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Abstract: The growth in linked and autonomous vehicles has led to the emergence of vehicular
ad hoc networks (VANETs) as a means to enhance road safety, traffic efficiency, and passenger
comfort. However, VANETs face challenges in facilitating trustworthiness and high-quality services
due to communication delays caused by traffic, dynamic topology changes, variable speeds, and
other influencing factors. Hence, there is a need for a reliable data dissemination scheme capable
of reducing communication delays among hops by identifying effective forwarder nodes. In this
paper, we propose a novel, weighted, estimated, spider monkey-based, nature-inspired optimization
(w-SMNO) method to generate a set of efficient relays. Additionally, we introduce a dynamic
weight assignment and configuration model to enhance system accuracy using a neural network
based on backpropagation with gradient descent optimization techniques to minimize errors in the
machine learning model. The w-SMNO also incorporates a distinct algorithm for effective relay
selection among multiple monkey spider groups. The simulation results demonstrate substantial
improvements in w-SMNO, with a 35.7% increase in coverage, a 41.2% reduction in the end-to-end
delay, a 36.4% improvement in the message delivery rate, and a 38.4% decrease in the collision rate
compared to the state-of-the-art approaches.
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1. Introduction

Vehicular ad hoc networks (VANETs) have emerged as a transformative technology
with the combination of connected and autonomous vehicles. These networks play an
important role in transforming road safety, optimizing traffic flow, and enhancing the
passenger experience [1–3]. However, data dissemination in VANETs involves challenges
related to optimizing the dissemination process, ensuring reliable data delivery, minimizing
latency, and utilizing available resources efficiently [4]. These aspects often involve search-
ing for optimal routes, managing communication overhead, dealing with intermittent
connectivity, and ensuring the dissemination of information among vehicles in a timely
and efficient manner [5,6]. The complexity of these tasks places VANET data dissemination
problems within the realm of NP-hard problems due to their computational challenges
and the need for efficient solutions to solve them optimally. One of the critical hurdles
facing VANETs is the communication delay resulting from factors such as traffic congestion
and frequent alterations in network topology. Traffic congestion may lead to a broadcast
storm that results in a high collision rate of packets and increases delays [7]. These delays
can impede the effectiveness of applications crucial to vehicular safety and traffic man-
agement. To address this challenge, a robust and reliable data dissemination scheme is
imperative, capable of minimizing communication delays and identifying optimal paths or
the effective relay for an efficient and fast information exchange among vehicles. Figure 1
illustrates the fundamental communication scenario within a vehicular ad hoc network
(VANET), where any incident detected via a vehicle is promptly relayed to nearby vehicles

Sensors 2024, 24, 2334. https://doi.org/10.3390/s24072334 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24072334
https://doi.org/10.3390/s24072334
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4091-2552
https://doi.org/10.3390/s24072334
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24072334?type=check_update&version=1


Sensors 2024, 24, 2334 2 of 35

within its transmission range. Additionally, a relay identification process is implemented
within the network to transmit received information to further hops, thus mitigating the
potential for a broadcast storm. Furthermore, using mobile devices, laptops, roadside
units (RSUs), or other network-connected devices, the event data are disseminated to other
internet-connected services and societal resources.

Figure 1. VANET communication environment.

Swarm intelligence algorithms, such as particle swarm optimization (PSO), ant colony
optimization (ACO), and genetic algorithms (GA), among others, have been explored
for various optimization problems in VANETs, including routing, data dissemination,
and resource allocation [8–11]. These algorithms, inspired by the collective behavior of
social insects or other animals, provide innovative solutions to enhance the performance
of VANETs. Nature-inspired optimization algorithms combine features from monkeys
and spiders for VANET (vehicular ad hoc network) problem-solving [12]. The spider
monkey algorithm (SMA) stands as a metaheuristic algorithm drawing inspiration from
the foraging behavior of monkeys in search of food. This innovative approach orchestrates
a collective of agents, represented as ‘monkeys’, operating collaboratively to explore and
navigate through a defined search space with the aim of uncovering the most optimal
solution [13]. A trust-based, cluster-oriented approach, SCSF covers the aspect of node
isolation techniques from mobility-based ad hoc networks to solve real-life optimization
issues that are NP-hard problems as well [14].

The primary motivation for this research is the necessity of providing vehicle networks
with a reliable and efficient dissemination of data by reducing the delay in communications
and the broadcast storm effect so that the related services can be available to end users
via these types of environments on time. By utilizing the nature-inspired framework of
spider monkey optimization theory and a comprehensive strategy based on the selection
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of information forwarders from a group of vehicles, our work not only tackles complex
technical challenges but also offers a novel solution to the current problems.

In this article, we introduce an advanced approach that goes beyond conventional
solutions to enhance data dissemination in VANETs. Our proposed method, the weighted,
estimated, spider monkey-based, nature-inspired optimization (w-SMNO), integrates the
concepts of local and global leader selection to strategically identify efficient relay nodes.
This innovative, hybrid approach ensures a comprehensive solution to the unique chal-
lenges posed by VANETs. The local leader selection process empowers individual sub-
groups to autonomously identify and nominate potential relay candidates, raising adapt-
ability in dynamic environments. Simultaneously, the global leader plays an important role
in overseeing the entire network, optimizing relay node selection. We additionally examine
the effects of the monkey population and the number of local groups by incorporating the
limits. By setting specific thresholds for population sizes and local leaders, the system can
dynamically adjust its strategies based on the number of active nodes, ensuring optimal
relay node selection and effective data dissemination even under varying traffic conditions.
This technique offers the flexibility needed to accommodate fluctuations in network density,
optimizing the balance between communication efficiency and network resource utilization.
As the population size surpasses or falls below predefined thresholds, w-SMNO adapts its
relay node selection mechanisms, thereby ensuring an adaptive response to the network.
The w-SMNO methodology was meticulously designed to address the unique challenges
of VANETs, providing a comprehensive solution to improve coverage, reduce end-to-end
delays, enhance message delivery rates, and minimize collision risks. Through extensive
simulations, we demonstrate the substantial advantages of w-SMNO over state-of-the-art
methods, showcasing its efficacy in elevating the performance and reliability of VANET
data dissemination systems. The information distribution in ad hoc networks is also reflec-
tive of the security situation in a number of ways, specifically in relation to potential threats
from negative nodes. Further improving this feature will help make the ad hoc vehicle
communication system better overall [15]. Figure 2 illustrates the targeted idea behind the
proposed method in relation to the vehicular network.

