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Abstract: For direction-of-arrival (DOA) estimation problems in a sparse domain, sparse Bayesian
learning (SBL) is highly favored by researchers owing to its excellent estimation performance. How-
ever, traditional SBL-based methods always assign Gaussian priors to parameters to be solved,
leading to moderate sparse signal recovery (SSR) effects. The reason is Gaussian priors play a similar
role to l2 regularization in sparsity constraint. Therefore, numerous methods are developed by adopt-
ing hierarchical priors that are used to perform better than Gaussian priors. However, these methods
are in straitened circumstances when multiple measurement vector (MMV) data are adopted. On this
basis, a block-sparse SBL method (named BSBL) is developed to handle DOA estimation problems
in MMV models. The novelty of BSBL is the combination of hierarchical priors and block-sparse
model originating from MMV data. Therefore, on the one hand, BSBL transfers the MMV model to a
block-sparse model by vectorization so that Bayesian learning is directly performed, regardless of the
prior independent assumption of different measurement vectors and the inconvenience caused by
the solution of matrix form. On the other hand, BSBL inherited the advantage of hierarchical priors
for better SSR ability. Despite the benefit, BSBL still has the disadvantage of relatively large computa-
tion complexity caused by high dimensional matrix operations. In view of this, two operations are
implemented for low complexity. One is reducing the matrix dimension of BSBL by approximation,
generating a method named BSBL-APPR, and the other is embedding the generalized approximate
message passing (GAMB) technique into BSBL so as to decompose matrix operations into vector or
scale operations, named BSBL-GAMP. Moreover, BSBL is able to suppress temporal correlation and
handle wideband sources easily. Extensive simulation results are presented to prove the superiority
of BSBL over other state-of-the-art algorithms.
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1. Introduction

DOA estimation has advanced obviously due to several technique leaps in the last
four decades, and the attained achievements are widely applied to communications, radar,
sonar, and navigation. To be specific in communication [1,2], DOA estimation is essential in
channel estimation, wireless communications, microphone localization, vehicular commu-
nications [3], Reconfigurable Intelligent Surfaces (RIS), and corresponding research focuses,
including the RIS-based vehicle DOA estimation method [4–6].

Among the technique leaps in DOA estimation, compressed sensing (CS) and sparse re-
covery (SR) have played important roles in the last decade [7,8]. Compared with traditional
algorithms based on beamforming or subspace techniques [9–13], sparsity-based estimators
have achieved technique leaps since CS and SR can mitigate the requirements for high
signal-to-noise ratios (SNRs) and abundant snapshots [14]. Moreover, it has been proven
that sparsity-based estimators have remarkable advantages, such as good robustness to
correlation and high estimation accuracy.
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In recent years, relevant studies on DOA estimation mainly focus on sparse array configu-
ration [15–17] or sparsity-based method innovation [18,19]. For the latter, three categories can
be summarized out of massive documents. (i) The first is based on norm optimization [20–28],
(ii) the second is exploiting basis pursuit [29,30], and (iii), and the third is utilizing sparse
Bayesian learning (SBL) [31–47]. In particular, SBL-based methods are popular and highly
favored owing to incomparable comprehensive performance beyond both norm optimization
and basis pursuit [48].

From a Bayesian perspective, sparse Bayesian learning is a probabilistic method that
achieves lp-norm minimization by assigning sparse priors to the signal of interests for sparse
signal recovery (SSR). In the single measurement vector (SMV) model, SBL can retain a desirable
property of the l0-norm diversity measure, i.e., the global minimum is achieved at the maximally
sparse solution [48] and produced a more limited constellation of local minima. In practice, the
most used is the MMV model, so MSBL is developed [49]. Theoretically, in [49], the adopted
empirical Bayesian prior plays an important role in estimating a convenient posterior distribution
over candidate basis vectors based on the concept of automatic relevance determination. That
implies that the used priors assigned to signals of interest can enforce a common sparsity
profile and consistently place the prominent posterior mass on the appropriate region for
sparse recovery. In other words, the adopted priors dominate the sparsity performance of
SBL and indicate the ability to carry out lp-norm minimization. Despite this, it is still unclear
which prior is the best for sparse recovery, but a hierarchical Bayesian framework representing
Laplace priors has been proven to be prominent in [50]. Therefore, hierarchical priors are
widely attractive, and many corresponding works are developed and presented. For instance,
hierarchical synthesis lasso (HSL) priors for representing the same small subset of features are
created for enforcing a proper sparsity profile of signal vectors [46], and hierarchical priors are
adopted to consider unknown mutual coupling and off-grid errors. No matter how hierarchical
priors are used, SBL has to face the difficulty caused by the MMV model. To be specific, SBL
needs prior assumption, i.e., the uncorrelation between different measurement vectors, while the
assumption may not be satisfied in practice. Moreover, the solution of matrix form is not always
easy to handle and is even prohibitive due to the large complexity during the learning process.
On this basis, vectorizing the MMV model seems to be an optimal selection since the solution
can be transformed into the vector form. A successful realization is developed in [32], and the
used block-sparse model indeed contributes much to the whole designed algorithm, although
the main focus is the real-valued transformation. Regretfully, that work adopts Gaussian
priors rather than hierarchical priors, so its sparsity performance is bound to be limited, no
matter how impressive and excellent the running efficiency is. Recently, there have been a
few documents that show the combination of SBL and deep learning (DL) [51,52], attracting
widespread attention among numerous researchers. With big data and artificial intelligence, DL
gradually arises and applies to image processing, signal processing, classification, recognition,
etc. The obvious advantages of DL are its adaptability to complicated practical cases and its
high running efficiency. In signal processing, many researchers use derived iterative processes
to design corresponding neural networks so that the proposed algorithms operate with low
complexity burdens, and the designed networks are named deep unrolled neural networks. For
example, an SBL-based algorithm is unfolded into a layer-wise structure with a set of introduced
trainable parameters in [51], which is beneficial for channel estimation. In addition, a model-
driven DL detector is developed based on variational Bayesian inference in [52]. Based on deep
unrolled networks, the detector is able to capture channel features that may be important but
neglected by model-based methods, including SBL-based methods. Although the algorithms
based on both SBL and DL are not applied to DOA estimation, the disadvantages lie in the
inexplicability caused by data-driven DL techniques. In fact, the lack of theoretical guarantee is
always constraining the development and application of DL. Collectively, SBL-based methods
face a conflict between prominent sparsity performance achieved by hierarchical priors with
low computational complexity. Methods based on both SBL and DL are pending further
development, especially in theoretical explicability.
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In this paper, we creatively solve the contradiction between sparsity performance with
complexity burdens in SBL-based methods. On the one hand, hierarchical priors are still adopted
to indirectly enhance sparsity. On the other hand, the increased complexity essentially caused
by the hierarchical priors in MMV models is tactfully reduced by two operations based on
the transformed block-sparse model. In fact, the balance of both sparsity and complexity is
the main innovation point in this paper. Not only that, but the block-sparse model provides
great convenience for complexity reduction by decreasing matrix dimensions in terms of matrix
operation properties, and hierarchical priors create an opportunity to embed the generalized
approximate message passing (GAMB) technique for solving marginal distributions so as to
reduce complexity greatly.

To be specific, as the thick and inevitable MMV model restricts the SBL to some extent, we
directly vectorize the MMV model, resulting in a block-sparse model that is convenient to carry
out Bayesian learning. Unluckily, the vectorization expands the model dimensions, leading
to large complexity in later Bayesian learning. Despite this, block-sparse Bayesian learning,
named BSBL, is still analytically derived and developed. Moreover, it is worth noting that the
complexity of BSBL is reluctantly acceptable owing to our reasonable design of the iterative
process. In order to further achieve complexity reduction, two operations are introduced. One
is based on matrix operation properties to decrease the matrix dimensions. Specifically, we
analyze the complexity of each iterative formula and select the one containing operations of large
computation burdens. Later, the selected formulas of BSBL are simplified and approximated
by terms of operational properties of Kronecker products and some reasonable preconditions,
so the faster version is named BSBL-APPR. The other is based on the famous generalized
approximate message passing (GAMB) technique. GAMP is developed to solve approximate
marginal posteriors, which are exactly applicable in BSBL since BSBL is derived by iterative
hyperparameters originating from marginal distributions. Therefore, the GAMP technique is
able to be embedded into BSBL, and the only additional work is to derive the iterative process
of GAMP so that GAMP is useful in our block-sparse model. Moreover, GAMP is able to
decompose the high dimensional matrix operations into vector or scale operations, which
achieves complexity reduction well. BSBL with embedded GAMP is named BSBL-GAMP. In
addition, many SBL-based methods consider little about the intractable wideband cases. Since
wideband sources are able to be regarded as a superposition of many narrowband sources,
we extend the proposed BSBL to wideband cases. The whole algorithm for wideband cases is
derived and finished. Last but not least, the temporal correlation, which is not often considered
in SBL, is modeled in the block-sparse model. Therefore, all the above methods are able to
suppress temporal correlation.

