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Abstract: Winter cover crops are planted during the fall to reduce nitrogen losses and soil erosion
and improve soil health. Accurate estimations of winter cover crop performance and biophysical
traits including biomass and fractional vegetative groundcover support accurate assessment of
environmental benefits. We examined the comparability of measurements between ground-based
and spaceborne sensors as well as between processing levels (e.g., surface vs. top-of-atmosphere
reflectance) in estimating cover crop biophysical traits. This research examined the relationships
between SPOT 5, Landsat 7, and WorldView-2 same-day paired satellite imagery and handheld
multispectral proximal sensors on two days during the 2012–2013 winter cover crop season. We
compared two processing levels from three satellites with spatially aggregated proximal data for red
and green spectral bands as well as the normalized difference vegetation index (NDVI). We then
compared NDVI estimated fractional green cover to in-situ photographs, and we derived cover crop
biomass estimates from NDVI using existing calibration equations. We used slope and intercept
contrasts to test whether estimates of biomass and fractional green cover differed statistically between
sensors and processing levels. Compared to top-of-atmosphere imagery, surface reflectance imagery
were more closely correlated with proximal sensors, with intercepts closer to zero, regression slopes
nearer to the 1:1 line, and less variance between measured values. Additionally, surface reflectance
NDVI derived from satellites showed strong agreement with passive handheld multispectral proximal
sensor-sensor estimated fractional green cover and biomass (adj. R2 = 0.96 and 0.95; RMSE = 4.76%
and 259 kg ha−1, respectively). Although active handheld multispectral proximal sensor-sensor
derived fractional green cover and biomass estimates showed high accuracies (R2 = 0.96 and 0.96,
respectively), they also demonstrated large intercept offsets (−25.5 and 4.51, respectively). Our results
suggest that many passive multispectral remote sensing platforms may be used interchangeably
to assess cover crop biophysical traits whereas SPOT 5 required an adjustment in NDVI intercept.
Active sensors may require separate calibrations or intercept correction prior to combination with
passive sensor data. Although surface reflectance products were highly correlated with proximal
sensors, the standardized cloud mask failed to completely capture cloud shadows in Landsat 7, which
dampened the signal of NIR and red bands in shadowed pixels.

Keywords: proximal sensors; satellite imagery; cover crops; biophysical traits; surface reflectance;
biomass; fractional green cover; NDVI
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1. Introduction

Winter cover crops have proven to be an effective method to reduce sedimentation
and nutrient runoff into waterways, and increase environmental benefits including im-
proved soil health and water quality [1,2]. As they accumulate biomass, winter cover crops
sequester residual soil nutrients, and also prevent wind and water erosion of soils by pro-
viding vegetative groundcover [3,4]. They also have climate mitigation potential through
carbon sequestration [5,6] and greenhouse gas reduction for non-leguminous species [7]. In
ecologically sensitive estuaries such as the Chesapeake Bay, cover crop-mediated reductions
in nitrate losses and sediment from agricultural areas have led to reduced risk of algal
blooms, eutrophication, and threats to wildlife [2,8,9].

The U.S. Environmental Protection Agency (EPA) has identified winter cover crops as
an effective practice to reduce agricultural pollutants and meet total maximum daily load
targets (the amount of pollutant that a water body can safely assimilate) in the Chesapeake
Bay [10]. Cover crop adoption in the Chesapeake Bay watershed is incentivized through
national programs such as the U.S. Department of Agriculture (USDA) Natural Resources
Conservation Service (NRCS) Environmental Quality Incentives Program [11] and through
state-led initiatives such as the Maryland Department of Agriculture’s Maryland Water
Quality Cost-Share Program [12]. Although cost-share payment amounts and enrollment
vary each year, Maryland had a record of 561,344 acres of cover crops covering 64% of
cropland planted in 2016 [1] and leads the nation in overall cover crop adoption [2,13].

Multispectral remote sensing has been demonstrably successful as a tool to monitor
winter cover crop growth and biophysical traits such as biomass and groundcover [14–21]
from both proximal (in-field or handheld) [17,21,22] and spaceborne platforms [16,18–21].
Satellite data are often publicly accessible, but there are tradeoffs between their temporal
and spatial resolution. For example, in Talbot County, Maryland, fields average 20 hectares
compared with 65 hectares in the Midwest [23]. This smaller size disallows use of coarse-
resolution satellites with high temporal resolution such as the Moderate Resolution Imaging
Spectroradiometer (MODIS; 250 m) that acquire imagery daily. Satellite imagery with fine
to moderate spatial resolution (2 m to 30 m pixel size) are more appropriate for measuring
small fields typical in the Chesapeake Bay watershed but are still subject to issues related
to mixed pixels, particularly in fall and winter when cover crop canopies are not fully
closed and soil and crop residues are present. Many of these platforms such as Landsat
7 (30 m), Sentinel-2 (10–30 m), Satellite pour l’Observation de la Terre 5 (SPOT 5; 10 m),
and WorldView-2 (2–5 m) are passive sensors that can only collect accurate data over
areas free of clouds and cloud shadows [24,25]. Because of these limitations, passive
satellite platforms may experience large data gaps due to return frequency, cloud cover, and
snow presence, particularly during the winter cover crop season (October through May).
These spatiotemporal shortcomings in fine-to-moderate scale imagery may be overcome if
integrated with each other and proximal instrumentation.

Proximal reflectance sensors operate at a short distance from the ground (0.1–5 m) and
can be used to quantify biophysical traits and their in-field variation at very fine spatial
scales (~2 cm) [26–29]. These sensors can be handheld, pole mounted, or mounted on
tractors [17,21,26–30]. Proximal sensors record reflectance measurements with minimal
interference from the atmosphere, theoretically providing accuracy assessment comparisons
with atmospherically corrected satellite imagery.

Both satellite and proximal sensors can be passive, collecting reflected sunlight, or
active, emitting light and collecting the reflectance of the emitted light. Passive sensors
are designed to be collected near solar noon at a similar time of day for each successive
collection. Since active sensors emit their own light, they can be operated in varied light
conditions and handheld proximal active sensors can be operated under cloudy conditions.
Active sensors also use more operational energy and are more common in proximal or
airborne platforms than satellite platforms. Although several studies compare the inter-
changeability of passive satellite sensors [31–33], the ability to estimate biophysical traits
using proximal active and passive sensors [34–38], satellite passive and uncrewed aerial
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vehicle passive sensors [39,40], or a passive satellite sensor with passive proximal sen-
sor [41], there is currently a gap in research comparing multiple passive satellite sensors
with proximal active and passive sensors. Additionally, most sensor intercomparison
studies focus on summer crops with higher biomass conditions rather than detecting green
biomass under the low biomass conditions associated with monitoring cover crop perfor-
mance. Exploring the relationship between high-spatial resolution handheld sensor data
and satellite-based measurements can allow for scaling up of difficult-to-acquire proximal
data, resulting in greater operational efficiency when assessing the environmental benefits
of cover crop implementation.

In this study we sought to: (1) quantify variation between and among three pas-
sive satellites (Landsat 7, WorldView-2, and SPOT 5) with two processing levels (surface
reflectance [SR] and top-of-atmosphere reflectance [TOAR]) and coincident handheld prox-
imal sensors (one passive and one active) red and near infrared (NIR) band reflectance and
normalized difference vegetation index (NDVI) data, and (2) quantify variation in sensor-
derived estimates of cover crop biophysical traits (biomass and fractional groundcover)
attributed to the various sensors. Although previous studies have explored the relationship
between satellite reflectance measurements and SR measurements from stationary ground-
based instruments, this research compares ground-based “on-the-go” proximal sensor data
with fine and moderate resolution satellite imagery that have been corrected to both TOAR
and SR. The TOAR and SR processing levels, in addition to SR processing tools, have been
shown to exhibit differences in band reflectance and NDVI values [42,43]. Thus, TOAR vs.
SR comparisons are also a key focus of this research effort. This research has the potential
to evaluate the interchangeability of commonly used satellite and proximal sensor NDVI
with widely available processing levels for estimating cover crop biophysical traits.