The following are the contributions made in this article:

1. Problem formulation: This study formulated the data dissemination problem in a
novel and innovative way by presenting it as a multi-objective optimization problem.
The forwarding mechanism configurations define the solution space, and factors like
coverage, the message delivery rate, the end-to-end delay, and the collision rate are
included in the goal.

2. Solution framework: This research introduces a novel framework for data dissemination,
utilizing optimization based on the weighted, estimated, spider monkey-based, nature-
inspired optimization (w-SMNO) method, establishing an efficient set of relay nodes
through a hybrid approach that combines local and global leader selection strategies.

3. Learning model: The study provides a machine learning technique to enhance accu-
racy and minimize errors in dynamic weight prediction using backpropagation with
the gradient descent method. Moreover, the model includes the development and
implementation of various novel adaptive optimized algorithms inspired by spider
monkey behavior and expressions for dynamic weight assignment and configuration.

4. Performance efficacy: This research evaluated the performance of w-SMNO using
numerous simulation tests for different networking metrics and probability functions.
Further, the study included a comparison of experimental results with other state-of-
the-art approaches.

The rest of this manuscript is structured as follows: Section 2 provides a summary
of the existing literature and the related research in this domain. The methodology and
guiding principles of the suggested approach are elaborated upon in Section 3. A thorough
analysis is outlined in Section 4, with an emphasis on how well the suggested approach per-
forms in relation to various decision metrics. In the end, Section 5 provides the conclusion
and possible directions for further investigation.
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Figure 2. Spider Monkey communication model.

2. Related Works

The literature contains several works in the development of data dissemination ap-
proaches in VANET for optimization. In the work of [16], multi-objective optimization
such as the adaptive jumping multi-objective firefly algorithm (AJ-MOFA) was designed to
eliminate hazardous conditions due to congestion or a broadcast storm using clustering.
Further, the approach was enhanced for a forwarding mechanism that uses probabilistic
forwarding. However, data dissemination in urgent situations such as vehicle clashing,
traffic jams or long queue at toll stations was not taken into account. Also, the selection
of parameters dynamically for the meta-heuristic was lacking in the proposed method.
In the work [17], the issue of a secure path to disseminate the information in a vehicular
network through trusted fuzzy logic routing schemes for smart cities using a candidature-
based path selection approach is addressed. Nevertheless, the complexity of the proposed
solution escalates due to the incorporation of multiple methodologies within a unified
framework. In [18], particle optimization was employed for efficient data dissemination. A
network was established with vehicles acting as nodes to promptly transmit emergency
messages using the FIFO and time delay-based multipath routing (TMR) method. Particle
swarm optimization (PSO) was applied for the optimal selection of paths. The analysis
of the results incorporated metrics such as the delay, throughput, packet loss ratio, and
energy consumption. Additionally, it is worth noting that, in the majority of instances, the
approach involved the consideration of stationary nodes, which represent a non-realistic
behavior. Through [19] the scenario explored the event of a network failure at a specific
vehicle when other vehicles might assume control to relay information to the required
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nodes, thereby ensuring continued network performance. The document delves into rout-
ing schemes founded on several bio-inspired approaches. Furthermore, it elaborates on the
significance of nature-inspired algorithms, elucidating their contributions to addressing
diverse issues within ad hoc networks. According to [20], nature-inspired algorithms
represent a potent toolset for addressing optimization challenges. Various algorithms
falling under this category have been explored due to their relevance in distinct facets of
the Internet of Vehicles (IoV), with particular emphasis on security, routing, and parking
space management. Through their thorough investigation, it is evident that the application
of nature-inspired algorithms has the potential to enhance and optimize the overall perfor-
mance of IoV networks. In [21], the resolution to minimize the charging delay to mobiles
was efficiently tackled through the utilization of a mobile assignment problem considering
IoT-enabled WSN via mobile chargers in a service network. An approach [22] inspired by
the Salp swarm was put forth to effectively locate vehicular nodes in the NLOS area. Due
to the interference and obstructions in this area, vehicle localization is difficult and has
not been successful in the non-line of sight (NLOS) region. Neighborhood awareness and
delay metrics demonstrated enhanced performance. Nevertheless, the method ignores the
effect of node mobility and assumes that all nodes have the same transmission power. A
network traffic prediction model based on machine learning considering the random forest
method was proposed for traffic from the combination of V2V and V2R networks [23].
The work [24], addressed concerns related to network scalability and optimal route identi-
fication in VANETs; the grasshopper optimization-based node-clustering algorithm was
employed to optimize the selection of cluster heads, particularly in scenarios with variable
node density. This innovative approach successfully mitigates network overhead in situa-
tions with unpredictable node density. Nevertheless, it falls short in accounting for latency
and other real-time variations in traffic-related scenarios. Energy replenishment issues in
mobiles through a rechargeable sensor network covering the balanced consumption of
energy and the separation of multiple redundant mobile sensors is addressed in [25], and a
solution is proposed through novel balancing and sensor dispatch approaches For the first
issue, an energy balancing algorithm is proposed that uses cascaded movement to improve
the cascading schedule. For the second issue, a redundant mobile sensor dispatch algorithm
is proposed that prioritizes the mobile sensors most in need of energy replenishment for
replacement via a charged and calibrated redundant mobile sensor.