In summary, the contributions of this paper are as follows:

• Hierarchical priors are adopted to enhance sparsity, and a block-sparse model is gen-
erated to carry out Bayesian learning easily. Hierarchical priors play an important
role in lp-norm optimization and outperform Gaussian priors in sparsity constraint,
indirectly resulting in better sparsity performance. In the MMV case, the equivalently
transformed block-sparse model laid a foundation for complexity reduction. Combin-
ing hierarchical priors with the block-sparse model allows for the balance of sparsity
and complexity;

• Two operations are created to reduce complexity based on the block-sparse model.
One exploits matrix operation properties to approximate high-dimension operations
of derived formulas in the iterative process, while the other leverages the GAMP
technique to simplify the iteration for computing marginal distributions, so that the
matrix operations are decomposed into vector or scale operations;

• For wideband sources appearing in practice, the proposed BSBL is extended to be
applicable in terms of the decomposition of wideband signals into narrowband ones.
Moreover, the temporal correlation is considered by introducing a temporally corre-
lated matrix into our data model. The designed iterative process of BSBL is able to be
robust to temporal correlation.
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The rest of this paper is organized as follows. In Section 2, the DOA estimation
problem is abstracted from radar detection. Furthermore, the DOA estimation is equivalently
transformed into an SSR problem based on the exploited block-sparse model. In Section 3,
the traditional SBL based on our model is briefly introduced and derived, and, its defects
are presented by simple analysis. In Section 4, the proposed BSBL, BSBL-APPR, BSBL-
GAMP, and BSBL for wideband cases are analytically derived, and corresponding iterative
processes are presented. In Section 5, the performance of the proposed methods is evaluated
comprehensively. In Section 6, conclusions are drawn.

For the sake of convenience, the notations are listed in Table 1.

Table 1. List of notations.

Symbol Description

(·)T Transpose

(·)∗ Complex conjugate

(·)H Hermitian transpose

R Set of real numbers

C Set of complex numbers

CN (x|µ, Σ) x Obeys a complex Gaussian distribution with mean µ and variance Σ

⊗ Kronecker product

� Hadamard product

IN N × N identity matrix

0 Vector with all zero elements

const Constant

w.r.t. With respect to

p(a|b) Conditional probability density distribution of variable a w.r.t.
variable b

p(a; b) Probability density distribution of variable a w.r.t. parameter b

q(·) Probability density distribution

〈·〉q(·) Expectation with respect to q(·)

diag(·) Transforming matrix/vector into vector/matrix diagonally

i.i.d. Independent and identically distributed

vec(·) Vectorization function

unvec(·) Matrixing function

d·e Top integral function

mod(a, b) Function to find the remainder of a divided by b

An Matrix A to the power of n

tr(·) Function to obtain the trace of a matrix

Ai·,A·j The i-th row of matrix A and the j-th column of matrix A

Ai,j The element in the i-th row and j-th column of matrix A

‖ · ‖p Obtain lp norm for each row of a matrix

‖ · ‖p.q Obtain lp norm after finding lp norm

E(·) Expectation

1L×L L× L Matrix with all elements 1

| · | Function to find absolute value or determinant

arg(·) Function to find phase
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2. Problem Reformulation

In radar or sonar detection, for communication, localization, and navigation, the antenna
array receiver can receive different signals from various directions. Taking far-field radar detec-
tion as an example, adjacent antenna sensors have the same phase difference due to the plane
electromagnetic wave if every adjacent couple has the same distance. Thus, a steer vector can
be abstracted as a(θ) = [1, exp(−j2πd sin(θ)/λ), . . . , exp(−j2π(N− 1)d sin(θ)/λ)]T ∈ CN×1.
θ is the direction of the source signal. λ is the wavelength. d is the distance between
adjacent sensors. N is the number of sensors. For all the K sources from different directions{

θK
k=1
}

, a steer matrix is yielded as A = [a(θ1), . . . , a(θK)] ∈ CN×K. A is vital in DOA
estimation because it implies the directions of all the sources based on the whole antenna
array composed of N sensors. Radio frequency signals were received by an antenna array,
whose sensors transfer individually received signals to independent channels, in which
down conversion is conducted to produce intermediate-frequency signals, i.e., baseband
signals. Later, using prior signals to execute matched filtering at time l, the receiver can
gain a complex reflection factor of all the K sources, i.e., s(l) = [s1, . . . , sk, . . . , sK]

T ∈ CK×1.
sk and ∀k = 1, . . . , K are the products of complex reflection coefficients and Doppler shifts.
Generally, radar takes pulse accumulation to enhance signal processing ability when the
echo pulses are in the same coherent processing interval (CPI), in which little fluctuation
happens between different originally received signals and processed signals. In other
words, sources are motionless, and the processing signals are nearly consistent during a
CPI. Last but not least, the noises of N channels in a CPI are indispensable and assumed to
be mutually independent. Overall, the above entire process is briefly shown in Figure 1,
where the signal model is expressed as

X = AS + N. (1)

where X = [x1, . . . , xL] ∈ CN×L is the ideal data of N channels in a CPI containing L
snapshots. S = [s(1), . . . , s(l), . . . , s(L)] ∈ CK×L is the complex reflection factor matrix of
the K sources in a CPI. N = [n1, . . . , nL] is the assumed noise matrix with each entry nl
obeying an i.i.d. Gaussian distribution denoted as CN (0, α−1).
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Let
{

θ
M
m=1

}
be M-grid sampling that covers spatial range [−π/2, π/2]. If sources are

located on the grid exactly, (1) can be transformed into a sparse model expressed as

X = AP + N. (2)

where A = [a(θ1), . . . , a(θM)] ∈ CN×M is the sparsely extended manifold matrix with the
angle set

{
θ

M
m=1

}
generated by the M-grid sampling. As K � M holds in most cases,

P ∈ CM×L is the zero-padding version of S, with each row representing a potential source
that maps the M-grid spatial angular sampling.

Patently, processed data in a CPI are equivalently transformed into (2), which are
typically sparse data in the MMV model. Now, the objective is to solute the sparse P with
known data X and steer matrix A. It is worth emphasizing two mainstream methods to
handle (2). One is dealing with (2) directly, which is more difficult but has less computa-
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tional complexity. The other is solving the vectorization (2), which is simple and intuitive
but has large complexity caused by the vectorization. In this paper, the latter is selected
because we are able to reduce the complexity tactfully. Without loss of generality, (2) is
vectorized as

x = Φp + n. (3)

where x = vec(XT) ∈ CNL×1, Φ = A ⊗ IL ∈ CNL×ML, p = vec(PT) ∈ CML×1, and
n = vec(NT)∈ CNL×1. After the vectorization, a block-sparse vector p is yielded since the
original P contains many zero rows. In addition, the matrix dimensions grow after the
vectorization, leading to large complexity, but the problem will be solved by our approxi-
mation eventually. Based on the block-sparse model shown in (3), the DOA estimation is
transformed into a sparse recovery problem, i.e., to solve p with known x and Φ.

3. Canonical SBL Method

To solve p in (3), the canonical SBL method is introduced and briefly shown as follows.
According to (3), the likelihood is

p(x|p; α) ∼ CN (Φp, α−1INL). (4)

The prior of p is supposed to be

p(p; γi, ∀i = 1, . . . , M) ∼ CN (0, Σ0). (5)

where γi is a hyperparameter representing a potential source, and Σ0 is expressed as

Σ0 =

γ1IL
. . .

γMIL

. (6)

Based on the Bayesian formula, the posterior of p is

p(p|x; α, γi, ∀i) =
p(x|p; α)p(p; γi, ∀i)∫
p(x|p; α)p(p; γi, ∀i)dp

. (7)

The posterior of (7) is rigorously solved as a Gaussian distribution with mean and
covariance as follows:

µp0 = αΣp0ΦHx. (8)

Σp0 = Σ0 − Σ0ΦH(α−1I + ΦΣ0ΦH)
−1

ΦΣ0. (9)

The likelihood, prior, and posterior are uniquely determined by the hyperparameter
set Θ = {γi, α, ∀i}. According to the maximum a posterior (MAP) criterion, the Expectation–
Maximization (EM) algorithm [53] is used to maximize p(p|x; Θ). Here, p is treated as a
hidden variable to obtain the relationship between the hyperparameter set (i.e., Θnew) and
the old one (i.e., Θold) by maximizing the following term.