2. Materials and Methods
2.1. Study Site and Design

All data were collected on fields located at the U.S. Department of Agriculture-
Agricultural Research Service (USDA-ARS)—Beltsville Agricultural Research Center (BARC)
in Beltsville, Maryland, USA during the winter of 2012–2013. Cover cropped fields sampled
in this study (n = 5) included two barley (Hordeum vulgare L.) fields, one ryegrass (Lolium
multiflorum Lam.) field, one triticale (Triticale hexaploide Lart.) field, and one wheat (Triticum
estivum L.) field, all of which are commonly planted cover crop species in the Mid-Atlantic
region (Figure 1). Planting dates and management methods are described in Prabhakara
et al. [17].

Within each field we collected satellite, handheld sensor, and biophysical data includ-
ing biomass, fractional groundcover, carbon concentration, and nitrogen concentration. We
used a combination of data from three passive multispectral satellites (Landsat 7, SPOT 5,
and WorldView-2) with different pixel sizes and resampled the pixel size to the largest of
the three, 30 m × 30 m. Field sampling occurred on two dates: 6 December 2012, and 23 Jan-
uary 2013 (Figure 2). On the same dates and at overlapping times near midday we collected
proximal sensor data from an active sensor, Crop Circle, and a passive sensor, CROPSCAN
in tracks that passed through the interior of each sampled Landsat pixel [44,45]. Addition-
ally, one in situ biomass sample (0.5 m2) and three nadir RGB photos were collected near
the centroid of each Landsat pixel (Figure 2).
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Figure 1. The study area consisted of five fields at the USDA-ARS Beltsville Agricultural Research
Center (BARC) shown as the colored polygons on inset map. The proximal sensor transects overlay
the white (multi-sensor) and green (multi-sensor and biomass) sampling points. Field locations and
sampling points are shown on top of a WorldView-2 natural color image from 6 December 2012.
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Figure 2. Diagram displaying the data types, collection, and processing for each sensor used in this
study. For each of the three passive multispectral satellites (SPOT 5, Landsat 7, and WorldView-
2), original and aggregated (Landsat 7) pixel sizes are represented, the biophysical sampling with
both in situ samples and photos taken near the centroid of the Landsat 7 pixel, and the proximal
data (active-Crop Circle, passive-CROPSCAN) collected inside of each Landsat 7 pixel buffered
5 m inwards.
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2.2. Sensors

In total, five different sensors were used in this analysis, which included three satellites
(Landsat 7, SPOT 5 and WorldView-2) and two proximal sensors (passive CROPSCAN
and active Crop Circle) [44,45]. The three satellite platforms have different temporal,
radiometric and spatial resolutions as described in Table 1. The handheld proximal sensors
were GPS-enabled to collect measurements every two to three seconds as they moved
across the landscape. Satellite imagery pairs were acquired on 6 December 2012 (Landsat
7, WorldView-3) and 23 January 2013 (Landsat 7 and SPOT 5), with proximal sensor data
collected simultaneously (Table 1).

Table 1. Specifications, collection times, red and near infrared (NIR) band ranges, and acquisition
dates for proximal sensors, photos, and satellites. Times are listed in Coordinated Universal Time on
T1 (first collection) and T2 (second collection).

Sensor Landsat 7 WorldView-2 SPOT 5 CROPSCAN Crop Circle RGB Photos

Swath width
(km)/footprint

(m2)
185 km 16.4 km 60–80 km 1 m2 0.13 m2 2.7 m2

Repeat coverage 16 days 1.1–3.7 days 2–3 days – – –

Altitude/Height 705 km 770 km 822 km 1.8 m 1 m 1.7 m

Ground
resolution 30 m 1.84–2.4 m 10 m – – –

Red band 630–690 nm 630–690 nm 610–680 nm 630–685 nm 660–680 nm –

NIR band 770–900 nm 770–895 nm 780–890 nm 845–855 nm 775–810 nm –

Date T1 6 December
2012

6 December
2012 – 6 December

2012
6 December

2012
14 December

2012

Start time T1 15:42:12.92 16:03:02.78 – 15:54:23 15:16:05.0 17:24

End time T1 15:42:39.68 16:03:04.39 – 17:53:41 17:27:07.8 18:19

Average data
points per

Landsat pixel T1
1 15 × 15 – 34 575 3

Date T2 23 January 2013 – 23 January 2013 23 January 2013 23 January
2013 23 January 2013

Start time T2 15:42:24.99 – 16:05:05.76 15:59:18 14:53:17.6 16:24

End time T2 15:42:51.75 – 16:05:43.6 17:23:08 18:11:21.6 18:40

Average data
points per

Landsat pixel T2
1 – 3 × 3 45 325 3

The atmospheric conditions on both days were evaluated using AERONET data [46]
from the Goddard Space Flight Center in Greenbelt, Maryland. Atmospheric visibility was
calculated with a log-linear interpolation of aerosol optical thickness (AOT) at 500 nm and
667 nm to derive AOT at 550 nm which was used to estimate visibility. Both days were
very clear, but 6 December 2012 (300 km visibility) more so than 23 January 2013 (157 km
visibility) [46]. On 23 January, there were popcorn clouds scattered throughout the image
(Figure 3), whereas no clouds or shadows were present on 6 December. The high visibility
levels indicate clear conditions, providing adequate irradiance to the proximal sensors.
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2012 Maxar) in the upper right, 23 January 2013 Landsat 7 imagery (collected at 15:42:38) in the
lower left, and 23 January 2013 SPOT 5 imagery (collected at 16:05:22) in the lower right presented
as a false color composite (near-infrared, red, green) with an overlay of white (multi-sensor) and
green (multi-sensor and biomass) sampling points. The 23 January 2013, Landsat 7 inset shows
sampling points obscured by cloud shadow. The pink arrows point out the location of clouds and
their associated shadows. These areas were not detected using the cloud shadow and clouds mask
that were included with the Landsat 7 Level-1 or the Landsat 7 Level-2 data products. The dark and
light blue areas indicated in the legend are cloud and cloud shadows that were present in the Landsat
7 mask products.

2.2.1. Landsat 7

Atmospherically corrected Landsat 7 SR and TOAR scenes from 6 December 2012
and 23 January 2013 (path 15/row 33) were downloaded from the U.S. Geological Survey
(USGS) Earth Resources Observation and Science (EROS) Center Science Processing Archi-
tecture [47] in 2013. Landsat 7 imagery were processed to SR with the Landsat Ecosystem
Disturbance Adaptive Processing System (LEDAPS) algorithm [48]. This processing oc-
curred prior to downloading from Earth Explorer [49]. Although Landsat 7 had scan line
errors over a significant portion at the edges of its swath, our sampling locations were
unaffected by this issue because they fell in the center of the swath [50].

Cloud masking of Landsat was achieved by applying the F mask band of Collection
2 [24]. The F mask identifies potentially cloud-, water-, snow-, or ice-covered pixels based
on their spectral and thermal properties and pairs clouds with cloud shadows using
object-based matching; these pixels are identified in the F mask band and can be removed
from analyses [45]. The 23 January Landsat 7 image contained cloud shadows covering
17 sampling points within the triticale and the first barley fields that were not detected
by the cloud mask (Figure 3). Cloud shadows over the study sites were only present
in the Landsat 7 image due to differences in imaging times (the Landsat 7 image was
acquired at 15:52:38 GMT and the SPOT 5 image at 16:05:22 GMT). Cloud shadows are
typically removed as “contaminated” pixels that are not useful for derivation of surface
characteristics [51]. Because the cloud shadows affected reflectance, statistical models using
Landsat 7 imagery were calculated with the shadowed sampling points removed (n = 17).
Cloud shadowed Landsat 7 pixels were removed from the Landsat 7 comparisons but were
maintained in all other sensors.

2.2.2. SPOT 5 and WorldView-2

A SPOT 5 image for BARC (path 622/row 271) was tasked as part of the USGS
North American Data Buy, acquired on 23 January 2013, and downloaded from USGS
Earth Explorer [49]. SPOT 5 features a 10-m spatial resolution and four bands (Figure 3).
WorldView-2 imagery was acquired on 6 December 2012 (Imagery copyright 2012 Maxar,
https://maxar.com/maxar-intelligence/products/satellite-imagery [accessed on 8 July
2023], Westminster, CO, USA). The WorldView-2 sensor has 8 spectral bands (Figure 3)
with a 2-m spatial resolution for visible and NIR bands. The raw SPOT 5 and WorldView-2
images were manually georegistered using a linear pixel shift to match a field boundary
polygon vector shapefile and ensure proper alignment by visual inspection in ENVI version
4.8 [52]. TOAR was calculated in ENVI using image metadata. SPOT 5 and WorldView-2
imagery were converted to SR using MODTRAN 5.3.3. radiative transfer code [53,54].
MODTRAN has generally been found to closely intercompare with other atmospheric
correction tools including FLAASH and Sen2Cor [43,55] as well as 6S [56,57].