In [26], the protocol introduced is the fuzzy bacterial optimization zone-based routing,
designed to efficiently determine a brief and stable communication route within confined
environments. Similarly, In [27], utilizing the gray wolf optimization technique, introduced
a clustering algorithm for dissemination, reducing the overhead of intricate networks. A
different approach based on a swarm [28] was suggested for VANET route optimization
proposals through the ant colony optimization (ACO) technique. The performance resulted
in a reduced number of cluster heads (CHs) in various network scenarios compared with
multi-objective particle swarm optimization (MOPSO) and comprehensive learning particle
swarm optimization (CLPSO) [29]. Moreover, sensitivity to environmental factors not con-
sidered to overcome integration challenges. For stable clustering in VANETs, an insightful,
novel, naive Bayesian likelihood-based method of estimation for traffic distribution was
proposed (ANTSC) [30] based on a traditional artificial intelligence methodology and a
situation where performance in a variety of network scenarios was compared in terms of
traffic flow [31] and traffic management [32] using clustering; the proposed method was
more effective. In [33], a method to disseminate data based on the packet delivery ratio was
proposed for a 6th- generation vehicular network for the selection of information forwarder
vehicles responsible for reducing the delay in transmission.

For the purpose of determining the best routes in VANETs, a clustering routing ap-
proach based on swarm optimization (CRBP) was put forth; it consists of cluster formation,
path computing, and the ideal route for efficient dissemination as key components in [34].
In order to minimize frequent path disconnection through periodically exchanging signals
to maintain the most recent trusted values, the optimized node selection routing protocol
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(ONSRP) [35] was proposed for the optimized node selection procedure to choose the most
optimized vehicle. In [36], a genetic whale optimization algorithm (GWOA) was combined
with an improved cognitive tree protocol for routing (MCTRP) to manage path exploration,
identifying channels for the route, and data communication. All the other nodes join as
child nodes to form a tree, with the node with the greatest node identity opted for as the
root node. By determining the cost, a suitable path is selected using GWOA, and the node
with the lowest cost is selected as the relay for transmission.

Routing protocols’ performance issues related to an urban scenario using a cluster-
ing approach based on density peaks and particle swarm optimization (PSO) is covered
in [37]. However, the approach is limited to a basic traffic model. In [38], an artificial
intelligence-driven, software-defined network (SDN) controller proposed a centralized
routing scheme with mobility prediction for VANET. This predictive capability enables the
accurate estimation of the successful transmission probability and average delay of each
vehicle’s request amid frequent changes in network topology. This estimation is particularly
useful in a stochastic urban traffic model, where vehicle arrivals follow a non-homogeneous
Poisson process. However, the latency and other issues resulting from real-time varia-
tions in traffic scenarios were not taken into consideration. The use of machine learning
algorithms in vehicular networks addresses issues related to latency, ensuring the smooth
flow of traffic and enhancing road safety, which is addressed in [39]. These algorithms
were applied within the context of real-time VANET scenarios to assess their feasibility
and effectiveness. Additionally, this approach considers future directions and challenges
associated with implementing machine learning techniques. Utilizing machine learning in
Vehicle-to-Infrastructure (V2I) communication within VANETs involves employing soft-
ware comprising both static and mobile agent approaches. Decision tree and Q-Learning
algorithms are utilized to detect potential serious incidents, aiming to enhance bandwidth,
PDR, and E2E delay [40]. In [41], a method was proposed for selecting the optimal relaying
set during the broadcast procedure. This approach employs supervised learning to classify
candidate nodes based on various factors, followed by sorting them according to relay
quality to select the best ones. Moreover, the method assumes perfect channel knowledge
for all nodes and overlooks the effects of node failures on dissemination efficiency. The
issues of coverage to enhance the receiving information probability at multiple receiver
units were covered in [42] and resolved through the theory of entropy.

To the best of our knowledge, the group- and subgroup-based relay selection that
is specifically based on a machine learning model was utilized for the first time in the
VANET environment using our suggested method as a dissemination protocol. In addition,
we suggested creating threshold-oriented subgroups based on the size of the monkey
population for scenarios that are grounded in reality.

3. Proposed w-SMNO

Monkey optimization (MO) is a novel swarm intelligence algorithm inspired by the
intelligent foraging behaviors of spider monkeys. These monkeys exhibit a social structure
in which they form smaller groups within larger ones, dynamically merging or separating
based on food availability. MO effectively manages premature convergence and stagnation,
potentially leading to improved solutions. Spider monkeys assemble in groups led by a
senior female member who acts as the primary decision-maker. To optimize foraging, large
groups split into smaller clusters, each led by a local female leader overseeing the foraging
paths. The following outlines the food procurement process of spider monkeys:

• As spider monkeys begin searching for food, they measure the distances to available
food sources. Using these distance measurements, the monkeys adjust their positions
within the group and recalibrate the distances as needed.

• The position of the local leader is updated within the group. If this update does not
occur for a set number of iterations, the members within that group redirect their
search for food sources in different directions.
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• Eventually, the main leader of the largest group maintains its best position. If stagna-
tion occurs, the main leader creates subgroups.

Figure 3, shows the conceptual steps for MO.

Figure 3. MO flow procedure.

Optimization operations for the spider monkey population include the following sub-
operations:

Initialization: Initialize a population of spider monkeys within a search space and
assign locations and directions to these spider monkeys, representing potential solutions to
the optimized relay search problem.

Evaluation: Evaluate the fitness or quality of each monkey’s position/solution using
the objective function of the problem.

