specific process for the GNSS
receiver clock bias prediction auxiliary positioning algorithm.
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Figure 2. Flow diagram of the clock bias predicting auxiliary positioning method.

3. Experimental Results and Analysis

To investigate the performance of the proposed navigation receiver clock bias predic-
tion auxiliary positioning algorithm, a large number of studies and tests using a GNSS
receiver in a real-world environment are carried out. In aggressive environments such as
dense urban canyon, the duration during which the GNSS receiver can observe less than
four satellites is usually several tens of seconds [3]. To deal with such difficult problems,
based on historical clock bias data, the EMD-BPNN clock bias prediction method is utilized
to enable the effective positioning in the time period when only three satellites are available.
As a consequence, the continuous and uninterrupted high accuracy positioning of the GNSS
receiver can be accomplished without additional hardware cost. With the introduction of
the proposed clock bias prediction auxiliary positioning algorithm, the GNSS positioning
service could keep in good condition during GNSS satellite signal outages. Furthermore,
the suggested clock bias prediction algorithm can be used to achieve GNSS positioning
augmentation and improve precision compared to the version without clock bias auxiliary
prediction, which has also received a lot of attention lately, in the event when more than
three GNSS satellites are visible.

Because of an adequate amount of data available, the training and validation procedure
of the EMD-BPNN GNSS receiver clock bias prediction model were implemented on
large sets of real acquired data. Before large-scale training, pre-training is carried out to
investigate the neural network configuration parameters such as number of nodes in three
layers, initial weight and threshold, and so on. After configuration, to avoid converging to
a local minimum in the training, differential evolution is chosen rather than the ordinary
gradient descent method. The bootstrap method is chosen as the training validation means;
the sigmoid function is taken as the activation function. To illustrate the effectiveness and
precision of the demonstrated method, a special field test was carried out. The original
clock bias data acquired in the field test are shown in Figure 3; the sampling frequency
is set at 1 Hz and acquiring time is set at 1000 s; hence, 1000 clock bias data records are
used for the model demonstration. A GPS receiver (Njord, from SatLab Geosolutions AB)
is used in this experimental demonstration but the proposed method is not limited to it;
it also can be applied to other GNSS system such as BeiDou, GALILEO, or GLONASS.
There is no intersection between the large training–validation dataset and the filed test
acquired data, which prevents overfitting and guarantees the independent effectiveness
of the prediction model. In compliance with the aforementioned EMD decomposition
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procedure, the original clock bias series is decomposed into seven intrinsic mode IMF
components which are shown in Figure 4 below.
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Figure 3. Original acquired clock bias data in field test.
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Figure 4. Intrinsic mode IMF components of clock bias signal after EMD decomposition: (a) 2D
plot in time domain; (b) 3D plot in time domain; (c) 2D plot in frequency domain; (d) 3D plot in
frequency domain.

To elaborate the decomposed IMF components which contain intrinsic mode infor-
mation on the clock bias signal, the 2D plot and 3D plot of the original acquired signal
are shown in the time domain and frequency domain, respectively. The clock bias signal,
expressed as ∆t × c, is shown in Figure 4a,b as a distance in meters. The normalized power
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spectra of the clock bias signal after Fast Fourier Transform (FFT) are shown in Figure 4c,d.
The high-frequency part of the clock bias signal is negligible for being too weak; therefore,
the normalized power spectra are truncated and only the low-frequency signal from 0 to
0.031 Hz is kept. After decomposition, the intrinsic mode IMF components are forecast
separately by the BPNN method.