MODTRAN parametrization (input) data required for atmospheric correction include
information about various aerosols (i.e., AOT at 550 nm [AOT550]), water vapor (total
column values in cm), and ozone (total column values in Dobson units). AOT550 and
water vapor values were derived from AERONET data from the Goddard Space Flight
Center site [46]. Total ozone data were estimated using Environment Canada daily ozone
maps [58]. MODTRAN vertical profiles were established using radiosonde data that

https://maxar.com/maxar-intelligence/products/satellite-imagery
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included temperature and relative humidity measurements in the upper atmosphere,
which were acquired for the Dulles Airport/IAD site as it was the closest station in a
peri-urban area [59]. To allow for a more precise comparison against other sensors, the
SPOT 5 and WorldView-2 imagery were smoothed using a low pass filter and a 3 × 3 (SPOT
5) and 15 × 15 (WorldView-2) kernel to more closely match Landsat 7’s spatial resolution.

2.2.3. CROPSCAN

The CROPSCAN MSR16R handheld passive multispectral radiometer [44] used in this
study was able to record “on-the-go” measurements every 3 s as it crossed the landscape by
deriving geographic coordinates associated with each reflectance data point from a Trimble
GeoXH (Westminster, CO, USA) GPS unit with sub-meter accuracy. CROPSCAN has a
greater spectral resolution than either Landsat 7 or SPOT 5, gathering data across 16 spectral
bands that are centered on the visible-near infrared (VNIR) portion of the electromagnetic
spectrum. The CROPSCAN instrument was mounted on a hand-held pole with nadir view
angle, approximately 1.8 m above the vegetation canopy, creating a 1 m2 field of view. The
instrument employs a two-way sensor system that measures incident (downwelling) solar
irradiance and upwelling radiance from the ground, enabling self-calibration to SR. When
illumination conditions are not optimal due to cloudy conditions or low sun angles, lack of
radiation reaching the sensor can result in inaccurate SR measurements. Therefore, all data
with downwelling irradiance values below 300 W m-22 were excluded from analysis. All
collections occurred under clear sky conditions between 10 a.m. and 2 p.m. solar standard
time to avoid signal:noise reductions associated with low sun angles [60]. CROPSCAN
collections (n = 2740, average 39 scans per sample; Table 1) were averaged within each
Landsat 7 pixel (buffered inward 5 m to reduce edge effects) to match spatial resolution
between the sensors.

2.2.4. Crop Circle

A Crop Circle ACS-430 active proximal sensor [45] was deployed in tandem with
the CROPSCAN to gather spectral data. The Crop Circle is an active sensor with its
own illumination source, and therefore has fewer sky-condition limitations than passive
radiometric sensors which require specific solar illumination conditions. However, active
sensors can result in low-biased or high-biased reflectance readings when compared with
passive satellite sensors [35,61,62]. Active remote sensing signals can also be affected by
plant canopy characteristics, distance from the plant canopy, and device temperature [35,63].
The spectral resolution of the Crop Circle contains three bands in the red, red-edge, and
NIR portions of the electromagnetic spectrum. The sensor was held approximately 1 m
above the soil surface creating a 0.13 m2 field of view and collected approximately one scan
per second, associated with a GPS coordinate. Crop Circle readings (n = 31,497; average
450 scans per sample; Table 1) were collected and averaged within each buffered (−5 m)
Landsat 7 pixel.

2.2.5. RGB Photography and Destructive Biomass Samples

At 23 of the 35 sensor sample locations, we collected three shoulder-height (1.5 m)
red-green-blue (RGB) photographs using a Nikon D3100 DSLR camera (Minato City, Tokyo,
Japan) repeated on two dates (14 December 2012, and 23 January 2013) between 10:00 a.m.
and 2:00 p.m. solar standard time (Figures 1 and 2, Table 1). Photographs (n = 138;
23 samples × 3 photos per sample × 2 dates) were processed using SamplePoint v1.60
software [64] to quantify fractional green vegetation, chlorotic yellow vegetation, and crop
residue cover. A smaller number of photos were collected alongside the sensor collection
on 6 December 2012 (10 sampling locations, n = 30 photos). A comparison of photos 6
December and December 14 shows only a small difference (average difference +/− 4%
green vegetation) between the dates. SamplePoint randomly placed 200 points within
each photograph and the groundcover (S = soil, GV = green vegetation, R = residue,
O = other) under each point was recorded and subsequently summarized to derive the
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percent groundcover for each photo. The following equation was used to estimate fractional
green cover from SamplePoint data:

Fractional Green Cover = GV/(S + GV + R + O) × 100 (1)

We then took the mean of the three photographs per pixel.
At the same 23 photo sampling locations, biomass samples (n = 46) were collected

within 3 m of each Landsat pixel centroid by cutting a 1 m length of 3 adjacent rows of
cover crop at ground height (0.5 m2 surface area). Samples were dried for 48 h at 60 ◦C and
weighed. The sampling area and dry weights were extrapolated to estimate biomass at
the field scale (kg ha−1). Although biomass samples were not measured on the same day
as sensor data collection, they were collected within two weeks of the sensor dates and
<25 growing degree days (GDD) accumulated between sampling and imagery acquisition.
It was therefore assumed that biomass, percent vegetative groundcover, and composition
of the samples would remain relatively static due to minimal cover crop growth during the
cold weather conditions (Figure 4).
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Figure 4. Climatic data for the study period show that there were approximately 70 accumulated
growing degree days (dark gray) between the two satellite acquisition dates (vertical dotted lines),
implying some minimal cover crop growth. The lighter gray represents accumulated growing degree
days since 15 November, indicating the relative warmth of the cover crop growing season. The
minimum temperatures (solid dark blue line) were slightly above climate normals (blue dotted line).
Dotted horizontal line represents 0 ◦C. Data from a U.S. Department of Agriculture weather station
at the Beltsville Agricultural Research Center, Beltsville, MD, USA.

Because we collected RGB photographs and destructive biomass samples at fewer
locations than proximal sensor collections, we first compared CROPSCAN derived biomass
and fractional green cover to the physical sample data (Figure S1). Then, because we
observed very strong relationships for both biophysical traits, we used the passive handheld
sensor-derived biophysical traits to compare as the “gold standard” to the remaining
sensors [65].



Sensors 2024, 24, 2339 10 of 25

To assess cover crop biophysical traits we used NDVI [66], which is defined as:

NDVI = (NIR − Red)/(NIR + Red) (2)

in combination with existing calibration equations for fractional green cover and biomass [18],
which have been shown to be highly correlated with winter cover crop biophysical traits prior
to index saturation [17–19]. Index saturation occurs as red reflectance has little variance in
moderate to high biomass plants while NIR reflectance increases in higher biomass plants
creating small or no increase in NDVI with increased biomass beyond saturation [67,68].
The saturation point may vary across active and passive sensors as reflectance values can
vary with different light sources [38]. For each of the five sensors, we calculated fractional
green vegetation cover and biomass using the following equations:

fractional green cover = −21.904 + 116.305 × NDVI (3)

ln(biomass) = 3.2022 + 5.3740 × NDVI (4)

which were developed for cereal cover crop samples with Landsat 5, Landsat 7, Landsat
8, and Harmonized Sentinel-2 SR NDVI imagery [18]. While indices improving on NDVI
have been proposed, many of these indices are based on the same fundamental visible to
NIR relationship as NDVI [67,69,70] and comparison of 9 multi-spectral indices showed
NDVI to be a top performer [17,21].

2.3. Growing Degree Days

Growing degree days (GDD) predict the timing of phenological milestones in plants [65].
The base temperature is set to a point where plants are unable to grow (Tbase), which varies
based on species. GDD were calculated using the formula:

GDD = [Tmax + Tmin)/2] − Tbase (5)

where Tmax and Tmin are daily maximum and minimum temperatures, and Tbase is 4◦

Celsius, a common base value for the winter cereal species included in this study [65].
Daily minimum and maximum were obtained from the National Oceanic and Atmospheric
Administration (NOAA) National Centers for Environmental Information Daily Summaries
Station located at Beltsville, MD, USA [66]. Daily mean temperatures below Tbase were set
to Tbase, and then base temperature was subtracted from this value.