Movement: Similar to moving vehicles, to find the best node to forward the informa-
tion, spider monkeys mimic their social behavior by implementing movement rules. They
swing between trees to simulate the exploration and exploitation of the search process via
the random exploration of new solutions within the search space or the transmission range,
while exploitation involves moving towards promising solutions based on the previously
found best solutions.

Update: Update the positions of the monkeys based on their movement strategies that
improve the fitness of the solution and maintain a balance between both exploration and
exploitation for a comprehensive search.

Termination: This includes the achievement of a satisfactory solution via selection to
optimize the information forwarder node.

The proposed w-SMNO operates through the collective behavior of spider monkeys
exploring and exploiting the search space to find optimal solutions. The application of
SMOA can be enhanced to optimize data dissemination strategies in VANETs to efficiently
distribute information among vehicles in the network in order to enhance the efficiency
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of message delivery, reduce the communication overhead, minimize delays, and ensure
reliable information sharing among vehicles. The challenges include limited network cover-
age, a highly dynamic network topology due to vehicle mobility, intermittent connectivity,
and varying network conditions. Additionally, it can aid in the allocation of resources such
as bandwidth or transmission power for effective data dissemination while minimizing the
communication overhead. The working steps explained as follows for the proposed SMNO
are presented in Figure 4.

• Step 1: Initialization of population

Vehicles equivalent to a spider monkey population of size N are the neighbor vehicles
moving in different directions, and they are considered initially within the transmission
range of the information sender vehicle. Such a one-hop population is inspired by the
swarm intelligence approach.

• Step 2: Global leader selection (GLS)

In this phase, one of the population members based on parameter evaluation is elected
as the global leader. The global leader (GL) is updated with the best-fit node to create
the subgroups through greedy selection. This leader is questionable for the fission of the
population to search for the relay node or food through the creation of subgroups of the
population. After the finalization of the best relay node in later steps, the global leader
fuses all the subgroups through fusion.

• Step 3: Local leader selection (LLS)

In the LLP, the global leader vehicle assigns the task of searching for the best infor-
mation forwarder node, equivalent to sufficient food in the spider monkey method, to
multiple local leaders (LLs) by creating subgroups of one-hop nodes from the experience of
the local leader and group members. With the help of greedy selection, the local leader is
updated as the best-fitting spider monkey or node in that local group. The fitness values of
the newly identified forwarder node are calculated.

• Step 4: Local relay identification

The local leader monkey or node locally updates the old forwarder details selected
with the new ones when it attains a new, higher fitness value. Relay or forwarder nodes
through local leader subgroups are identified.

• Step 5: Global relay identification

From the set of relay nodes identified through the local leader in step 4, the global
leader chooses the best fit candidate based on the computation of defined parameters for
efficient dissemination.

• Step 6: Relay finalization

The best relay nodes are elected to disseminate the information to other hop.
The search space is explored as the group members update their positions. There is a

high perturbation in the initial iterations that later is reduced gradually. The optimization of
the vehicle population corresponding to the spider monkeys is represented in the equations
below. These equations represent the movements of nodes within search space; updating
positions based on movement rules and the evaluation of fitness for the best candidate
selection on a greedy basis, including speed and direction, supports guidance, representing
the monkeys’ exploration and exploitation.

The proposed method ensures an even distribution of the available population (N)
of monkeys. In the variable population (G), { G ≥ 3 | ∈ 3, 4, 5, . . . N } is considered in the
approach to achieve maximum real-time coverage. Each monkey specification comprises
Q directional elements as variables in identifying adequate food sources (relay nodes).
The Monkey Distribution function (MD(qn)) is initialized for the qth dimension for the
nth monkey, generating uniformly distributed random numbers between 0 and 1, having
upper and lower bounds (UB, LB), as shown in Equation (1). Subsequently, the monkeys’
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positions are adjusted based on their previous locations only when the ensuing solution
surpasses the preceding one, as specified in Equation (2). The leader’s (SLI) position of
the Jth subgroup is then randomly chosen from the set I ∈ G and I ̸= q. Additionally, the
positions of the monkeys and subgroup leaders, including the Principal (Global) leader
(PLq), in the qth dimension are updated using Equation (3).

MD(qn) = LB(MDq) + R ∗ [UB(MDq) + LB(MDq)] f or R ∈ random[0, 1] (1)

where q ∈ Q and n ∈ G

Next(MD(qn)) = MD(qn) + R ∗ [SLJq −MD(qn)] + R′ ∗ [MD(In) −MD(qn)] (2)

Next(MD(qn)) = MD(qn) + R ∗ [PLJq −MD(qn)] + R′ ∗ [MD(In) −MD(qn)] (3)

where R′ ∈ [−1, 1]

Figure 4. SMNO working steps.

Considering the node location with the coordinates (X, Y, Z), ignoring Z for motion
on the plane surface and ∆Y for the vehicle lane change, the monkey’s corresponding
position in Equation 4 for the kth vehicle in t time is shown below.

Xk(t + 1) = Xk(t) + ∆Xk(t) (4)

where Xk(t + 1) is the next position in (t + 1) time, and Xk(t) is the current position
of the kth monkey in t time, respectively. ∆Xk(t) is the position variation to support
parameters’ computation.

3.1. Local Leader Validation

For the evaluation of the best vehicle node from the population for the local leader,
the corresponding function F(Xk) is defined to evaluate the node performance equivalent
to the fitness function in the spider monkey optimization approach. The identification of
the global best relay candidate by the global leader among the selected relays relative to
the best monkey position is given in Equation (5), returning the optimized and maximum
values among the nodes (monkeys).
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At Xk(t + 1), optimize the condition for the best solution;

candidate← return{max(F(Xk(t + 1)))} (5)

The specific details and variations of the approach involve additional strategies or re-
finements to guide the vehicle (monkey) movements or based on the problem being solved.
For the kth vehicle Vk in the population (N), the optimized fitness function F evaluation
is based on the considered nodes’ parameters, including the range of transmission (RT),
speed (S), energy consumption (Ec), throughput (Th), and neighbor size (n) to assess their
performance, connectivity, or overall efficiency within the network while comparing for the
leader. A list of all populations with the mentioned parameter values at any time instant,
as shown in Figure 5, is maintained by the global leader. In this case, the source node is
the global leader’s (GL) process to select local leaders for subgroups using the parameter
value list.