Q(Θnew) = Ep|x,Θold [ln p(p|x; Θ)]. (10)

Omitting the specific derivation, the final iteration solutions of the hyperparameters
are expressed as

γnew
i =

tr[Σi
p0 + µi

p0(µ
i
p0)

H
]

L
, ∀i. (11)

αnew =
NL

‖x−Φµp0‖
2
2 + tr(Σp0ΦHΦ)

. (12)
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where Σi
p0 = Σp0([(i− 1)L + 1 : iL], [(i− 1)L + 1 : iL]) and µi

p0 = µp0([(i− 1)L + 1 : iL]).
The canonical SBL algorithm uses (8), (9), (11), and (12) iteratively to estimate γ

until convergence, and the final γ = [γ1, . . . , γM]T is regarded as the solved p. However,
recalling the whole process, two limitations are present: (i) the single Gaussian priors cannot
enhance sparsity well and (ii) the computational complexity O(M3L3), dominated by (12),
is usually unacceptable in practice. Consequently, we develop an SBL-based method to
resolve (3) in this paper.

4. Proposed Methods
4.1. BSBL

Without loss of generality, the SBL-based methods are required to construct a Bayesian
framework and then complete the corresponding Bayesian inference to develop an itera-
tive algorithm.

4.1.1. Bayesian Framework

Bayesian framework is composed of prior distributions of observed data and un-
known variables.

Remark 1. According to the MAP criterion, priors are essential for SBL-based methods because the
iterative process to be constructed is based on the derivatives of different variables so as to ensure the
maximal posterior. Therefore, the prior distributions need to be clarified first.

In this paper, the prior distribution (i.e., likelihood) of the observed data x is similar to
(4), i.e.,

p(x|p; α,γ) ∼ CN (Φp, α−1INL). (13)

For better sparsity performance, we propose hierarchical priors containing Gaussian
and Gamma priors. The reason for selecting Gamma priors is that the Gamma distribution
is the conjugate prior to the inverse variance of the Gaussian distribution [54]. As usual,
the prior p obeys the i.i.d. complex Gaussian distribution, i.e.,

p(p|γ) ∼ CN (0, Σ). (14)

where γ = [γ1, . . . , γM]T , γ−1 = [γ−1
1 , . . . , γ−1

M ]
T

, and Σ = diag(γ−1) ⊗ B. Note that
B ∈ CL×L representing temporally correlated level is not equal to IL in the canonical
SBL method. Therefore, the proposed method will be able to suppress temporal correla-
tion, which will be tested and verified in Section 5. B is generally modeled as a Toeplitz
matrix, i.e.,

B =


1 β · · · βL−1

β 1 · · · βL−2

...
...

. . .
...

βL−1 βL−2 · · · 1

. (15)

where β is the complex correlation coefficient with the amplitude |β| ∈ [0, 1] and phase
arg(β) ∈ [0, 2π].

γ obeys a Gamma distribution, i.e.,

p(γ; a, b) =
M

∏
m=1

ba

Γ(a)
γa−1

m e−bγm . (16)

where Γ(a) =
∫ ∞

0 xa−1 exp(−x)dx. a and b are the shape parameter and scale parameter.
Then, a Gamma prior is applied to α so that

p(α; c, d) =
cd

Γ(c)
αc−1e−dα. (17)
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where c and d are the corresponding shape and scale parameters, respectively.
It is worth emphasizing that the true prior distribution of p can be solved with

Student’s t-distribution, which promotes sparsity better than the traditional Gaussian
distribution [47].

4.1.2. Bayesian Inference

Bayesian inference is necessary for the eventual iterative algorithm, and the crux
is to deduce the posterior. Unfortunately, according to our Bayesian framework, the
posterior is intractable. However, we just need to maximize the posterior by maximizing the
evidence procedure, regardless of the analytical closed form of the posterior. Coincidentally,
OGSBI [54] provides an example to maximize evidence, i.e., the marginal probability of the
observed data x

p(x) =
∫ ∫ ∫

p(x|p; α,γ)p(p|γ)p(γ; a, b)p(α; c, d)dpdγdα. (18)

But, (18) is still intractable, so maximizing evidence seems to help little. However,
variational inference is able to achieve it. It is necessary to explain variational inference
before later derivation. Variational inference defines a function as a mapping that takes a
function as the input and returns the value of the function as the output [55]. In the entropy
field, the function is a probability distribution. When variational inference is applied to
(18), the parameter vector (i.e., unknown stochastic variables) no longer appears because
the parameters are absorbed into new probability distributions. Thus, (18) can be converted
to an addressable form.

To be specific, we adopt variational Bayesian inference (VBI) [56] to address (18) by
introducing a distribution q(Θ), where Θ = {p,γ, α} is the parameter set of unknown
variables. The introduced q(Θ) can simplify (18) and allow the logarithmic form of (18) to
be divided into two parts, i.e.,

ln p(x) =
∫

q(Θ) ln
p(x, Θ)

q(Θ)
dΘ

Sensors 2024, 24, 2336 8 of 30 
 

 

where β  is the complex correlation coefficient with the amplitude [0,1]β ∈  and phase 

arg( ) [0,2 ]β π∈ . 
γ obeys a Gamma distribution, i.e., 

1

1
( ; , ) .

( )
m

aM
ba

m
m

bp a b e
a

γγ −−

=

=
Γ∏γ  (16) 

where 1

0
( ) exp( )aa x x dx

∞ −Γ = −  . a  and b  are the shape parameter and scale parameter. 

Then, a Gamma prior is applied to α  so that 

1( ; , ) .
( )

d
c dcp c d e

c
αα α − −=

Γ
 (17) 

where c and d  are the corresponding shape and scale parameters, respectively.  
It is worth emphasizing that the true prior distribution of p can be solved with Stu-

dent’s t-distribution, which promotes sparsity better than the traditional Gaussian distri-
bution [47]. 

4.1.2. Bayesian Inference 
Bayesian inference is necessary for the eventual iterative algorithm, and the crux is 

to deduce the posterior. Unfortunately, according to our Bayesian framework, the poste-
rior is intractable. However, we just need to maximize the posterior by maximizing the 
evidence procedure, regardless of the analytical closed form of the posterior. Coinci-
dentally, OGSBI [54] provides an example to maximize evidence, i.e., the marginal prob-
ability of the observed data x   
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But, (18) is still intractable, so maximizing evidence seems to help little. However, 
variational inference is able to achieve it. It is necessary to explain variational inference 
before later derivation. Variational inference defines a function as a mapping that takes a 
function as the input and returns the value of the function as the output [55]. In the en-
tropy field, the function is a probability distribution. When variational inference is applied 
to (18), the parameter vector (i.e., unknown stochastic variables) no longer appears be-
cause the parameters are absorbed into new probability distributions. Thus, (18) can be 
converted to an addressable form. 

To be specific, we adopt variational Bayesian inference (VBI) [56] to address (18) by 
introducing a distribution ( )q Θ , where , ,αΘ = {p γ }  is the parameter set of unknown 

variables. The introduced ( )q Θ  can simplify (18) and allow the logarithmic form of (18) 
to be divided into two parts, i.e.,  
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where ( , ) ( | ; , ) ( | ) ( ; , ) ( ; , )p p p p a b p c dα α=x Θ x p γ p γ γ   is the product of priors and 
( | )p Θ x  is the posterior. The specific derivation from (18) to (19) is complicated [55], so it 

is omitted here. ( , )F q Θ   is the lower bound of ln ( )p x   because ( || ) 0KL q p ≥   is the 

Kullback–Leibler divergence between ( )q Θ  and the posterior ( | )p Θ x .  
The significance of (19) is transforming the intractable ln ( )p x  into an approximated 

tractable ( , )F q Θ  , so that maximizing ln ( )p x   is approximately equal to maximizing 
( , )F q Θ . The lower bound ( , )F q Θ  is a functional in terms of ( )q Θ . In other words, 

F(q,Θ)

−
∫

q(Θ) ln
p(Θ|x)
q(Θ)

dΘ
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KL(q||p)

. (19)

where p(x, Θ) = p(x|p; α,γ)p(p|γ)p(γ; a, b)p(α; c, d) is the product of priors and p(Θ|x) is
the posterior. The specific derivation from (18) to (19) is complicated [55], so it is omitted
here. F(q, Θ) is the lower bound of ln p(x) because KL(q||p) ≥ 0 is the Kullback–Leibler
divergence between q(Θ) and the posterior p(Θ|x).

The significance of (19) is transforming the intractable ln p(x) into an approximated
tractable F(q, Θ), so that maximizing ln p(x) is approximately equal to maximizing F(q, Θ).
The lower bound F(q, Θ) is a functional in terms of q(Θ). In other words, F(q, Θ) is a map-
ping that takes as input a function q(Θ) and returns the value of the function as the output.
Similar to the function derivative, maximizing F(q, Θ) requires some optimization over
specific forms of q(Θ). In Bayesian inference, the commonly used form is factorization [56].