After forecasting based on the BPNN algorithm, all the predicted values related
to different IMF components are superimposed together to obtain the final clock bias
prediction. According to the data on the first 75%, the clock bias signal of the last 25% is
predicted; moreover, with the introduction of a classical quadratic polynomial clock bias
prediction method, the performance of the proposed EMD-BPNN can be fully presented
and evaluated. Figure 5a shows a comparison among the EMD-BPNN model predicted
clock bias value, QP model predicted clock bias value, and the actual acquired clock bias
value. Meanwhile, the clock bias prediction errors of the two algorithms are shown in
Figure 5b. It can be seen that the predictive error of our EMD-BPNN model is quite small
apart from several abrupt spikes at the 38-th, 39-th, 118-th, and 145-th seconds. Even so, at
those special spikes, the clock bias prediction error of the EMD-BPNN method is less than
14 m, and there is no obvious increasing or decreasing trending in prediction error, while
additional fluctuations and larger deviation can be observed in the contrastive QP model
clock bias prediction error. Obviously, our EMD-BPNN model outperforms the traditional
QP model which utilizes a quadratic polynomial to model and forecast the clock bias time
series. These results demonstrate convincingly that an effective and practical clock bias
prediction is established. After feature extraction using the EMD method, the mapping
between the intrinsic characteristics of the IMF mode and clock bias time series future trend
is found by BPNN; this combination forecasting approach is proven to be an excellent idea
for clock bias predicting research.
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Figure 5. Performance comparison between EMD-BPNN and traditional QP model. (a) Clock bias
signal prediction result and (b) clock bias prediction error.

With the help of the method mentioned in Section 2, using clock bias data as a virtual
satellite, the positioning accuracy based on the clock bias predicted value of the QP and
EMD-BPNN models when in harsh conditions is shown in Figure 6. The positioning errors
in the x-axis, y-axis, and z-axis directions of Earth-Centered Earth-Fixed (ECEF) coordinates
are shown in Figure 6a–c respectively, while Figure 6d illustrates the total positioning
coordinate error. Apparently, the performance of the clock bias auxiliary positioning
method is intricately linked to the accuracy of clock bias prediction. The more precise the
clock bias prediction is, the smaller the positioning error of the GNSS receiver using the
auxiliary algorithm. Because of better clock bias predicting performance, the positioning
accuracy of the EMD-BPNN model is preferable except for a number of spike points,
whereas large amplitude fluctuations appear in the positioning results based on the QP
clock bias auxiliary model. It can be observed that, under the adverse condition of the
satellite signal being blocked, the maximum positioning error based on the EMD-BPNN
clock bias auxiliary model in the x, y, and z directions is about 16 m and the maximum
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synthesis positioning coordinate error is about 22 m; evidently, at the 37-th, 39-th, 118-th,
and 145-th seconds, clock bias prediction errors exceeding 14 m are observed, resulting in
maximum positioning errors up to 22 m. For the reason of making a quantitative assessment
and comparison of these two algorithms’ performance, a number of widely used evaluation
indicators of statistics and machine learning, including Mean Square Error (MSE) and Mean
Absolute Error (MAE), are computed and provided in Table 1.
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Figure 6. The auxiliary positioning performance of EMD-BPNN and QP models. (a) Positioning error
in the x-axis direction. (b) Positioning error in the y-axis direction. (c) Positioning error in the z-axis
direction. (d) Positioning coordinate error.

Table 1. MSE and MAE of the field test’s clock bias prediction error and positioning error using
EMD-BPNN and QP models.

∆x ∆y ∆z
Clock Bias
Prediction

Value

Positioning
Coordinate

Error

EMD-BPNN MSE (m2)
MAE (m)

2.955
0.5631

4.0676
0.9785

0.8301
0.4358

2.4145
0.7936

7.8532
1.3038

QP MSE (m2)
MAE (m)