Figure 5. Population parameter record.

Leader node selection is crucial for efficient communication and relay functionality.
Threshold-based equations are commonly used to determine whether a node should act
as a leader based on various parameters. These equations define conditions that must be
met for a node to perform a specific action of a subgroup leader. The fitness evaluation to
select LL for cut-off C, having a total dimension weight (W) for all Q dimensions, is given
in Equation (6)–(8).

F(X) > C; (6)

for;

F(X) =
N

∑
k=1

wk(RT) + wk(S) + wk(Ec) + wk(Th) + wk(n)
Total weight (parameters)

·W (7)

where;

W =
∫ Q

q=1
[w(RT)q + w(S)q + w(Ec)q + w(Th)q + w(n)q] (8)
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For the selection of local leader nodes considering threshold or cut-off values, an
equation that filters nodes according to criteria is based on the scenario where the set of
parameters P is associated with each node, and the approach seeks to select some nodes
that meet a specific cut-off value, C, while considering a dynamic maximum limit L to the
number of selected nodes. To achieve this filtering of nodes based on the cut-off and limit
including PA represents the value of parameter P for node A (where A ranges from 1 to
N), C is the cut-off for parameter P, and L is the maximum limit of the selected leaders for
subgroups. Ensuring that the nodes meeting the threshold value C are selected until the
maximum limit, L, for local leaders is reached is shown in Algorithm 1.

Algorithm 1: LL Validation
Input: Population Parameter Record {P}, Threshold {C}, Range {A}: N
Output: Local Leader for N Groups; LLMonkey [N]
function LL_Identification (n{D} )

Initialization Monkey (Nodes) Arrangement
forall monkeys ∈ N do

Sorting of the nodes based on their parameter value (P)
Population parameter record
sort(PA[N])
update PA[]

forall Local monkeys do
Counter initialization
count = 0;

Iterate through the sorted list of monkeys:
forall N do

if PA[N] >= C and count < L then
Increase the counter
count = count + 1

else
if count >= L then

Reached to Maximum limit
Break the iteration

LLMonkey[N]←max(PA[N])
Disseminate LL
return LLMonkey[N]

3.2. Groups’ Sub-Categorization

Subgroups’ member allocation for N vehicles after LL selection based on PA is deter-
mined through dynamic threshold-based allocation. RTA, SA, EcA, ThA, nA are different
cut-offs values for PA. Nodes are assigned to groups based on which threshold PA meets.
Algorithm 2 represents the members’ allocation to the L subgroups. PAB represents the
value of parameter B for node A (where A ranges from 1 to N, and B ranges from 1 to M).
CBQ represents the threshold value for parameter B and group Q (where Q ranges from 1
to the total number of groups, L).
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Algorithm 2: Monkeys’ Assignment to Subgroups
Input: LL(Groups), Parameter set ; {B}, Monkey set; M, {A}, N
Output: Members(Q)
function Monkey_Assignment ( )

Initialization
Call LL Initialization to return number of groups (N)
N ← size (LLMonkey[])
A← range(1, N)
forall MonkeyA ∈ N do

Initialize group index (Q)
Q = 1

B← parameters(1, N)
forall MonkeyB ∈ M do

if PAB >= CBQ then
Assign the node A to group Q
Q[]← MonkeyA
Q[]← Q[] ∪MonkeyA

else
Qth ←Member Assignment

Repeat until the next parameter PAB′ does not meet the threshold for Q
group

Assign monkeys to last group QLast when exceeds to L
if Q[] > L then

Set Q← L
else

Consider Next Monkey; (MonkeyA + 1)

return Members(Q)

3.3. Relay Validation by LL

VANETs can be divided into subgroups, and within these subgroups, vehicles can
dynamically elect or appoint local leaders to manage and optimize communication within
their respective subsets. Local leaders play a crucial role in identifying relay nodes within
their subgroups, optimizing the routing of messages and data. This is particularly beneficial
in scenarios where communication needs to be extended beyond the direct communication
range of individual vehicles. The process of selecting a relay node from subgroups entails
identifying the most appropriate node based on a variety of factors or parameters that
impact the selection of a relay node via LL. These are represented in Figure 6. The proposed
approach includes the weight assignment for each parameter based on its importance or
relevance to the selection process. For instance, the consumption of energy for a node might
be more critical than speed in some scenarios.

The weight matrix (W[]) is defined as in Equation (9), representing the dynamic weight
(w for each parameter RT , S, Ec, Th, n).

W[] =


wRT
wS
wEc
wTh
wn

 : ∀w ∈ range(0, 1); (9)
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Figure 6. Qth LL group.

3.4. Weight Configuration Learning Model

The proposed approach utilizes the machine learning technique to dynamically pro-
vide the weights for parameters. In this method of learning weights’ values, a neural
network architecture consists of input, hidden, and output layers for which weights are
learned during the training process. These weights represent the parameters that the net-
work adjusts to make predictions or learn patterns from the input data. The representation
of a neural network defines basic layers for input and output along with the hidden layer.
The input layer receives the input features of vehicles, such as the direction, speed, neigh-
bors, and others. Each node in this layer represents a feature for a node as the input data.
The computation for weight configuration is performed via hidden intermediate layers
between the input and output layers. Each node in a hidden layer performs a weighted sum
of inputs and applies an activation function. Finally, the output layer produces the final
output of the network. The values of weights in a neural network are initialized randomly
at the beginning of training and are updated throughout the training process to improve
the network’s ability to make accurate predictions. These updates are performed using the
gradients of the loss function with respect to the weights. For dynamic values of weights,
during the training phase of the neural network, these weights are adjusted iteratively
using backpropagation with gradient descent optimization techniques to minimize the
error or loss between the predicted and actual outputs. The vehicles begin to analyze
the data to identify patterns and develop logic according to the pattern, after which a
leader is chosen. Nearly 80% of the data were entered into the learning process to find
the dynamic weight values’ moving patterns. The previous observations were kept. The
testing procedure was then run with 20% of the data currently being received because the
training set discovered absolute patterns through a large number of inputs collected via
the simulation, as shown in Figure 7.