As performed in [56], to achieve the maximized F(q, Θ), q(Θ) is factorized into inde-
pendent parts, i.e.,

q(Θ) = ∏
i

qi(Θi) = q(p)q(γ)q(α). (20)

where q(p), q(γ), and q(α) correspond marginal distributions of the hidden variables p, γ,
and α. qi(Θi) is expressed as

qi(Θi) =
exp〈ln p(x, Θ)〉j 6=i∫

exp〈ln p(x, Θ)〉j 6=idΘi
. (21)
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(21) is hard to compute, but its logarithmic form is easy to obtain, i.e.,

ln qi(Θi) = 〈ln p(x, Θ)〉j 6=i + const. (22)

Using (22), marginal distributions q(p), q(γ), and q(α) can be solved.
Step 1: ln q(p) satisfies

ln q(p) = 〈ln p(x|p, α)p(p;γ)〉q(γ)q(α) + const. (23)

Utilizing (13), (14), and (23), q(p) can be solved as a Gaussian distribution, with mean
and variance given by

µp = 〈α〉ΣpΦHx. (24)

Σp = (〈α〉ΦHΦ + 〈Σ〉−1)
−1

. (25)

Please refer to Appendix A for the proof. In general, (24) and (25) are equivalently
transformed into beingless complex according to the properties of the matrix in [46].

µp = 〈Σ〉ΦH(〈α〉−1INL + Φ〈Σ〉ΦH)
−1

x. (26)

Σp = 〈Σ〉 − 〈Σ〉ΦH(〈α〉−1INL + Φ〈Σ〉ΦH)
−1

Φ〈Σ〉. (27)

Step 2: ln q(γ) satisfies

ln q(γ) = 〈ln p(p;γ)p(γ; a, b)〉q(p)q(α) + const. (28)

Using (14), (16), and (28), q(γ) is identified as a Gamma distribution, whose shape
parameter, the m− th scale parameters, and the m− th element of the mean are as follows:

a = a +
1
2

. (29)

bm = b +
1
2

〈
pH

mB−1pm

〉
. (30)

〈γm〉 =
a

bm
. (31)

where pm ∈ CL×1 is the m− th entry of p = [pT
1 , . . . , pT

M]
T and m = 1, 2, . . . , M. Please

refer to Appendix B for the proof. (30) can be simplified further, i.e.,

bm = b +
1
2
‖(B−1 + 1L×L − IL)� (µpm

µH
pm

)‖
1,1

+
1
2

diag(B−1 � Σpm
). (32)

where µpm
is the m− th entry of µp = [µT

p1
, . . . ,µT

pM
]
T , Σpm

=
〈
γ−1

m
〉
B, and m = 1, 2, . . . , M.

Please refer to Appendix C for details of the derivation.
Step 3: ln q(α) satisfies

ln q(α) = 〈ln p(x|p, α)p(α; c, d)〉q(p)q(γ) + const. (33)

Using (13), (17), and (33), q(α) is also solved as a Gamma distribution with shape
parameter c, scale parameter d, and mean 〈α〉 as follows:

c = c +
NL
2

. (34)

d = d +
1
2

〈
(x−Φp)H(x−Φp)

〉
= d +

1
2
(‖x−Φµp‖

2
2 + tr(ΣpΦHΦ)). (35)
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〈α〉 = c
d

. (36)

Please refer to Appendix D for the proof. For the convenience of iteration, (35) is
further simplified as

d = d +
1
2
(‖x−Φµp‖

2
2 + tr(ΣpΦHΦ)) = d +

1
2
‖x−Φµp‖

2
2 +

1
2
〈α〉−1[ML− tr(Σp〈Σ〉−1)]. (37)

Overall, q(p), q(γ), and q(α) are solved, and, alternately, are updating (26), (27), (31),
(36) until some convergence criterion is satisfied.

Remark 2. According to [57], maximizing the lower bound F(q, Θ) guarantees convergence of the
iterative optimization since each iteration leads to a nondecreasing value of F(q, Θ). Therefore, the
proposed method must converge at some point.

4.1.3. Off-Grid Correction

Recalling (2), P with angle set
{

θ
M
m=1

}
is yielded by spatial discretization, causing

estimation errors inevitably if sources are off grid. On this basis, the array steering vector of
the i− th source is Taylor expanded around the nearest sampling grid denoted as θmi , i.e.,

a(θi) ≈ a(θmi ) + a1(θmi )∆θi. (38)

where ∆θi = θi − θmi ∈ [− 1
2‖θm − θm+1‖, 1

2‖θm − θm+1‖] and a1(θmi ) = a(θmi )
′. Patently,

the final objective is to solve ∆θi. Following the above similar principle based on Taylor
expansion, Φ can be extended as

Φ(λ) = Φ + Φ’diag(λ). (39)

where λ = [λ1, . . . , λML]
T with the i− th element is λi ∈ [− 1

2‖θm − θm+1‖, 1
2‖θm − θm+1‖]

and ∀i = 1, . . . , ML. To solve λ, (3) can be used, i.e.,

E(x−Φ(λ)p) = x−Φ(λ)µp = 0. (40)

Combining (40) with (39), the following equation holds.

λ� µp = [(Φ’)
H

Φ’]
−1

(Φ’)
H
(x−Φµp). (41)

Using (41), λ is solved and is still block sparse; thus, we squeeze it as

λsqu = [λ
squ
1 , . . . , λ

squ
M ]

T
, where the m− th element λ

squ
m = sum{λ([(m− 1)L + 1 : mL])}/L.

Here, if λ
squ
m exceeds the interval [−1

2‖θm − θm+1‖, 1
2‖θm − θm+1‖],±1

2‖θm − θm+1‖will be as-

signed to it. Letting the preliminary estimated DOA value vector be θest1 = [θ̂1, . . . , θ̂k, . . . , θ̂K]
T

,
the final DOA vector, denoted as θest2, is solved as follows:

θest2 = θest1 + λsqu,est. (42)

where λsqu,est = [λ
squ
m1 , . . . , λ

squ
mk , . . . , λ

squ
mK ]

T
, λ

squ
mk is the corresponding angle compensation

for θ̂k. Using (42), grid errors are eliminated.
Overall, the whole BSBL algorithm is completed and summarized in Algorithm 1.
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Algorithm 1. The proposed BSBL algorithm.

Initialization
(i) set the first iterative number k = 0, p(0) = ‖AHX‖2.
(ii) assign a, b, c and d very small values (ensure uninformative distributions).
(iii) preset error tolerance ε and maximal iterative number kmax.

Repetition
while (‖p(k+1) − p(k)‖2/‖p(k)‖2 > ε or k < kmax) do
(i) compute µp and Σp according to (26) and (27).
(ii) compute 〈Σ〉 and 〈α〉 according to (31) and (36).
(iii) Regard γ as p(k).
(iv) k = k + 1.
end while

Refinement
(i) use the final p to obtain θest1.
(ii) use the final µp to solve λ according to (41).
(iii) obtain θest2 according to (42).

Output The final DOA values.

Compared with the canonical SBL method, BSBL achieves better sparsity performance
and lower computational complexity. According to the maximal number of complex multi-
plications, the complexity of BSBL, dominated by (26) (or rather Φ〈Σ〉ΦH), is O(M2NL3),
less than O(M3L3) of the canonical SBL method.

However, BSBL will still suffer heavy computational burdens when L or M is large.
Therefore, we must seek some techniques to reduce computational complexity.

4.2. BSBL-APPR

Obviously, the large complexity is mainly caused by high-dimensional matrix op-
erations that contain massive useless zero (or near-zero) operations. Automatically, the
simplest perspective is to exploit some approximation to shrink the matrix dimensions,
generating the first faster version called BSBL-APPR.

Recalling the entire algorithm, the high dimensions are essentially yielded by comput-
ing (26), (27), and (37). For µp in (26), the corresponding approximation is

µp = 〈Σ〉ΦH(〈α〉−1INL + Φ〈Σ〉ΦH)
−1

x

= (
〈
Γ−1〉⊗ B)(A⊗ IL)

H
[〈α〉−1INL + (A⊗ IL)(

〈
Γ−1〉⊗ B)(A⊗ IL)

H
]−1vec(XT)

≈ (
〈
Γ−1〉AH ⊗ B)[(〈α〉−1IN + A

〈
Γ−1〉AH

)
−1
⊗ B]vec(XT)

= [
〈
Γ−1〉AH

(〈α〉−1IN + A
〈
Γ−1〉AH

)
−1
⊗ B2]vec(XT)

= vec(B2XT [
〈
Γ−1〉AH

(〈α〉−1IN + A
〈
Γ−1〉AH

)
−1

]
T
).

(43)

where Γ−1 = diag(γ−1). The derivation process follows Kronecker–Product properties, i.e.,
(A⊗ B)H = AH ⊗ BH , (A⊗ B)(C⊗D) = AC⊗ BD, and vec(ABC) = (CT ⊗A) vec(B).
The approximation exactly holds if 〈α〉−1 = 0 or B = IL. To be specific, the approximation
is reasonable if high SNRs or low ow correlation coefficient levels are adopted. In fact, the
two conditions (or at least one) are easy to meet in practice.