The temperature during the sampling period was slightly above the climate normals
(10-year average) for the area (Figure 4). GDD accumulation from 15 November indicates
the relative warmth of the cover crop growing season (Figure 4, light gray). There was no
snow on the ground during either sampling date. In the 48 days between the sampling
dates mild freezing occurred, and a total of 70 GDD were accumulated (Figure 4, dark
gray). Importantly, <20 GDD accumulated and one freezing event occurred between the
6 December 2012, sensor collection and the 14 December 2012 biomass sampling. There
were also <20 GDD accumulated between the 10 January 2013, biomass sampling and 23
January 2013, sensor collection.

2.4. Statistical Analysis for Sensor Intercomparison

We used simple linear regression models for sensor-to-sensor comparison of red, NIR,
and NDVI values as well as for NDVI-calibrated fractional green vegetation cover and biomass
comparisons (Equations (2) and (3)) using the R Software Program v2023.09.1+494 [71]. For
each model we compared goodness of fit and error using the coefficient of determination
(adj. R2) and the root mean square error (RMSE). To compare how estimates of cover crop
biophysical traits varied between sensors, we used slope and intercept contrasts in the
“emmeans” package [72].



Sensors 2024, 24, 2339 11 of 25

To better compare NDVI values among sensors, we used passive handheld sensor
measurements as the “gold standard” as it is a self-calibrating proximal, sensor with
upward and downward facing sensors that account for incoming and reflected radiation
and can be used in partially cloudy conditions [44,65]. We compared the absolute value of
differences between reflectance values of each sensor and the CROPSCAN measurements
using the following equation:

differenced NDVI = |(Sensor NDVI − CROPSCAN NDVI)| (6)

This reduces the dimensionality of the dataset that is present due to large biomass and
NDVI variability among fields. Finally, we used analysis of variance (ANOVA) to test for
statistical differences among these absolute value NDVI estimates. We employed Tukey’s
post-hoc test to determine which sensors had statistically different NDVI values using a
95% confidence (p < 0.05).

3. Results

This study analyzed the comparability of red and NIR band and NDVI values among
several remote sensing measurements taken on the same day at similar times (Table 1).
On both 6 December 2012 and 23 January 2023, mid-day Crop Circle, CROPSCAN, RGB
photos, and Landsat 7 data were collected (Table 1). Additionally, 6 December 2012 featured
WorldView-2 data and 23 January 2013 featured SPOT 5 data.

3.1. Reflectance Comparisons of Satellite and Proximal Sensors

We compared satellite SR data to passive proximal sensor data CROPSCAN for two
bands (red and near infrared) that had similar bandwidths across all sensors. Correla-
tion between satellites and CROPSCAN red reflectance resulted in high accuracies (adj.
R2 ≥ 0.89 for all satellites) for both December and January samplings (Table 2). Within
these comparisons, we observed that satellite red bands overpredicted red reflectance of
CROPSCAN (slopes ranged from 1.08 to 1.187). Similarly, red reflectance between satellites
was highly correlated, with goodness of fit values between Landsat 7 and WorldView-2
and Landsat 7 and SPOT 5 of 0.96 for both dates (Table 2).

Table 2. Linear regression of red and near-infrared bands (NIR) and the normalized difference
vegetation index (NDVI) values of sensors on 6 December 2012 and 23 January 2013. Sensors included
are CROPSCAN, Crop Circle, Landsat 7 surface reflectance (SR), WorldView-2 SR, and SPOT 5 SR.
For comparisons with data from both December and January, all samples were combined prior to
analysis. Landsat 7 data from 23 January 2013 exclude pixels affected by clouds and cloud shadows.

Sensors
Bands, Date Slope Intercept adj. R2 RMSE

CROPSCAN vs. Landsat 7 SR

Red, 6 December & 23 January 1.199 −0.004 0.898 0.011
NIR, 6 December & 23 January 1.141 −0.005 0.935 0.034
NDVI, 6 December & 23 January 0.997 −0.004 0.952 0.041

CROPSCAN vs. WorldView-2 SR

Red, 6 December 1.080 −0.012 0.952 0.008
NIR, 6 December 1.069 −0.019 0.951 0.030
NDVI, 6 December 1.043 −0.012 0.988 0.020

CROPSCAN vs. SPOT 5 SR

Red, 23 January 1.674 −0.038 0.917 0.010
NIR, 23 January 1.200 −0.004 0.925 0.031
NDVI, 23 January 1.197 −0.121 0.959 0.036
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Table 2. Cont.

Sensors
Bands, Date Slope Intercept adj. R2 RMSE

CROPSCAN vs. Crop Circle

Red, 6 December & 23 January 0.659 0.018 0.804 0.015
NIR, 6 December & 23 January 2.601 −0.386 0.770 0.061
NDVI, 6 December & 23 January 0.870 0.203 0.956 0.038

Crop Circle vs. Landsat 7 SR

Red, 6 December & 23 January 1.771 −0.035 0.888 0.017
NIR, 6 December & 23 January 0.344 0.180 0.866 0.015
NDVI, 6 December & 23 January 1.130 −0.218 0.899 0.069

Crop Circle vs. WorldView-2 SR

Red, 6 December 1.522 −0.043 0.919 0.140
NIR, 6 December 0.340 0.166 0.918 0.013
NDVI, 6 December 1.159 −0.198 0.943 0.051

Crop Circle vs. SPOT 5 SR

Red, 23 January 1.880 −0.028 0.739 0.021
NIR, 23 January 0.407 0.177 0.759 0.021
NDVI, 23 January 1.281 −0.333 0.931 0.050

Landsat 7 SR vs. WorldView-2 SR

Red, 6 December 0.867 −0.002 0.959 0.006
NIR, 6 December 0.917 −0.007 0.971 0.020
NDVI, 6 December 1.019 0.004 0.977 0.028

Landsat 7 SR vs. SPOT 5 SR

Red, 23 January 1.099 −0.001 0.960 0.004
NIR, 23 January 1.189 −0.032 0.976 0.009
NDVI, 23 January 1.119 −0.071 0.984 0.016

For the near infrared bands, we observed high accuracies between satellites and
CROPSCAN proximal reflectance (adj. R2 = 0.94 for Landsat 7; adj. R2 = 0.95 for Worldview)
for SR imagery on 6 December (Table 2). However, these relationships were weaker between
CROPSCAN and Landsat 7 on 23 January (adj. R2 = 0.79) as several points (n = 17) were
eliminated in the Landsat 7 analysis due to cloud shadows, reducing the overall number
of sampling points available for comparison, in addition to the possibility that cloud
shadow effects may have been present in non-eliminated points. As with the red bands,
satellite NIR reflectance values were highly correlated to each other, with goodness of fit
values between Landsat 7 and WorldView-2 of 0.97 in December and goodness of fit values
between Landsat 7 and SPOT 5 in January of 0.98 (Table 2). When sampling points under
cloud shadows were not eliminated from analysis, relationships between Landsat 7 SR and
CROPSCAN degraded considerably, with goodness of fit (R2) falling from 0.90 to 0.86 for
red bands and 0.94 to 0.21 for NIR bands.

Additionally, satellite TOAR and SR band and NDVI values were measured against one
another and against proximal sensors (Tables 2 and 3, Figure 5). Landsat 7 and WorldView-2
NDVI had very high goodness of fit with CROPSCAN, 0.95 and 0.99, respectively (Table 2,
Figure 5). In both cases the slope of the line deviated only slightly, and the y-intercept was
close to zero. The relationship between Landsat 7 and WorldView-2 NDVI values were
highly correlated with an adjusted R2 of 0.97 and slope and intercept near 1:1 (Table 2).
Crop Circle was also highly correlated with satellite reflectance values (R2 of 0.90 to 0.94)
but showed consistently low-biased reflectance values as seen invariable slopes and the
large-magnitude intercept values (Table 2, Figure 5). Passive measurements of NDVI were
prone to saturation above 0.8 (Figure 5) while the active sensor (Crop Circle) NDVI values
were more linear (Figure 5G).
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Table 3. Linear regression of red and near-infrared bands (NIR) and the normalized difference
vegetation index (NDVI) values of sensors on 6 December 2012 and 23 January 2013. Sensors included
are CROPSCAN, Crop Circle, Landsat 7 top-of-atmosphere reflectance (TOAR), WorldView-2 TOAR,
and SPOT 5 TOAR. For comparisons with data from both December and January, all samples were
combined prior to analysis. Landsat 7 data from 23 January 2013 exclude pixels affected by clouds
and cloud shadows.