In the backpropagation with gradient descent is a key algorithm used to train neural
networks by adjusting the weights and biases to minimize the error between predicted and
actual outputs. Below is the explanation for the method with the involved equations in the
process of an updated weight.
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Figure 7. Weight learning neural network model for parameters.

Forward propagation: During forward propagation, the input data (I) are passed
through the network to make predictions (p) for biases (b) in the predicted output (O′)
for the actual output (O). In our method, we consider a simple neural network with one
hidden layer. D[1] and D[2] are weights of the hidden and output layers, respectively, for
any activation function (α). Equations 10 to 13 represent the forward propagation for the
weight of the dynamic prediction output through the activated hidden layer.

p[1] = D[1] · I + b[1] (10)

a[1] = α · (p[1]) (11)

p[2] = D[2] · a[1] + b[2] (12)

O′[1] = α · p[2] (13)

Calculating loss: The difference between the predicted output, O′, and the actual
output, O, is computed using a mean squared error loss function (G) for learning loss
computation and defined below in Equation (14).

Reduction← G(O′, O) (14)

Backpropagation (gradient computation): Backpropagation involves calculating the
gradients of the loss function with respect to the weights and biases, which are used to
update the parameters, as shown in Equations (15) and (16). Using gradient descent, the
gradients are computed by taking partial derivatives of the loss function with respect to
each parameter.

δ(Reduction)
δD[2]

=
δG
δO′
· δO′

δp[2]
· δp[2]

δD[2]
(15)

δ(Reduction)
δb[2]

=
δG
δO′
· δO′

δp[2]
· δp[2]

δb[2]
(16)
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Similar calculations are performed for D[1] and b[1] by backpropagating the error
through the network, as shown below in Equations (17) and (18).

δ(Reduction)
δD[1]

=
δG
δO′
· δO′

δp[1]
· δp[1]

δD[1]
(17)

δ(Reduction)
δb[1]

=
δG
δO′
· δO′

δp[1]
· δp[1]

δb[1]
(18)

Weight update: In Equations (19) to (22), the weights and biases are updated using
the computed gradients scaled with a learning rate (β) to take a step towards minimizing
the loss.

D[2] = D[2] − β · δ(Reduction)
δD[2]

(19)

b[2] = b[2] − β · δ(Reduction)
δb[2]

(20)

D[1] = D[1] − β · δ(Reduction)
δD[1]

(21)

b[1] = b[1] − β · δ(Reduction)
δb[1]

(22)

Using the above-mentioned equations by gradient decent method, the core of the
backpropagation algorithm is optimized. They are used iteratively across multiple epochs
to update the parameters until convergence, reducing the loss and improving the model’s
performance with the training data. Adjusting the learning rate (β) is crucial to control the
step size during weight updates and prevent overshooting or slow convergence.

3.5. Monkeys’ Weights in LL for Relay Identification

Minimum and maximum values are determined from the detected data to normalize
and save them in a table. After the deviations have been updated, the observation is
noted in the state table following the node movement. Then, a value between 0 and 1
is assigned to the original weight and bias values. The values between two successive
observations are computed for positive and negative values. The neural network is created
to determine the accuracy across layers. The input receives and sends the neighbor vehicle
parameters to the network. The hidden layer depends on the action of the network; it
will be increased, and there may be one or more than one. The hidden layer is in charge
of precise dispensation in neural networks. They carry out several tasks simultaneously,
including data conversion, feature generation, etc. The final output layer sends the results
of the given problem. During the process, the stages where neuron known as the activation
function is utilized. For this, the neural network uses weights to mix various inputs. The
activation is gathered at the distance between the neuron’s center and the input. The
method decides whether the neuron state is activated through the weighted sum and bias
values. According to the output layer, the data transmitter chooses the leader, which then
initiates the data transmission in a broadcasting fashion. The leader is selected via optimum
calculations, thus remaining stable until the transmission is completed. For each node in
a particular LL group among N′, a score based on the parameters and their weights is
computed, considering the values of parameters (P) and the respective dynamic weight
(W). Score (Sc) computation for any node A in LLQ is shown below from Equations (23)
to (25).

ScA = PA ·W (23)

or
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ScA = [RTA SAEcAThAnA] ·


wRT
wS
wEc
wTh
wn

 (24)

or
ScA = RTA wRT + SAwS + EcAwEc + ThAwTh + nAwn (25)

The score generation and relay selection from the Qth group of a local leader (LL) having
N′ nodes is determined via Equations (26) and (27), respectively.

ScA =
Population(LL)

∑
i=1

(PA)i ·Wi (26)

Relay(LLQ)← max(Sc1, Sc2, . . . ScA, . . . ScN′) (27)

3.6. Relay Node Identification via GL

The aggregation of relays from all Q groups creates the candidate set to choose the
best node via the global leader (GL). Algorithm 3, as given below, iterates through all nodes
and evaluates their scores computed via local leaders using the scoring method by keeping
track of the maximum score encountered and the node associated with that score. After an
iteration through all the nodes, the node with the highest score represents the node with
the maximum score. The candidates participating in a relay through LL based on the score
achieved are determined through Equations (28)–(30).