Likewise, for Σp in (27), the approximation is

Σp = 〈Σ〉 − 〈Σ〉ΦH(〈α〉−1INL + Φ〈Σ〉ΦH)
−1

Φ〈Σ〉
=
〈
Γ−1〉⊗ B− (

〈
Γ−1〉⊗ B)(A⊗ IL)

H
[〈α〉−1INL + (A⊗ IL)(

〈
Γ−1〉⊗ B)(A⊗ IL)

H
]
−1

(A⊗ IL)(
〈
Γ−1〉⊗ B)

≈
〈
Γ−1〉⊗ B− (

〈
Γ−1〉AH ⊗ B)[(〈α〉−1IN + A

〈
Γ−1〉AH

)
−1
⊗ B](A

〈
Γ−1〉⊗ B)

=
〈
Γ−1〉⊗ B−

〈
Γ−1〉A−1

(〈α〉−1IN + A
〈
Γ−1〉AH

)
−1

A
〈
Γ−1〉⊗ B3.

(44)
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Similarly, for d in (37), its approximation is

d = d+ 1
2(‖x−Φµp‖

2
2 + tr(ΣpΦHΦ))

≈ d+ 1
2‖x−Φµp‖

2
2 +

1
2tr{(

〈
Γ−1〉⊗B)(AHA⊗ I)− [

〈
Γ−1〉A−1

(〈α〉−1IN +A
〈
Γ−1〉AH

)
−1

A
〈
Γ−1〉⊗B3](AHA⊗ I)}

= d+ 1
2‖x−Φµp‖

2
2 +

1
2tr{(

〈
Γ−1〉AHA⊗B)− [

〈
Γ−1〉A−1

(〈α〉−1IN +A
〈
Γ−1〉AH

)
−1

A
〈
Γ−1〉AHA⊗B3]}.

(45)
After the approximation, BSBL-APPR is completed. Its concrete iterative steps are

omitted here since the process is the same as BSBL, except for the calculation of µp, Σp, and
d by (43)–(45).

Since the approximation operations have been performed, the computational com-
plexity of BSBL-APPR, dominated by A

〈
Γ−1〉AH , is O(M2N) less than O(M2NL3), which

theoretically verifies the higher efficiency of BSBL-APPR.
Even so, the complexity of BSBL-APPR still seems to be intolerable when dense sam-

pling is adopted, i.e., M is large enough. Additionally, there exist several operations with
many zero (or near-zero) elements, e.g., A

〈
Γ−1〉AH and

〈
Γ−1〉⊗ B. For lower complexity,

the most effective method is to decompose matrix operations into vector and even scalar
operations so as to selectively avoid useless computation. Fortunately, a technique, named
generalized approximate message passing (GAMB), exactly achieves that.

4.3. BSBL-GAMP

GAMP is a technique developed to solve approximate marginal posteriors with low
complexity based on the central limit theorem [58]. To briefly explain the principle of the
GAMP technique, (3) is rewritten in scalar form.

xi = Φi·p + ni, ∀i = 1, . . . , NL. (46)

where xi and ni are the i− th entries of x and n. Let zi = Φi·p, p = [p1, . . . , pj, . . . , pML]
T ,

and j = 1, . . . , ML. Given the known measurement matrix Φ and the observed vector x,
the objective is to obtain the estimation of p.

Each xi is connected to pj by Φ, and vice versa. xi and pj are defined as the input node
and the output node, respectively. The association between them is called an edge. Input
nodes and output nodes pass messages to each other along the edges. The original message
passing (MP) technique is to keep passing messages (i.e., probability distributions) with
respect to pj until convergence. Based on MP, GAMP is the extension for low complexity
since it passes only important messages that mainly affect the approximated marginal
posteriors of p.

Overall, the GAMP technique is selected to speed up our algorithm for two motiva-
tions. (i) It passes messages from one node to another, enforcing scalar operations with low
complexity. (ii) It can also compute approximate marginal posteriors of p, which allows
GAMP to be embedded into the proposed BSBL.

To apply GAMP to our used block-sparse data model, we must derive it again. Along
the line of the common procedures of GAMP, there are two important approximate marginal
posteriors to consider. One is

p(zi|x, υz
i , τz

i ,η) =
p(xi|zi,η)CN

(
zi|υz

i , τz
i
)∫

z
p(xi|zi,η)CN

(
zi|υz

i , τz
i
)
dz

. (47)

for approximating p(zi|x,η), i = 1, 2, . . . , NL, where η = {γ, α}. υz
i and τz

i are quantities to
be updated. The other is

p(pj|x, υ
p
j , τ

p
j ,η) =

p(pj|η)CN (pj|, υ
p
j , τ

p
j )∫

p
p(pj|η)CN (pj|, υ

p
j , τ

p
j )dp

. (48)
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for approximating p(pj|x,η), j = 1, 2, . . . , ML, where υ
p
j and τ

p
j are quantities to be up-

dated. Given the model and priors, it is easy to obtain p(xi|zi,η) = CN (xi|zi, α−1) and
p(pj|η) = CN (pj|0, γ−1

j1
β j2,j2), where β j2,j2 is the j2 − th row, j2 − th is the column element

of B, and (j1, j2) =

{
(m, L), i f j = mL

(dj/Le, mod(j, L)), else
, ∀m = 1, . . . M. j1 = 1, . . . , M, j2 = 1, . . . , L.

Similar to (7), (47) and (48) are easily identified as Gaussian distributions.

p(zi|x, υz
i , τz

i ,η) = CN (zi|µz
i , φz

i ). (49)

p(pj|x, υ
p
j , τ

p
j ,η) = CN (pj|µ

p
j , φ

p
j ). (50)

where µz
i =

υz
i +αxiτ

z
i

1+ατz
i

and φz
i =

τz
i

1+ατz
i

are the mean and variance of p(zi|x, υz
i , τz

i ,η), while

µ
p
j =

υ
p
i β j2,j2

β j2,j2+γj1
τ

p
j

and φ
p
j =

τ
p
j β j2,j2

β j2,j2+γj1
τ

p
j

are the mean and variance of p(pj|x, υ
p
j , τ

p
j ,η). Please

refer to Appendix E for details of the derivation. Then, it is required to determine two
scalar functions denoted as gin(·) and gout(·), where gin(·) is equal to the posterior mean
µ

p
j of pj, i.e.,

gin(υ
p
j , τ

p
j ,η) = µ

p
j =

υ
p
j β j2,j2

β j2,j2 + γj1 τ
p
j

. (51)

The corresponding posterior variance is

τ
p
j

∂

∂υ
p
j

gin(υ
p
j , τ

p
j ,η) = φ

p
j =

τ
p
j β j2,j2

β j2,j2 + γj1 τ
p
j

. (52)

gout(·) satisfies

gout(υ
z
i , τz

i ,η) =
1
τz

i
(µz

i − υz
i ) =

1
τz

i
(

υz
i + αxiτ

z
i

1 + ατz
i
− υz

j ). (53)

The corresponding posterior variance is

τz
i

∂

∂υz
i

gout(υ
z
i , τz

i ,η) =
−ατz

i
1 + ατz

i
. (54)

So far, the derivation of GAMP is completed. Note that the variance of (52) becomes
a vector (equivalent to a diagonal matrix), while Σp of BSBL (or BSBL-APPR) is still a
normal matrix. From this perspective, BSBL-GAMP is generated by the most thorough
approximation, resulting in the least complexity. As shown in Algorithm 2, the GAMP
algorithm is summarized.

Intuitively, only µp and diagonalized Σp could be updated in the GAMP algorithm.
For hyperparameter α, its update process will still lead to relatively large complexity if
computed by (36). Here, α is rewritten as

〈α〉 = c + NL/2

d + 1
2‖x−Φµp‖

2
2 +

M
∑

i=1
(Σp)i·(Φ

HΦ)·i

. (55)

Overall, the second faster version, called BSBL-GAMP, is eventually yielded by em-
bedding the GAMP algorithm into BSBL. Specific steps are summarized in Algorithm 3.
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Algorithm 2. The proposed GAMP algorithm.

Initialization
(i) set ŝi = 0, k = 0, input γ and α.

(ii) use (22) to compute µp =
{

µ
p
j

}NL

j=1
.

(iii) use (23) to compute diag(Σp) =
{

φ
p
j

}NL

j=1
.

(iv) preset error tolerance ε.
Repetition
∀i = 1, . . . , NL, j = 1, . . . , ML, j1 = 1, . . . , M, j2 = 1, . . . , L.
(i) ẑi = ∑j Φi,jµ

p
j (k).

(ii) τz
i = ∑j Φ2

i,jφ
p
j (k).

(iii) υz
i = ẑi − τz

i ŝi.
(iv) ŝi = [(υz

i + αxiτ
z
i )/(1 + ατz

i )− υz
i ]/τz

i .
(v) τs

i = α/(1 + ατz
i ).

(vi) τ
p
j = (∑i Φ2

i,jτ
s
i )
−1.

(vii) υ
p
j = µ

p
j (k) + τ

p
j (∑i Φi,j ŝi).