Sensors
Bands, Date Slope Intercept adj. R2 RMSE

CROPSCAN vs. Landsat 7 TOAR

Red, 6 December & 23 January 1.415 −0.038 0.895 0.011
NIR, 6 December & 23 January 1.203 −0.012 0.936 0.034
NDVI, 6 December & 23 January 1.053 0.012 0.950 0.041

CROPSCAN vs. WorldView-2 TOAR

Red, 6 December 2.603 −0.042 0.951 0.008
NIR, 6 December 2.323 −0.025 0.951 0.030
NDVI, 6 December 1.099 −0.001 0.988 0.020

CROPSCAN vs. SPOT 5 TOAR

Red, 23 January 2.042 −0.096 0.916 0.010
NIR, 23 January 1.298 −0.017 0.925 0.031
NDVI, 23 January 1.261 −0.074 0.954 0.037

Crop Circle vs. Landsat 7 TOAR

Red, 6 December & 23 January 2.087 −0.085 0.884 0.017
NIR, 6 December & 23 January 0.363 0.178 0.868 0.015
NDVI, 6 December & 23 January 1.198 −0.202 0.905 0.067

Crop Circle vs. WorldView-2 TOAR

Red, 6 December 3.672 −0.086 0.920 0.014
NIR, 6 December 0.741 0.164 0.920 0.012
NDVI, 6 December 1.225 −0.188 0.948 0.049

Crop Circle vs. SPOT 5 TOAR

Red, 23 January 2.293 −0.093 0.739 0.021
NIR, 23 January 0.440 0.172 0.759 0.021
NDVI, 23 January 1.359 −0.288 0.941 0.046

Landsat 7 TOAR vs. WorldView-2 TOAR

Red, 6 December 1.793 0.000 0.960 0.005
NIR, 6 December 1.887 −0.004 0.971 0.019
NDVI, 6 December 1.016 −0.001 0.978 0.026

Landsat 7 TOAR vs. SPOT 5 TOAR

Red, 23 January 1.111 0.055 0.959 0.003
NIR, 23 January 1.205 −0.034 0.976 0.009
NDVI, 23 January 1.131 −0.049 0.987 0.013
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Figure 5. Linear regression of NDVI measurements from proximal sensors CROPSCAN (orange)
and Crop Circle (teal) with satellite sensors Landsat 7 (A,B), SPOT 5 (C,D), and Worldview-2 (E,F)
at two processing levels (surface reflectance [SR, (A,C,E)], top-of-atmosphere reflectance [TOAR,
(B,D,F)]) on 6 December 2012 (circles) and 23 January 2013 (diamonds). The dashed line represents
a 1:1 relationship with an intercept of zero. Panel (G) represents NDVI values from CROPSCAN
and Crop Circle on both dates. The solid circles and diamonds are data points that were free of
clouds. The hollow diamonds represent areas that are covered by cloud shadow in the 23 January
2013, Landsat 7 image and were excluded from the linear regression analysis. Linear regression and
R2 values can also be found in Table 2.
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3.2. Relation of Satellite Processing Level and Proximal Sensors

We also assessed how SR and TOAR corrections varied among satellites and the
coincident proximal sensor collections. Overall, we observed that satellite SR measurements
were more tightly clustered with CROPSCAN than with Crop Circle. Crop Circle NDVI
had the largest deviations in measurements, with values that were consistently below the
1:1 line (Figures 5 and S1). We also observed higher SR NDVI compared to TOAR due
to increased reflectance in the NIR and decreased reflectance measurements in the red
band (Tables 2 and 3, Figure 5). As with individual bands relationships in the visible and
near-infrared, R2 values for NDVI were identical between satellite TOAR and SR, but slope
and intercept values varied slightly with NDVI underpredicted in satellite TOAR (Table 3,
Figure 5).

ANOVA post-hoc tests were used to evaluate the calculated absolute value differences
in NDVI between CROPSCAN values (i.e., the “gold standard”) and the other sensors
(Figure 6) collected on both sampling dates. The Landsat 7 TOAR from cloudy points
showed the greatest deviation from CROPSCAN and from other sensors (Figure 6). Simi-
larly, Crop Circle showed one of the larger deviations from CROPSCAN NDVI and from
the other sensors and processing levels. The difference in NDVI between CROPSCAN
and Crop Circle reduced as Crop Circle NDVI values increased, with average differences
above NDVI = 0.8 of only 0.06. This may indicate delayed NDVI saturation of Crop Circle
compared to CROPSCAN. Landsat 7 SR Cloudy differenced NDVI also varied significantly
from non-cloudy Landsat 7 SR points. We observed no statistical differences between SR
NDVI values derived from any of the three satellites. Landsat 7 TOAR clear observations
and WorldView-2 did not statistically vary in differenced NDVI, but SPOT 5 TOAR differed
from both other satellite sensors.
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are represented by letters above each sensor group. SR—surface reflectance, TOAR—top-of-
atmosphere reflectance.
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3.3. Sensor Intercomparisons of Cover Crop Biophysical Traits

December cover crop fractional green vegetative cover varied between 8 and 99 percent,
and January collections varied between 18 and 98 percent. This wide range of fractional
green vegetative cover values provided a suitable basis for evaluation of proximal- and
satellite-derived estimates of fractional cover. We then used Equations (3) and (4) to
derive satellite estimates of fractional green cover and biomass and compared the resulting
values. Results from our comparisons of fractional green cover from SamplePoint and
CROPSCAN were highly accurate with low error (adj. R2 = 0.96, RMSE = 5.52%; Figure S1,
SF2). CROPSCAN also had the strongest relationship with in situ biomass of any sensor
considered in this study (Figure S2 SF3). In this section, we only use SR and not TOAR
imagery as comparisons between SR and TOAR were made in the preceding section.

Results from our fractional green cover models (Figure 7) demonstrated that all sen-
sors produced high accuracies (adj. R2 = 0.95–0.99) and low errors (RMSE = 2.37–4.76%).
All SR slopes slightly overpredicted fractional green cover (slopes = 1.09–1.42), while
Crop Circle slope underpredicted fractional green cover (slope = 0.87). We observed that
SPOT 5 SR had statistically lower intercepts than either Landsat 7 SR (T-ratio = −2.95,
p = 0.02) and WorldView-2 SR (T-ratio = −4.29, p = 0.0002). Importantly, we observed that
Crop Circle intercepts were consistently much larger than any other sensor resulting in
underprediction of fractional green cover when using Equation (2) (T-ratios = 11.90–17.64,
p < 0.0001) and implying that Crop Circle would require development of a separate cali-
bration to successfully measure fractional green cover. There was also a deviation in the
Crop Circle estimations above 70% also noted in the NDVI comparison above NDVI of
0.75 (Figures 5G and 7). This may indicate that the passive sensors (CROPSCAN, Landsat,
SPOT, WorldView) saturate at a lower NDVI value than the active sensor (Crop Circle).

We also collected destructive biomass samples for a subset of sampled points (n = 36),
which ranged from 75–4202 kg ha−1. Results from our comparisons of destructively
sampled biomass and CROPSCAN estimated biomass had a high accuracy (adj. R2 = 0.80)
and low error (RMSE = 0.05 or the equivalent of ~56 kg ha−1; Figure S2), when applying
logarithmic scaling. Relationships when using raw biomass values on a non-logarithmic
scale, demonstrated previously identified saturation issues ~1500 kg ha−1 [17,21] and as a
consequence had lower accuracy and higher error when compared to CROPSCAN derived
biomass (adj. R2 = 0.60; RMSE = 1123 kg ha−1). Therefore, to increase the number of data
points for comparison to other sensors we employed CROPSCAN derived biomass as our
outcome (or “truth”) variable in the comparisons below.