CandidateSet = [Relay1, Relay2, Relay3 . . . , RelayQ] (28)

SCandidate = [SRelay1 , SRelay2 , SRelay3 . . . , SRelayQ ] (29)

Relay(GL)← maxScore(SCandidate) (30)

Algorithm 3: Relay Identification via Global Leader (GL)
Input: LL (Groups), Parameter set ; {B}: M, Monkey set; {A}: N
Output: Members (Q)
function Relay_Identification ( )

Initialization
maxScore = 0
maxScoreNode← NULL
CandidateSet[]← LL (MonkeysRelay)
forall Monkey ∈ CandidateSet[] do

if SRelay >= maxScore then
maxScore =SRelay
maxScoreNode = RelayQ
GLRelay ←maxScoreNode
Remove MonkeyQ from CandidateSet[]

else
Update CandidateSet[] preemptively

Update CandidateSet[]
return GLRelay
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3.7. Threshold Instances for w-SMNO

In the process of selecting relays for our proposed system, some cases and subcases
must be meticulously considered both for local groups and via the global leader to ensure
optimal performance and reliability. A careful analysis of the relay’s sensitivity and re-
sponse time is crucial to guarantee its suitability for dissemination and routine operating
scenarios. Different cases and subcases for relay selection through w-SMNO in VANET
ensure optimal performance in dynamic vehicular environments. In some cases, it would
be highly beneficial to select the LL with the next highest weighted score instead of the
highest score. Let us consider two scenarios involving the mentioned case, one with the
maximum score and the other with the next-to-maximum score, based on the population
size in local groups and the number of neighbors to the local leader. For these scenarios,
threshold is defined for factors, as shown below in Table 1. When both the population of
the specific group Q is PLLQ and the number of neighbors in that respective group, NLLQ ,
is greater than the population and local leader threshold, then the maximum weighted
group using the dynamic parameter weight node from the learning model is considered
to enhance the dissemination as the condition is to maintain a balance between groups
and a leader, according to the population size. Similarly, if both the number of neighbors
in that respective group, NLLQ , is less than the threshold (LLThreshold) and the population
of Q subgroups, PLLQ , is also less than the population threshold (PThreshold), then the next
maximum weighted group, Q′, is considered. For other conditions, the maximum weighted
group is selected. An assumption has been made for the minimum neighbors’ local leaders
(LLThreshold) with actual neighbors’ local leaders (NLL) and the dynamic population of a
specific group (PLL) with a population threshold (PThreshold) for an efficient dissemination
process, where LLQ and LL′Q are, respectively, the maximum score and the next maximum
score of local groups’ leaders.

Table 1. Threshold instances (LL group).

Instances
Group (Order of Score) Relay Node

Group Population Neighbors (Qth Group LL)

(PLL)Q >= PThreshold
(NLL)Q >= LLThreshold

LLQ
Maximum

weight node
(Machine

learning model)

(PLL)Q < PThreshold LLQ

(PLL)Q >= PThreshold
(NLL)Q < LLThreshold

LLQ

(PLL)Q < PThreshold LLQ′

Figure 8 illustrates a dynamic model depicting the threshold considerations for both
local leaders’ thresholds and each group population within a given total population size.
The graph showcases the intricate relationship between these two entities as they navigate
the challenges and opportunities inherent to their respective roles. The limitation to
the number of local leaders for relay consideration demonstrates a distinct threshold
that signifies the point at which their influence becomes the most impactful within their
immediate community or region. Simultaneously, the graph represents the threshold for the
group population at large, emphasizing the critical juncture at which the collective strength
and cohesion of the entire population come into play. This figure serves as a valuable tool
for understanding the nuanced interplay between local leaders and the broader group
population, offering insights into the optimal points of engagement and coordination to
maximize positive outcomes within the larger framework.
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Figure 8. Threshold instances.

4. w-SMNO: Performance Analysis

The following subsections consist the experimental evaluation for performance anal-
ysis of proposed approach including the establishment of simulated vehicles’ indicating
monkey population, their communication infrastructure, the network topology, and the
implementation of related protocols and algorithms. Furthermore, specific parameters and
metrics are delineated to evaluate the method’s effectiveness and performance within the
simulation setting with an aim to enhance efficient dissemination through relay identifica-
tion in VANET communication.

4.1. Simulation Organization

Simulation was conducted to demonstrate the effectiveness of the proposed w-SMNO,
over specifically based estimation scheme (SES) [43], adaptive intersection selection mecha-
nism using ant colony optimization (AISM) [44], and the adaptive jumping multi-objective
firefly algorithm (AJ-MOFA) [16]. A comparative analysis of these are presented in Table 2.

For extensive experiments, NS2.35 served as the simulation platform. We employed
the 500 m × 500 m heavy traffic area along Jaipur JLN Marg, India, sourced from Open-
StreetMap, as depicted below in Figure 9, to generate a node density trace file using SUMO
and MOVE. This file captures realistic mobility environments, including information on
each node’s speed and location, which are then utilized via NS2.35 as a dataset to assess the
performance of w-SMNO. In each simulation, the generated population set is divided into
local groups ranging from 5 to 40, each containing populations ranging from 30 to 60 nodes.
These groups, each containing populations, are introduced at specific time intervals to
assess performance metrics, as explained in later sections. Nodes with speeds ranging from
20 to 100 km/h are included in the population to demonstrate the correlation between the
results and a comparative analysis of UDP transport with CBR traffic, with a maximum flow
rate of 100 vehicles. Table 3 provides an overview of the simulation parameters utilized in
this approach.
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Table 2. Comparison analysis between the SES, AISM, AJ-MOFA, and w-SMNO protocols.