(viii) µ
p
j (k + 1) = υ

p
j β j2,j2 /(β j2,j2 + γj1 τ

p
j ).

(ix) φ
p
j (k + 1) = τ

p
j β j2,j2 /(β j2,j2 + γj1 τ

p
j ).

(x) k = k + 1.
Terminate ‖µp

j (k + 1)− µ
p
j (k)‖2

≤ ε.
Output The final µp and Σp.

Algorithm 3. The proposed GAMP-BSBL algorithm.

Initialization.
(i) set the first iterative number k = 0, error tolerance ε, maximal iterative number kmax.
(ii) set p(0) = ‖AHX‖2.
(iii) assign a, b, c and d very small values.
(iv) compute γ and α with (31) and (55), respectively.

Repetition.
(i) compute µp and Σp according to the above GAMP.
(ii) compute γ and α according to (31) and (55), respectively.
(iii) update k = k + 1.
(iv) regard γ as p(k).

Terminate ‖p(k+1) − p(k)‖2/‖p(k)‖2 ≤ ε or k = kmax
Refinement

(i) use the final p to obtain θest1.
(ii) use the final µp to solve λ according to (41).
(iii) obtain θest2 according to (42).

Output the final DOA values.

Theoretically, BSBL-GAMP contains only simple multiplication of vectors and linear
operations, so it is undoubtedly the fastest algorithm. To be specific, its complexity dom-
inated by (55) is O(ML), much less than O(M2NL3) of BSBL or O(M2N) of BSBL-APPR.
For comparison, the computational complexity of all the narrowband algorithms involved
in this paper is summarized in Table 2. Generally, M � N, L holds; thus, BSBL-GAMP
obviously has the least computational complexity. In contrast, BSBL-APPR seems to be also
satisfactory since its complexity is smaller than others, except for IC-SPICE and RVM-DOA.
Moreover, the complexity of BSBL is moderate.



Sensors 2024, 24, 2336 15 of 28

Table 2. Complexity of various algorithms.

BSBL BSBL-APPR BSBL-GAMP SBL [21]
O(M2NL3) O(M2N) O(ML) O(M2N2)
L1-SRACV IC-SPICE L1-SVD HSL
O(M3N3) O(MN3) O(M3) O(2M2N)

RVM-DOA RV-ON-SBL ON-SBLRVM SBLMC
O(MNL) O(M3) O(M2NL) O(M3L)

4.4. BSBL for Wideband Sources

Although BSBL, BSBL-APPR, and BSBL-GAMP are developed, they are only applicable
in the case of narrowband sources. For wideband cases, we must extend BSBL further.

A way to deal with wideband sources is to separate the wideband spectrum into
independent narrowband ones. Without loss of generality, (3) can be rewritten as the
special case at the j− th frequency point f j, ∀j = 1, . . . J, i.e.,

xj = Φjpj + nj. (56)

In this model, it is worth emphasizing that we only care about the locations of non-zero
elements in pj rather than the concrete values because different pj theoretically indicate the
same location of some source. Consequently, considering all the frequency points, different
pj can be unified as q so that

y = Ψq + n. (57)

where y = [xT
1 , . . . , xT

J ]
T ∈ CNLJ×1, Ψ = [ΦT

1 , . . . , ΦT
J ]

T ∈ CNLJ×ML, and

n = [nT
1 , . . . , nT

J ]
T ∈ CNLJ×1. Similar to the aforementioned derivation of BSBL, (58)−(65)

are yielded as follows.

µq = 〈Σw〉ΨH(〈αw〉−1INLJ + Ψ〈Σw〉ΨH)
−1

y. (58)

Σq = 〈Σw〉 − 〈Σw〉ΨH(〈αw〉−1INLJ + Ψ〈Σw〉ΨH)
−1

Ψ〈Σw〉. (59)

aw = aw +
1
2

. (60)

bw,m = bw +
1
2
‖(B−1 + 1L×L − IL)� (µqm

µH
qm

)‖
1,1

+
1
2

diag(B−1 � Σqm
). (61)

〈γw
m〉 =

aw

bw,m
. (62)

cw = cw +
NLJ

2
. (63)

dw = dw +
1
2
(‖y−Ψµq‖

2
2 + tr(ΣqΨHΨ)). (64)

〈αw〉 =
cw

dw
. (65)

To be distinguished from BSBL in narrowband cases, the diffetent parameters in wide-
band cases are with superscript or subscript w and q. In particalur, Σw = diag((γw)−1)⊗B
is the variance of variable q, where γw = [γw

1 , . . . , γw
M]T . In wideband cases, the off-grid

correction is the same as BSBL, except for (41), which is replaced by

λw � µq = [(Ψ’)
H

Ψ’]
−1

(Ψ’)
H
(y−Ψµq). (66)
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So far, BSBL for wideband sources has been completed. The specific process is summa-
rized in Algorithm 4.

Algorithm 4. BSBL for wideband sources.

Initialization.

(i) set k = 0, q(0) = ‖
J

∑
j=1

AH
j Xj‖

2

/J.

(ii) set aw, bw, cw and dw very small values.
(iii) preset error tolerance ε and maximal iterative number kmax.

Repetition
while (‖q(k+1) − q(k)‖2/‖q(k)‖2 > ε or k < kmax) do:
(i) compute µq and Σq according to (58) and (59).
(ii) compute 〈Σw〉 and 〈αw〉 according to (62) and (65).
(iii) regard γw as q(k).
(iv) k = k + 1.
end while

Refinement
(i) Use the final q to obtain θest1.
(ii) Use the final µq to solve λw according to (66).
(iii) Obtain θest2 according to (42).

Output The final DOA values.

5. Numerical Simulation

In this section, the superiority of our proposed algorithms will be proven compre-
hensively through three subsections, including extensive simulations. For simplicity, the
proposed BSBL, BSBL-APPR, and BSBL-GAMP are collectively referred to as BSBLs. In
the first and second subsections, the narrowband and wideband estimation performance
of various algorithms is evaluated comprehensively. In the third subsection, the in-depth
analysis of Bayesian performance is completed by comparison with other off-grid SBL-
based methods.

5.1. Estimation Performance for Narrowband Sources

In this subsection, estimation performance is evaluated by the Root-Mean-Square
Error (RMSE) expressed as

RMSE =

√√√√ 1
McK

Mc

∑
mc=1

K

∑
k=1

(θ̂mc ,k − θk)
2
. (67)

where Mc is the Monte Carlo number and K is the number of sources. θ̂mc ,k is the es-
timation value for the k − th source in the mc − th trial and θk is the true angle of the
k− th source. For clarity, we introduce four canonical SMV algorithms, i.e., l1−SVD [20],
l1−SRACV [21], IC-SPICE [22], SBL [31], SS-ANM [25], and StrucCovMLE [26], as compar-
isons in following simulations. Before that, unless otherwise stated, baseline simulation
conditions are SNR = 20dB, K = 3 temporally correlated sources with a random DOA
set {−20.53◦, 10.10◦, 43.01◦}, the number of sensors is N = 8, the number of snapshots is
L = 4, the grid interval is 1◦, the number of grids is M = 180, the Monte Carlo number is
Mc = 200, and the temporal correlation coefficient is β = 0.

Remark 3. β = 0 and SNR = 20 dB (or at least one) are provided to ensure that BSBL-APPR
performs normally.