Results from our de-logged biomass models (Figure 8) demonstrated that all sen-
sors and processing levels had high accuracies (adj. R2 = 0.96–0.99) and low errors
(RMSE = 114.36–351.43 kg ha−1). SPOT 5 and WorldView-2 slopes (3.31 and 2.87, respec-
tively) slightly under-predicted biomass and were not statistically different from one
another. Similar to fractional green cover results, we observed that Crop Circle intercepts
were consistently larger than any other sensor resulting in under-prediction of biomass
(T-ratios = 6.88–9.21, p < 0.0001). Again, we note a deviation from the linear relation-
ship at high biomass with Crop Circle, a difference expected as NDVI saturation occurs
in CROPSCAN earlier than Crop Circle (Figure 8). SPOT 5 intercepts were consistently
higher than other sensors resulting in potential over-prediction of biomass and fractional
groundcover when observed biomass or fractional groundcover is low (~<400 kg ha−1 or
~45%, respectively).
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Figure 7. Linear regression of CROPSCAN fractional green cover and sensor-derived fractional green
cover estimates. Sensors include Crop Circle (n = 70), Landsat 7 surface reflectance (SR) (n = 70),
WorldView-2 (WV2) SR (6 December; n = 35) and SPOT 5 SR (23 January; n = 35). Sensor estimated
fractional green cover was derived from the winter equation %GVC = −21.904 + 116.305 × NDVI
described in Thieme et al. (2020) [18]. The dashed line represents a 1:1 relationship with an intercept
of zero. Cloudy observations (n = 17) present in the Landsat 7 SR values (represented with a
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Figure 8. CROPSCAN-derived biomass compared to biomass derived from multiple sensors on
6 December 2012 and 23 January 2013. Sensors included are Crop Circle, Landsat 7 surface reflectance
(SR), WorldView-2 SR (6 December) and SPOT 5 SR (23 January). Biomass was sampled on 14
December 2012 and 10 January 2013. Linear regressions were performed using estimated biomass
derived from the following equation: ln(biomass) = 3.2022 + 5.3740 × NDVI for winter biomass
described in Thieme et al. (2020) then delogged for the equations shown here [18]. The dashed line
represents a 1:1 relationship with an intercept of zero.

4. Discussion

Strong similarities were found between passive sensors (CROPSCAN, Landsat 7 SR,
WorldView-2 SR, and SPOT 5 SR) in their spectral characteristics (Table 2; Figure 5), and
their estimates of cover crop biophysical traits (Figures 7 and 8). These results demonstrate
that under clear sky conditions there is high correlation not only between ground-based
proximal sensors and moderate- to fine-spatial resolution satellite platforms, but also
high correlation among the satellite SR products. In practical terms, this indicates that a
variety of passive multispectral satellites and proximal instruments provide comparable
values, particularly for NDVI, which has important implications for quantifying and
mapping winter cover crop biophysical traits. For instance, categorizing cover crops by
the amount of biomass or fractional green cover is useful on a landscape scale, where
high biomass accumulation provides greater water quality benefits compared to areas
with lower biomass accumulation [15]. The calibration equations (Equations (3) and (4))
used to estimate cover crop biophysical traits from multispectral data were originally
derived from a combination of in situ biomass samples, fractional green cover samples, and
passive multispectral SR imagery from several moderate resolution satellites (Landsat 5,
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Landsat 7, Landsat 8, Harmonized Landsat Sentinel-2) [18]. Since WorldView-2 and SPOT
5 sensors have comparable red and near infrared bandwidths with the moderate resolution
satellites used to develop the calibration equations (Table 1), we tested our ability to extend
the application of the calibration equations to fine scale imagery from WorldView-2 and
SPOT 5. Our results suggest that SR products from Landsat 7 and WorldView-2 could
largely be used interchangeably to estimate cover crop biophysical traits, which could
be useful in addressing spatiotemporal issues present in fine- to moderate-scale satellite
platforms. Additionally, the newer WorldView-3 satellite features nearly identical red
and NIR bands as WorldView-2 providing further WorldView-Landsat interoperability.
However, although SPOT-5 imagery had similar accuracies, errors, and slopes to other
spaceborne sensors used in this study, its intercept was significantly lower. This indicates
that as observed groundcover and biomass are lower SPOT-5 estimates would be biased
high (Figures 7 and 8).

In comparing individual bands, we found increased NIR reflectance measurements
in SR compared to TOAR (average reflectance difference 0.018 SPOT, 0.015 Landsat,
0.259 WorldView-2). Red reflectance measurements were smaller for SPOT SR (average
−0.015) and Landsat SR (−0.012) and slightly larger in WV SR (0.040) compared to TOAR.
The combination of shifts in these bands led to higher NDVI measurements calculated
from SR (average difference 0.041 SPOT, 0.034 Landsat, 0.025 WV) compared to TOAR, a
shift typical in atmospheric corrections over vegetated areas [73] (Figure 5). These NDVI
differences demonstrate that even for images with minimal haze/high visibility, atmo-
spheric correction is critical for achieving accurate surface reflectance retrievals. The largest
differences in band reflectance values was seen in Crop Circle, potentially as the active
sensor can have band value differences that occur when the distance of the sensor changes
relative to the target (cover crop) and was designed for NDVI measurements rather than
single band values [35]. A correction would need to be applied to compare band reflectance
values directly between Crop Circle and the passive sensors included in this study [35].

Although we observed very strong relationships between SR NDVI and derived
biophysical traits and CROPSCAN, we noted several important differences between the
active sensor (Crop Circle) and all of the passive sensors. Crop Circle NDVI values were
consistently lower than any passive sensor regardless of processing level (Figure 5) which
is similar to results found in previous comparisons of passive and active proximal sensor
NDVI [35–37]. This may be due to a longer wavelength red band center in Crop Circle
(670 nm) than the passive sensors (645–660 nm) which is the start of the red-edge portion
of the electromagnetic spectrum (670–737 nm), an area noted for being more sensitive to
plant quantity and health than the visible red (650–670 nm) [74,75]. The lower NDVI values
in Crop Circle led to consistent under-predictions of cover crop fractional green cover
(Figure 7) and biomass (Figure 8) using Equations (3) and (4), respectively. These results
indicate that the existing equations for deriving cover crop biophysical traits from NDVI
are not appropriate for Crop Circle without an intercept correction. Existing equations
for deriving cover crop biophysical traits from NDVI draw from passive sensor data
with slightly different band centers and are not appropriate for Crop Circle without an
intercept correction [16–18,76]. Additionally, active remote sensing signals can be affected
by collection rate, plant canopy characteristics, distance from the plant canopy, and device
temperature [35,63]. The low NDVI values returned from Crop Circle are likely due to
lower NIR signal returns compared with sunlight for the passive sensors. as seen in the
large NIR slope difference between CROPSCAN and Crop Circle in Table 2. Crop Circle
may be appropriate for isolated analysis as it is shown to have consistent relationships
with fractional cover and biomass [35], but in this study did not have comparable SR
measurements to passive proximal and space-based sensors. Therefore, these results
suggest that new calibration equations would be needed for deriving fractional green cover
and biomass from active spectral sensors such as Crop Circle, or, alternatively, estimating a
robust intercept offset term.
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We also observed that the automated cloud and cloud shadow masks delivered with
Collection-2 Landsat 7 SR products did not detect many of the popcorn clouds and shadows
they cast in the 16 December image (Figure 4), indicating that visually identifying cloud
shadows prior to analysis could be used as an additional quality check. While all cloud
masking routines are prone to some error [25], improvements to cloud masks are expected
for updated Collection-2 processing of Landsat 8/9 imagery [77] in addition to improved
geometric and atmospheric correction [78] compared to Collection-2 Landsat 7 imagery
used in this study. Sentinel-2, a moderate resolution spaceborne satellite, is prone to similar
cloud mask errors as seen here, although errors are reduced when using the Harmonized
Landsat Sentinel-2 (HLS) data product with improved cloud masking and atmospheric
correction [79].