4.1055
0.9976

10.9676
2.3031

4.40279
1.2367

9.4870
1.9976

19.4760
3.0212

In order to further demonstrate the efficacy and versatility of the proposed EMD-
BPNN algorithm, experimental tests on three other different kinds of GNSS receivers were
carried out. The length of the predicting clock bias time series is set at 250 s, which would
be sufficient for a majority of GNSS positioning applications such as an Unmanned Aerial
Vehicle (UAV) shuttling in a dense urban canyon, a car traveling on a road in densely
distributed forest, or a man with a cellphone walking among city tall buildings. Under the
abovementioned circumstances, the duration of GNSS satellite signal outages is usually
several tens of seconds; by utilizing the EMD-BPNN auxiliary model, the problem of
GNSS positioning errors and discontinuity would be resolved. Three different kinds of
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GNSS receivers were utilized in a supplementary experiment which are denoted as GNSS
receiver 2 (Navcom SF-3050), GNSS receiver 3 (Magtempo MGDF-03R), and GNSS receiver
4 (SinoGNSS M900D). Figure 7 illustrates the clock bias prediction and auxiliary positioning
results utilizing GNSS receiver 2 with the same experimental setups as the abovementioned
field test.
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Figure 7. Experiment results using GNSS receiver 2. (a) Clock bias signal prediction result. (b) Clock
bias prediction error. (c) Positioning error in the x-axis direction. (d) Positioning error in the y-axis
direction. (e) Positioning error in the z-axis direction. (f) Positioning coordinate error.

As shown in Figure 7a,b, the occasional large spikes in the clock bias prediction based
on the EMD-BPNN method vanish, while the large amplitude fluctuations still exist in
the clock bias prediction of the QP model. The positioning errors in the x-axis, y-axis,
and z-axis directions, and total positioning coordinate error are shown in Figure 7c–f,
severally. Consequently, our EMD-BPNN auxiliary positioning model outperforms the
traditional QP model and shows promising positioning accuracy because of a better clock
bias prediction performance. The experiment results of GNSS receiver 3 and GNSS receiver
4 are shown in Table 2 in quantitative forms; MSE and MAE are given to clarify the
effectiveness of the EMD-BPNN model on different hardware platforms. The characteristics
and features of clock bias time series are determined by the crystal oscillator quality of the
GNSS receiver and the atomic frequency standard on the GNSS satellite. According to the
experimental results, the proposed EMD-BPNN model is proven to have great applicability
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and versatility; the intrinsic features of the clock bias time series can be found with high
efficiency; then, a solid forecasting model is established. After the initial stage of model
training, the computational resource cost of the implementation stage including EMD
decomposition and forecasting based on established BPNN is quite economical. When
the length of the input clock bias time series is 250 s, the time cost of the EMD-BPNN
implementation apart from training is 0.17 s on a laptop (Macbook Air M2), which means
that the proposed model is appropriate for real-time positioning applications.

Table 2. Experimental performance of EMD-BPNN model on GNSS receiver 3 and GNSS receiver 4.

GNSS Receiver 3 GNSS Receiver 4

Clock Bias
Prediction

Value

Positioning
Coordinate

Error

Clock Bias
Prediction

Value

Positioning
Coordinate

Error

EMD-BPNN
MSE (m2)
MAE (m)

1.2264
0.7798

3.4595
1.2284

1.3412
0.7815

3.4772
1.2536

QP MSE (m2)
MAE (m )

10.5483
2.3631

23.6136
3.5837

10.4251
2.2523

21.0364
3.3030

All these abovementioned phenomena show that the clock bias auxiliary positioning
method can make GNSS receivers maintain accurate and uninterrupted performance
unimpeded by satellite signal blocking.

4. Conclusions

This paper innovatively proposes a GNSS receiver clock bias time series prediction
algorithm which can be applied to harsh environments when the GNSS satellite signal
is blocked. The field test results show that our EMD-BPNN approach can make a GNSS
receiver maintain normal performance when there are only three satellites in the short term
(tens of seconds). According to comparison experimental results, the proposed EMD-BPNN
model outperforms the traditional QP model on four different kinds of GNSS receiver
platforms. What is more, this method has reference value for future high-accuracy GNSS
positioning application for the reason that it does not need additional hardware equipment
which improves the device running reliability and reduces cost. The positioning accuracy
of a GNSS receiver depends on the performance of the clock bias prediction algorithm. In
future work, besides model prediction accuracy promotion, research will also concentrate
on how to improve the algorithm interpretability and portability.
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