Simulation 1 tests the ability of various algorithms to suppress temporal correlation.
Specifically, the amplitudes and phases of temporally correlated coefficients uniformly
vary from [0, 1] and [0, 2π], respectively. The results are shown in Figure 2. Obviously, the
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RMSEs of BSBLs persistently remain low and fluctuate only slightly with the correlation
coefficient varying, while others just struggle when the correlation coefficient is large.
Particularly, IC-SPICE is able to impair the influence of temporal correlation to some extent,
but it is still at a loss if the correlated level is high. Overall, the simulation results fully
live up to our expectations that BSBLs are able to suppress temporal correlation effectively,
which confirms that the considered temporal correlation modeled in the block-sparse model
indeed plays an important role in improving the robustness of temporal correlation.
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still commendable due to the realized lowest RMSEs. In fact, SBL itself enables finding 
global minima and smoothing out numerous local minima in some cases with a few snap-
shots [48]. For SBL-based methods, BSBLs undoubtedly inherit their advantages. Addi-
tionally, the used hierarchical priors can improve sparsity performance so that BSBLs per-
form best. Thus, BSBLs enable high estimated precision with a few snapshots. 
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Simulation 2 examines the dependence on the number of snapshots. In Figure 3, all the
sparsity-based algorithms are collectively robust to various snapshots. In other words, all
the algorithms seem to achieve SSR with only a few snapshots. Despite this, BSBLs are still
commendable due to the realized lowest RMSEs. In fact, SBL itself enables finding global
minima and smoothing out numerous local minima in some cases with a few snapshots [48].
For SBL-based methods, BSBLs undoubtedly inherit their advantages. Additionally, the
used hierarchical priors can improve sparsity performance so that BSBLs perform best.
Thus, BSBLs enable high estimated precision with a few snapshots.
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number of snapshots. Intuitively, in Figure 5, the RMSE performance of BSBLs is still 
excellent, although BSBLs are inferior to IC-SPICE at 4N = . In fact, the results are related 
to the ability to solve underdetermined DOA estimation problems. SBL still seems to find 
the sparsest solutions, although the restricted isometry property (RIP) is not satisfied [48]. 
When the number of sensors is not large enough, i.e., the solution to be solved is not sparse 
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Simulation 3 focuses on the RMSE performance with respect to SNRs. Apparently, in
Figure 4, all the algorithms work well if high SNRs are adopted, while only BSBLs maintain
fewer RMSEs at low SNRs. The results can be explained by the fact that the sparsity-
based algorithms rely on high SNRs to some extent, but SBL can reduce the dependency.
Taking IC-SPICE as an example, it can achieve efficient iterative optimization under the
condition of high SNRs but cannot seek the right global minima or even trap some fixed
local optima. The original reason for this is that the used covariance matrix and the updated
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parameters have large errors with ideal ones. However, SBL seems to work normally owing
to convergence guarantee and gradual optima under the condition of existing data errors.
Surprisingly, the proposed BSBLs have a similar ability in some way. On the whole, BSBLs
are preferable, especially under the condition of low SNRs.
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Simulation 4 investigates the RMSE performance with respect to the number of sensors.
Here, this simulation is executed at the number of snapshots L = 20 rather than L = 4
since l1−SVD cannot work normally when the number of sensors exceeds the number
of snapshots. Intuitively, in Figure 5, the RMSE performance of BSBLs is still excellent,
although BSBLs are inferior to IC-SPICE at N = 4. In fact, the results are related to the
ability to solve underdetermined DOA estimation problems. SBL still seems to find the
sparsest solutions, although the restricted isometry property (RIP) is not satisfied [48].
When the number of sensors is not large enough, i.e., the solution to be solved is not
sparse enough, SBL still tries its best to realize global minima. Thus, BSBLs can handle
underdetermined cases efficiently. In other words, BSBLs are able to realize SSR effectively
on the condition of a few sensors.
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mance degradation, which implies that BSBLs have the potential to locate more sources. 
In fact, the results are another proof of the excellent underdetermined DOA estimation 
ability of BSBLs in Simulation 4. More sources and fewer sensors play similar roles in 
decreasing the sparse level in sparse recovery theory, and BSBLs handle this case effi-
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Simulation 5 tests the adaptability to wide grid intervals. In Figure 6, the results
illustrate that both BSBLs and IC−SPICE gain highly accurate estimation values at refined
grids, but only BSBLs reluctantly adapt to wide grid intervals, although all the algorithms
suffer hardship at coarse grids. The coarse girds compel relatively large errors of the
pre-estimated values, so the refined values have a larger bias. In the proposed BSBLs, the
grid refinement has an effect on reducing the bias at each iteration. Therefore, BSBLs adapt
to coarse grids to some extent.
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Simulation 6 examines the RMSE performance with respect to the number of sources.
The different conditions are as follows: the DOA sets of sources are selected from [−90◦, 90◦]
randomly, and L = 10 is chosen to ensure the normal operation of l1−SVD. In Figure 7,
all the RMSEs drop rapidly, but BSBLs seem to slow down the pace of performance
degradation, which implies that BSBLs have the potential to locate more sources. In fact,
the results are another proof of the excellent underdetermined DOA estimation ability of
BSBLs in Simulation 4. More sources and fewer sensors play similar roles in decreasing the
sparse level in sparse recovery theory, and BSBLs handle this case efficiently.
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5.2. Estimation Performance for Wideband Sources

For comparison, JLZA−DOA [23], W−SpSF [24], W−SBL [36], GS−WSpSF [27], and
ANM [28] are introduced. On behalf of BSBLs, only BSBL is adopted in the last two
subsections for simplicity.

Simulation 7 tests the spectral performance of the above algorithms. Its conditions are
two uncorrelated chirps with angles of −10◦ and 25◦ with a center frequency of 1 kHz and
a bandwidth of 400 Hz from 0.8 kHz to 1.2 kHz, SNR = 20dB, the number of sensors is
N = 8, the number of snapshots is L = 4, and the grid interval is 1◦. Intuitively, in Figure 8,
JLZA−DOA and W−SpSF arise explicit sidelobes around their spikes, while GS−WSpSF,
ANM, W−SBL, and BSBL are excellent since their spectra are almost without sidelobes and
the spikes are sharp. It is worth noting that the spikes of W−SBL seem to be very low at
some frequency points. Specifically, W-SBL fluctuates intensely with varied frequencies,
i.e., the signal energy non-uniformly leaks between different frequencies. GS−WSpSF
and ANM are better; at least their spikes are visible and apparent over the range of all
the frequency points. The proposed BSBL has the highest spikes and varies little over
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the range of frequencies. Thus, three conclusions are drawn. (1) When sparse recovery is
adopted, BSBL can ensure that equal energy is assigned between different frequency bins.
(2) BSBL realizes the highest spikes and shows the best convergence effect, i.e., ensuring
global minima.
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Simulation 8 examines the RMSE performance with respect to the number of sensors.
The condition set is the same as baseline conditions, except for wideband sources. As
expected, BSBL achieves excellent RMSE performance in Figure 9. Over the whole range
of the number of snapshots, BSBL shows overwhelming advantages and outperforms
others patently. In fact, DOA estimation for wideband sources is difficult, and one of
the main reasons is many algorithms fail to realize accuracy estimation over the whole
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range of frequency bins. Simulation 7 shows the special ability of BSBL to overcome this
problem, and Simulation 8 seems to verify it again. On the one hand, BSBL for wideband
sources maintains the superiority of narrowband BSBL, so it can obtain excellent estimation
performance. On the other hand, BSBL extends the advantages of SBL to wideband sources,
i.e., achieving robust sparse recovery with only a few snapshots for all the sources over the
whole frequency band.
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ysis. As shown in Figure 11, RVM−DOA, RV−ON−SBL, and ON−SBLRVM are only im-
posed on Gaussian priors that have been proven of poor Bayesian performance. The com-
plicated Bayesian frameworks of HSL and BSBL are the same, except for the priors as-
signed to the unknown variables; thus, they may perform equally well. SBLMC has the 
most elaborate Bayesian framework composed of sufficient priors, so its sparsity perfor-
mance will be perfect theoretically. 
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Simulation 9 tests the RMSE performance with respect to SNRs. In Figure 10, BSBL
outperforms others and improves well when SNRs increase. It is worth noting that the
results are different from the narrowband ones in Simulation 2. To be specific, BSBL seems
to fluctuate intensely with the varied SNRs. BSBL for wideband sources cannot work
well enough compared to narrowband source cases. We carefully analyze the reasons and
find that BSBL cannot realize ensuring global minima at each frequency bin for sparse
recovery. Despite this, the defects cannot obscure the virtues. BSBL still achieves impressive
performance for wideband sources.
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5.3. Analysis of Sparse Bayesian Performance

According to the common perception of SBL, the elaborate Bayesian framework
with substantial priors is regarded as a characteristic to enhance sparsity well because
priors play a role of regularization in sparse recovery [55,59]. Here, we abstract several
Bayesian frameworks from several off-grid SBL-based algorithms, such as RVM−DOA [37],
RV−ON−SBL [47], ON−SBLRVM [43], SBLMC [39], and HSL [46], for comparison and
analysis. As shown in Figure 11, RVM−DOA, RV−ON−SBL, and ON−SBLRVM are
only imposed on Gaussian priors that have been proven of poor Bayesian performance.
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The complicated Bayesian frameworks of HSL and BSBL are the same, except for the
priors assigned to the unknown variables; thus, they may perform equally well. SBLMC
has the most elaborate Bayesian framework composed of sufficient priors, so its sparsity
performance will be perfect theoretically.
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To confirm the above conjectures, two more simulations are performed to test the
estimation performance of these algorithms.

Simulation 10 tests the RMSE performance with respect to the number of snapshots.
The conditions are the same as the baseline conditions. In Figure 12, the RMSE performance
of RVM−DOA, RV−ON−SBL, and ON−SBLRVM are expectedly worse than others, but
SBLMC seems to not meet our expectations, while BSBL and HSL achieve preeminent
RMSE performance. BSBL and HSL with moderately elaborate Bayesian frameworks
outperform others, including the SBLMC with the most elaborate one. The result seems to
violate the rule of Bayesian learning, which will be explained in the following text.



Sensors 2024, 24, 2336 23 of 28

Sensors 2024, 24, 2336 24 of 30 
 

 

 
Figure 11. Directed acyclic graph representing the Bayesian frameworks of (Ⅰ) RVM−DOA, 
RV−ON−SBL, ON−SBLRVM, (II) SBLMC, (III) HSL, (IV) BSBL. 