The observed red and NIR band differences in sampling points under cloud shadows
can be explained due to differences in atmospheric scattering at various wavelengths.
Clouds block and absorb nearly all near-infrared light and there is minimal scattering from
the atmosphere to the surface leading to low reflectance values. Accordingly, the coefficient
of determination (R2) between Landsat 7 and SPOT 5 fell from 0.98 to 0.15 for NIR bands
from the shadowed pixels. In the shorter green and red wavelengths, increased atmospheric
scattering, both from the haze in the atmosphere and diffuse radiation from the surface,
can result in a fairly strong signal as scattered light fills in shadowed areas [24], explaining
the lesser degree of degradation of the red shadowed reflectance (0.96 to 0.85) relative to
the NIR shadowed reflectance. This is in accordance with research by Simpson and Sitt [80]
demonstrating that cloud shadows exert a greater influence on near-infrared bands than
visible bands. Although the effect is less pronounced in the relationship between Landsat 7
SR and CROPSCAN NDVI with goodness of fit (R2) falling from 0.95 to 0.92 and average
absolute difference in NDVI increasing by 0.03, the effect is amplified when estimating
biomass (RMSE increased from 259 kg ha−1 to 426 kg ha−1) or fractional cover (RMSE
increased from 4.8 to 6.4%) derived from NDVI. If we only examine the sampling points
under cloud shadows the RMSE of estimated biomass is 758 kg ha−1 and the RMSE of
fractional cover is 9.8%. This emphasizes the potential impact of cloud mask errors when
cloud shadows are not detected.

When satellite imagery was converted to SR and compared with proximal data, inter-
cepts were closer to zero and slopes were closer to the 1:1 line than when TOAR imagery
was used (Tables 2 and 3). The exceptions were sampling points covered by cloud shadow
as in the 23 January Landsat 7 image. When these points were included in the analysis,
near infrared measurements showed a poor relationship between satellite and proximal
sensors and between both satellite images. When the cloud shadow points were removed,
correlations increased between Landsat 7 and passive proximal sensor readings from R2 of
0.91 to 0.95. These findings highlight the need for both atmospheric corrections along with
high quality cloud and cloud shadow detection. NDVI between satellites and proximal
sensors also exhibited high goodness of fit among sensors on both dates (Figures 5 and 6).
For the 23 January Landsat 7 imagery, conversion from TOAR to SR followed by calculation
of NDVI resulted in a better match between satellite and proximal sensors. Although
conversion to SR reduced some of the effects of cloud shadows on Landsat 7 NDVI, the
effects were amplified in estimates of biophysical characteristics with doubled and tripled
error estimates (RMSE) for fractional cover biomass, respectively, in the cloud shadow
pixels compared to estimates from CROPSCAN. The impacts of cloud shadow were clearly
demonstrated in this study. Further study of these impacts could focus on updates to
cloud masking procedures comparing Collection-1 vs. Collection-2 processing for indi-
vidual Landsat 7 sensors, and comparison of cloud masking procedures for Landsat 7
compared to Landsat 8 and 9 with different routines for cloud masking and atmospheric
correction [48,78]. The inclusion of a cirrus band on Landsat 8–9 instruments has been
demonstrated as beneficial for improving the accuracy of cloud screening [78,81] as has
subpixel shift detection for sensors that lack thermal bands such as Sentinel-2 [82].
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Atmospheric correction of TOAR satellite data to SR resulted in reflectance values
that were closer to proximal SR than were TOAR data. This is important for categorizing
cover crops and estimating biophysical traits based on their NDVI values. There was
a high goodness of fit between percent vegetative groundcover and NDVI values for
all proximal sensor and satellite measurements. Although the conversion to SR did not
improve correlation to fractional cover for individual dates, the higher consistency for NDVI
for SR processing is needed for time series applications. Conversion to SR is important
when comparing across satellite sensors, particularly for commercial image sources like
SPOT 5 and WorldView-2 that are often delivered in TOAR format.

Data in this study were collected under relatively clear sky conditions to ensure that
adequate irradiance reached the sensors. To acquire clear satellite imagery and be able to
capture ground conditions with proximal sensors, mostly clear conditions are necessary.
SR data comparisons from satellites might be more important under conditions of low
atmospheric visibility where there is increased atmospheric interference and calibration
to ground-based sensors is more challenging. NDVI in particular is impacted by aerosol
effects if they are not properly accounted for through atmospheric correction [83]; which can
be explained by enhanced scattering at red wavelengths negatively biasing NDVI values.
Similarly, water vapor and thin cloud formations also negatively bias NDVI if unaccounted
for by atmospheric correction as these constituents enhance absorption at near infrared
wavelengths [84]; in turn reducing near infrared reflectance and NDVI. Assessment of
sensor performance under low visibility conditions could improve our understanding of
data usability with these atmospheric conditions.

Importantly, our findings suggest that SR products calculated from multispectral
satellite sensors and on-the-go proximal sensors are highly correlated with each other and
can be used interchangeably when assessing cover crop biomass and fractional groundcover.
The various sensors produced high accuracy predictions of cover crop traits under clear-sky
conditions and performed similarly. However, an NDVI intercept correction specific to
active on-the-go proximal sensors could enable characterization of biophysical traits and
eliminate the need for clear sky conditions.

5. Conclusions

The results of this study demonstrate that SPOT-5, Landsat-7, Worldview-2, and CROP-
SCAN sensors were highly correlated with each other for both visible and near-infrared
bands. CROPSCAN had high goodness of fit with cover crop biomass and groundcover
(adj. R2 = 0.80 and 0.96; 56 kg ha−1 and RMSE = 5.52%, respectively). SR data were con-
sistently closer to a 1:1 relationship with CROPSCAN than TOAR and were successfully
used to estimate cover crop biomass (adj. R2 = 0.95–0.99, RMSE = 114.4–351.4 kg ha−1)
and groundcover (adj. R2 = 0.95–0.99, RMSE = 2.37%–4.76%). The ability to adapt biomass
and groundcover estimates across different platforms enables us to understand cover crop
performance over larger areas and better link cover crop performance to environmental
outcomes [2]. This has important implications for current efforts to map cover crop imple-
mentation and performance using imagery from multispectral satellite platforms. Data
from passive and active proximal sensors can be collected as needed by farmers in clear
or cloudy conditions and combined with satellite imagery to provide a more complete
temporal understanding of cover crop growth and performance. This integration can aid in
overcoming lingering issues of clouds and cloud shadows limiting the availability of data
in the winter and spring or failing to be masked and negatively impacting data quality.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/s24072339/s1, Figure S1. Linear regression of fractional groundcover
(%) and NDVI measurements from satellite sensors Landsat 7 (b,c), SPOT 5 (d), and Worldview-2
(a) and proximal sensors CROPSCAN (e,f). Satellite and proximal sensor values were collected on 6
December 2012 (a,c,e) and 23 January 2013 (b,d,f). Fractional groundcover data were derived from
RGB photos collected on 14 December 2012 (a,c,e) and 23 January 2013 (b,d,f) and processed using
SamplePoint. The dashed line represents a 1:1 relationship with an intercept of zero. The solid
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circles are data points that were free of clouds. The hollow circles represent areas that are covered by
cloud shadow in the 23 January 2013, Landsat 7 image and were excluded from the linear regression
analysis. Linear regression and R2 values are printed on each panel; Figure S2. Linear regression of
biomass (kg/ha) and NDVI measurements from satellite sensors Landsat 7 (b,c), SPOT 5 (d), and
Worldview-2 (a) and proximal sensors CROPSCAN (e,f). Satellite and proximal sensor values were
collected on 6 December 2012 (a,c,e) and 23 January 2013 (b,d,f). Biomass data were collected in situ
collected on 14 December 2012 (a,c,e) and 10 January 2013 (b,d,f). The dashed line represents a 1:1
relationship with an intercept of zero. The solid circles are data points that were free of clouds. The
hollow circles represent areas that are covered by cloud shadow in the 23 January 2013, Landsat 7
image and were excluded from the linear regression analysis. Linear regression and R2 values are
printed on each panel.

Author Contributions: Conceptualization, K.P. and W.D.H.; methodology, K.P., W.D.H. and G.W.M.;
software, K.P., J.J. and A.T.; validation, K.P., J.J. and A.T.; formal analysis, K.P., A.T., J.J., B.T.L. and
W.D.H.; investigation, K.P., A.T., J.J., B.T.L. and W.D.H.; resources, W.D.H. and G.W.M.; data curation,
K.P., A.T. and J.J.; writing—original draft preparation, A.T. and K.P.; writing—review and editing,
A.T., K.P., J.J., B.T.L., W.D.H. and G.W.M.; visualization, A.T. and J.J.; supervision, W.D.H.; project
administration, K.P. and A.T.; funding acquisition, W.D.H. and G.W.M. All authors have read and
agreed to the published version of the manuscript.

Funding: Funding was provided by the USDA Choptank River Conservation Effects Assessment
Project (CEAP) and the USGS Land Change Science Program.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Acknowledgments: Thank you to Megan Parry, Mouhamad Diabate, and Antonio Pereira who
helped with the fieldwork and laboratory analysis that contributed to this study. Additional thanks to
Christopher Justice and Ralph Dubayah at University of Maryland, College Park, for their guidance;
and Bryan Vinyard with USDA-ARS for his statistical advice. This research was a collaboration
between the USDA-ARS Hydrology and Remote Sensing Laboratory, the USGS, and the University
of Maryland, College Park. Any use of trade, firm, or product names is for descriptive purposes only
and does not imply endorsement by the U.S. Government.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Maryland Department of Agriculture. MACS 2017 Annual Report; Maryland Department of Agriculture: Annapolis, MD,

USA, 2017.
2. Hively, W.D.; Lee, S.; Sadeghi, A.M.; McCarty, G.W.; Lamb, B.T.; Soroka, A.; Keppler, J.; Yeo, I.-Y.; Moglen, G.E. Estimating the

Effect of Winter Cover Crops on Nitrogen Leaching Using Cost-Share Enrollment Data, Satellite Remote Sensing, and Soil and
Water Assessment Tool (SWAT) Modeling. J. Soil Water Conserv. 2020, 75, 362–375. [CrossRef]

3. Meisinger, J.J.; Hargrove, W.L.; Mikkelsen, R.L.; Williams, J.R.; Benson, V.W. Effects of Cover Crops on Groundwater Quality.
Cover Crop. Clean Water Soil Water Conserv. Soc. Ankeny Iowa 1991, 266, 793–799.

4. Dabney, S.M.; Delgado, J.A.; Reeves, D.W. Using Winter Cover Crops to Improve Soil and Water Quality. Commun. Soil Sci. Plant
Anal. 2001, 32, 1221–1250. [CrossRef]

5. Jian, J.; Du, X.; Reiter, M.S.; Stewart, R.D. A Meta-Analysis of Global Cropland Soil Carbon Changes Due to Cover Cropping. Soil
Biol. Biochem. 2020, 143, 107735. [CrossRef]

6. Poeplau, C.; Don, A. Carbon Sequestration in Agricultural Soils via Cultivation of Cover Crops—A Meta-Analysis. Agric. Ecosyst.
Environ. 2015, 200, 33–41. [CrossRef]

7. Muhammad, I.; Sainju, U.M.; Zhao, F.; Khan, A.; Ghimire, R.; Fu, X.; Wang, J. Regulation of Soil CO2 and N2O Emissions by
Cover Crops: A Meta-Analysis. Soil Tillage Res. 2019, 192, 103–112. [CrossRef]

8. Ator, S.W.; Denver, J.M. Understanding the Nutrients in the Chesapeake Bay Watershed and Implications for Management and Restoration:
The Eastern Shore; Circular 1406; U.S. Geological Survey: Reston, VA, USA, 2015; 72p. [CrossRef]

9. Dauer, D.M.; Ranasinghe, J.A.; Weisberg, S.B. Relationships between Benthic Community Condition, Water Quality, Sediment
Quality, Nutrient Loads, and Land Use Patterns in Chesapeake Bay. Estuaries 2000, 23, 80–96. [CrossRef]

https://doi.org/10.2489/jswc.75.3.362
https://doi.org/10.1081/CSS-100104110
https://doi.org/10.1016/j.soilbio.2020.107735
https://doi.org/10.1016/j.agee.2014.10.024
https://doi.org/10.1016/j.still.2019.04.020
https://doi.org/10.3133/cir1406
https://doi.org/10.2307/1353227


Sensors 2024, 24, 2339 23 of 25

10. Talberth, J.; Selman, M.; Walker, S.; Gray, E. Pay for Performance: Optimizing Public Investments in Agricultural Best Management
Practices in the Chesapeake Bay Watershed. Ecol. Econ. 2015, 118, 252–261. [CrossRef]

11. USDA NRCS. Environmental Quality Incentives Program (EQIP) Fact Sheet; 2019. Available online: https://www.nrcs.usda.gov/
sites/default/files/2022-10/EQIP-fact-sheet.pdf (accessed on 1 October 2023).

12. Bowman, M.; Lynch, L. Government Programs That Support Farmer Adoption of Soil Health Practices. Choices 2019, 34, 1–8.
13. Wallander, S.; Smith, D.; Bowman, M.; Claassen, R. Cover Crop Trends, Programs, and Practices in the United States; Economic

Information Bulletin 222; U.S. Department of Agriculture Economic Research Service: Washington, DC, USA, 2021; p. 33.
[CrossRef]

14. Goffart, D.; Curnel, Y.; Planchon, V.; Goffart, J.-P.; Defourny, P. Field-Scale Assessment of Belgian Winter Cover Crops Biomass
Based on Sentinel-2 Data. Eur. J. Agron. 2021, 126, 126278. [CrossRef]

15. Hively, W.D.; Lang, M.; McCarty, G.W.; Keppler, J.; Sadeghi, A.; McConnell, L.L. Using Satellite Remote Sensing to Estimate
Winter Cover Crop Nutrient Uptake Efficiency. J. Soil Water Conserv. 2009, 64, 303–313. [CrossRef]

16. Jennewein, J.; Lamb, B.T.; Hively, W.D.; Thieme, A.; Thapa, R.; Goldsmith, A.; Mirsky, S.B. Integration of Satellite-Based Optical
and Synthetic Aperture Radar Imagery to Estimate Winter Cover Crop Performance in Cereal Grasses. Remote Sens. 2022, 14, 2077.
[CrossRef]

17. Prabhakara, K.; Hively, W.D.; McCarty, G.W. Evaluating the Relationship between Biomass, Percent Groundcover and Remote
Sensing Indices across Six Winter Cover Crop Fields in Maryland, United States. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 88–102.
[CrossRef]

18. Thieme, A.; Yadav, S.; Oddo, P.C.; Fitz, J.M.; McCartney, S.; King, L.; Keppler, J.; McCarty, G.W.; Hively, W.D. Using NASA Earth
Observations and Google Earth Engine to Map Winter Cover Crop Conservation Performance in the Chesapeake Bay Watershed.
Remote Sens. Environ. 2020, 248, 111943. [CrossRef]

19. Thieme, A. Multispectral Satellite Remote Sensing Approaches for Estimating Cover Crop Performance in Maryland and
Delaware. Ph.D. Thesis, University of Maryland, College Park, MD, USA, 2022.

20. Xu, M.; Lacey, C.G.; Armstrong, S.D. The Feasibility of Satellite Remote Sensing and Spatial Interpolation to Estimate Cover Crop
Biomass and Nitrogen Uptake in a Small Watershed. J. Soil Water Conserv. 2018, 73, 682–692. [CrossRef]

21. Prabhakara, K. Factors Influencing Remote Sensing Measurements of Winter Cover Crops. Ph.D. Thesis, University of Maryland,
College Park, MD, USA, 2016. Available online: http://hdl.handle.net/1903/18970 (accessed on 16 January 2024).

22. Yuan, M.; Burjel, J.C.; Isermann, J.; Goeser, N.J.; Pittelkow, C.M. Unmanned Aerial Vehicle–Based Assessment of Cover Crop
Biomass and Nitrogen Uptake Variability. J. Soil Water Conserv. 2019, 74, 350–359. [CrossRef]

23. USDA NASS. Quick Stats Database; 2022. Available online: https://www.nass.usda.gov/Quick_Stats/ (accessed on 5 October 2023).
24. Zhu, Z.; Woodcock, C.E. Object-Based Cloud and Cloud Shadow Detection in Landsat Imagery. Remote Sens. Environ. 2012, 118,

83–94. [CrossRef]
25. Skakun, S.; Wevers, J.; Brockmann, C.; Doxani, G.; Aleksandrov, M.; Batič, M.; Frantz, D.; Gascon, F.; Gómez-Chova, L.; Hagolle,
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