To confirm the above conjectures, two more simulations are performed to test the 
estimation performance of these algorithms. 

Simulation 10 tests the RMSE performance with respect to the number of snapshots. 
The conditions are the same as the baseline conditions. In Figure 12, the RMSE perfor-
mance of RVM−DOA, RV−ON−SBL, and ON−SBLRVM are expectedly worse than others, 
but SBLMC seems to not meet our expectations, while BSBL and HSL achieve preeminent 
RMSE performance. BSBL and HSL with moderately elaborate Bayesian frameworks out-
perform others, including the SBLMC with the most elaborate one. The result seems to 
violate the rule of Bayesian learning, which will be explained in the following text. 

 

Figure 12. RMSE versus number of snapshots.

Simulation 11 tests the RMSE performance with respect to SNRs. In Figure 13, the
proposed BSBL still seems to work best. It is worth noticing that the advantages of BSBL
are not obvious, especially when SNRs are low. For all the SBL-based methods, BSBL has
shown no more advantages than others on the condition of low SNRs because hierarchical
priors improve sparsity if, and only if, SNRs are high. To be specific, Bayesian learning is
able to find global minima, even at low SNRs, but the parameters yielded by hierarchical
priors seem to update well only if SNRs are high.
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Based on the simulation results, it can be seen that the complicated Bayesian frame-
works, i.e., II, III, and IV in Figure 10, indeed achieve more excellent Bayesian performance
than the canonical one, i.e., I in Figure 11. However, SBLMC with the most elaborate
Bayesian framework has not met our initial expectation, which can be explained by the
fact that (i) SBL belongs to machine learning, so the Bayesian framework with too many
priors will yield massive iterative hyperparameters, leading to overfitting during the it-
erative process. (ii) SBLMC is developed in the presence of mutual coupling; thus, the
involved additional hyperparameter iteration is bound to affect the key parameters related
to DOA estimation.

It is worth emphasizing that BSBL achieves slightly better estimation performance
than HSL. The result indicates that the indirectly induced Student’s t priors, generated by
Gaussian and Gamma priors, indeed express excellent sparsity performance. In fact, Stu-
dent’s t priors have preferable sparsity-inducing performance, which has been mentioned
in [55,56].

Overall, the above three subsection simulation results sufficiently demonstrate the
superiority of BSBLs. Understandably, BSBL leverages hierarchical Gaussian and Gamma
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priors and uses VBI to complete the Bayesian inference so as to construct the corresponding
iterative algorithm. Theoretically, the superiority is guaranteed by (1) indirect Student’s
t-distributions, which have an excellent sparsity-inducing ability [56], and (2) variational
approximation for Bayesian inference shows better performance than maximum posterior
(MAP) estimation adopted in many SBL-based methods [60]. In addition, two approxima-
tion operations have achieved impressive running efficiency beyond many state-of-the-art
methods. Moreover, BSBL still performs well in wideband cases and outperforms other
algorithms in smoothing the spectrum peaks and super resolutions. Last but not least,
BSBL has suppressed temporal correlation efficiently owing to its tactful algorithm design.

6. Conclusions

In this paper, we develop a DOA estimator (i.e., BSBL) based on sparse Bayesian
learning with hierarchical priors. Due to the unacceptable computational complexity caused
by the vectorization of the MMV model, two approximation operations are creatively
introduced, thereby yielding two faster versions of BSBL, i.e., BSBL-APPR and BSBL-
GAMP. As expected, all the proposed BSBLs (including BSBL, BSBL-APPR, BSBL-GAMP)
achieve excellent estimation performance. For narrowband source estimation, BSBLs
show perfect sparsity performance owing to the designed hierarchical priors. Further,
BSBLs inherit and even extend the advantages of SBL, such as sparse signal recovery
guarantee, less dependency on numerous snapshots or high SNRs, and the ability to handle
underdetermined DOA estimation. Moreover, BSBLs enable robustness to temporally
correlated sources and adaptability to coarse grids, which owes to the considered temporal
correlation and the used grid refinement. For wideband source estimation, BSBL almost
maintains huge advantages, i.e., realizing highly accurate estimation among the whole
frequency band, while others suffer performance reduction to varying degrees. However,
in wideband cases, BSBL cannot retain the good performance as in narrowband cases
if low SNRs are adopted, which is our goal to solve in the next study. For Bayesian
performance, BSBL with a moderately elaborate Bayesian framework realizes the best
estimation performance. Furthermore, BSBL can balance both sparsity and complexity.
Specifically, BSBL achieves sharp spectrum spikes and avoids overfitting produced by too
many parameters.

Overall, the proposed BSBLs tactfully combine the hierarchical priors and the block-
sparse model that contribute much to complexity reduction, which is never achieved by
other SBL-based methods. Moreover, BSBLs retain and extend the advantages of SBL. Most
importantly, BSBL is more practical and applicable when sources are temporally correlated
or wideband. Despite this, BSBL seems not to be perfect because its performance suffers
a loss at low SNRs in wideband cases to some extent. Anyway, the proposed BSBLs are
worth recommendation and praise.
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Appendix A

(23) =

〈
− (x−Φp)H(x−Φp)

2 α− pHΣ−1p
2

〉
+ const

=
〈
− 1

2 pH(αΦHΦ + Σ−1)p + αpHΦHx
〉
+ const

= − 1
2 pH(〈α〉ΦHΦ +

〈
Σ−1

〉
)p + 〈α〉pHΦHx + const.

(A1)

The terms unrelated to p are absorbed into the constant. Obviously, p obeys a Gaus-
sian distribution with mean µp and variance Σp, where Σ−1

p = 〈α〉ΦHΦ +
〈

Σ−1
〉

and

Σ−1
p µp = 〈α〉ΦHx. Using linear transformation, (24) and (25) are yielded.

Appendix B

(28) =
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2 − pHΣ−1p
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+ const
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∑
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=
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∑

m=1
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M
∑
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2 − 1) ln γm − (b + 1
2
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mB−1pm
〉
)γm] + const.

(A2)

The terms unrelated to γ are absorbed into the constant. Undoubtedly, γm obeys a
Gamma distribution with shape parameter a + 1

2 and scale parameter b + 1
2
〈
pH

mB−1pm
〉
.

Appendix C

Diagonal elements of B−1 affect the second-order moment of pm, while the off-diagonal
elements only affect the mean value. Therefore, two cases are each considered for the
element β−1

i,j of B−1.
(i) i = j

〈
pH

mB−1pm
〉
=

L
∑

i=1
β−1

i,i E(p∗mi
pmi ) =

L
∑
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i,i [(µpm)i(µpm)
∗
i + (Σpm)i,i]
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Λ ))

T
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� µ∗pm
+ diag(Σpm

)]‖
1,1

= ‖B−1
Λ � [(µpm

µH
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) + diag(diag(Σpm
))]‖

1,1
.

(A3)

where B−1
Λ = diag(diag(B−1)) and pmi and (µpm)i are the i − th element of pm and µpm

,
respectively. (Σpm)i,i is the i− th diagonal element of Σpm

.
(ii) i 6= j

〈
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〉
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∑
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∑
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∑
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∑
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=
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∑
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(A4)

where B−1
Λ

= B−1 − B−1
Λ . Based on (i) and (ii), (32) is verified.

Appendix D

(33) =

〈
ln |α−1INL|

− 1
2 − (x−Φp)H(x−Φp)

2 α + ln αc−1 − dα
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+ const
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The terms unrelated to α are absorbed into the constant. α obeys another Gamma

distribution with shape parameter c + NL
2 and scale parameter d +

〈
(x−Φp)H(x−Φp)

〉
2 .

Appendix E

To obtain the mean and variance of variables (i.e., zi and pj), their distributions are
transformed into logarithmic form as follows:

ln (49) = ln [N(xi|zi, α−1)N(zi|υz
i , τz

i )] + const = − α
2 (xi − zi)

2 − 1
2τz

i
(zi − υz

i )
2 + const

= − 1
2 (α + 1

τz
i
)z2

i + (αxi +
υz

i
τz

i
)zi + const = − 1

2φz
i
z2

i +
µz

i
φz

i
zi + const.

(A6)

The final equation of (A6) is yielded based on the expansion of the Gaussian function.

Patently, 1
φz

i
= α + 1

τz
i

and µz
i

φz
i
= αxi +

υz
i

τz
i

can be directly abstracted and solved by simple lin-

ear transformation, so µz
i =

υz
i +αxiτ

z
i

1+ατz
i

and φz
i =

τz
i

1+ατz
i

are obtained. For (50), the logarithmic
form is
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(A7)

Similarly, µ
p
j =

υ
p
i β j2,j2

β j2,j2+γj1
τ

p
j

and φ
p
j =

τ
p
j β j2,j2

β j2,j2+γj1
τ

p
j

are yielded.
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