Protocols SES AISM AJ-MOFA Proposed w-SMNO

VANET domain Routing Routing Routing Routing
Optimization strategy Social spider Ant colony MO firefly Spider monkey
Sub-strategy Clustering None Clustering ML model
Source identification Position-based Position-based Position-based Position-based
Route configuration Yes Yes Yes Yes
Route selection Yes Yes Yes Yes
Disconnection rate Medium Medium Low Low
Route selection approach Vehicle link Metrics Pareto method Weighted metrics
Vehicle density (Max) 100 300 100 100
Network connection V2V V2I V2V V2V
Comparison CLPSO, GA, ACO GeoSVR, RAGR, EGSR CPB, NSGA-II SES, AISM, AJ-MOFA
Environment Urban Urban Urban Urban
Simulation tool MATLAB NS2.34 MATLAB NS-2.35

Figure 9. Road segment (Jaipur JLN Marg, India).

The effectiveness of the w-SMNO approach when compared to the non-grouped
conventional method to variable subgroups (number of LL) is demonstrated in Figure 10.
The outcomes for various metrics are presented for a predetermined number of local groups.
As local groups and the vehicle density increase, the effectiveness of w-SMNO undergoes
an improvement when contrasted with non-grouped communication. This is because there
is less repetition of similar information among nodes in the same group. Breaking down
the population into multiple groups helps simplify the process of identifying relay nodes,
making it less complex by handling fewer nodes within each group. The results further
illustrate that the efficiency of the approach may fluctuate with the rise in the number of
groups more than the limitation relative to the vehicle density or population, potentially
affecting the overall performance. Table 4 outlines the multiple considered conditions for
the evaluation and illustration of the same.
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Table 3. Simulation parameters.

Parameters Values

Population Size 1000
Local Groups (LL) [5–40]
Group Population [30–60]

Test Time 300 seconds
Traffic CBR

Number of Tests 10
Region [500 × 500] m2

Frame Length 2 Kbytes
Displacement Random

Mobility RWP
Node Speed [20–100] km/h

Transport Protocol UDP
Transmission 300 m

MAC IEEE 802.11b
Propagation 2-Way

Routing Protocol OLSR
Experiment Tool NS 2.35

Figure 10. w-SMNO efficiency.

Table 4. w-SMNO scenarios carrying non-grouped conventional vehicle density.

State
w-SMNO Non-Grouped

Conventional
Vehicle Density

Local Groups
(Size)

Population
(Individual LL)

ine Case 1 10 60 600
ine Case 2 20 40 800
ine Case 3 30 30 900
ine Case 4 40 25 1000

ine
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4.2. Evaluation Metrics

In this section, we outline the evaluation criteria employed to appraise the effective-
ness and efficiency of the proposed system in comparison to alternative techniques. The
selection of parameters significantly influences the efficacy of the solution for information
dissemination through relays. Enhancing the overall performance entails a comprehensive
understanding of parameters pertaining to population, groups, subgroups, relay selection,
and other relevant factors. To optimize the performance, a systematic literature review was
conducted in order to identify recommended values or ranges for similar parameters in
both nature-based and conventional dissemination models.

Moreover, the proposed method’s performance was gauged across diverse network
sizes to evaluate its scalability, ensuring that the parameters can adeptly adjust to varying
node numbers while upholding performance standards. We evaluated the effectiveness of
the suggested w-SMNO approach based on network coverage, message delivery propor-
tion, end-to-end delay, and collision rate variables using the specifications provided for
parameter configuration. Network coverage is a crucial metric to evaluate the effectiveness
of communication coverage. A higher network coverage percentage signifies a more exten-
sive and effective communication reach within the vehicular network, which is essential for
the success of applications such as safety warnings, traffic management, and other coopera-
tive services that rely on timely and reliable communication between vehicles. The message
delivery proportion assesses the effectiveness of message dissemination and represents
the percentage of messages that are successfully delivered to their intended recipients. A
higher value is desirable, as it reflects the efficiency and reliability of the communication
system. The end-to-end delay measures the time taken for a data packet to travel from
the source vehicle to the destination vehicle, and it represents the total delay affecting the
packet during its transmission through the network. Minimizing the end-to-end delay
is essential to ensure timely communication. The collision rate measures the frequency
of collisions between transmitted packets. It can occur when multiple vehicles attempt
to transmit data simultaneously on the same communication channel, leading to signal
interference and a loss of information. A lower collision rate is desirable for an efficient
and reliable communication environment. All of these different metrics concentrate on
assessing performance in terms of the total n local group each having nodes, N, for the
total P population in r tests for the LL subgroup. The following provides an in-depth
explanation of the metrics employed to assess performance.

Network coverage (ω): Network coverage refers to the extent of the geographical area
within which communication is established between vehicles and infrastructure nodes. ω
is the percentage ratio of the number of vehicles successfully reached or connected to the
total number of vehicles in the network. Equation (31) defines the average ω.

ωAvg =

[(
r

∑
test=1

( ∫ LL

1

{ ∫ n

1

NLinked
NLL

}
∗ 1

P

)
/r

]
∗ 100 (31)

Message delivery proportion (µ): The definition of the message delivery proportion
is the proportion of messages that, out of all the messages sent over the network, reach
their intended recipients successfully. The average of µ for MReach messages in a subgroup
from the total M messages is determined through Equation (32).

µAvg =

[(
r

∑
test=1

( ∫ LL

1

[ ∫ n

1

MReach
MLL

]
/M

)
/r

]
∗ 100 (32)

End-to-end delay (τ): The end-to-end delay is defined as the total time it takes for a
data packet to travel from the source to the destination in a communication network. It
encompasses the transmission delay (TD), propagation delay (PD), queuing delay (QD),
and processing delay (PrD). For defined factors, including the population and subgroups’
size, the average delay (τ) is shown in Equation (33).
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τAvg =

[
r

∑
test=1

[ ∫ LL

1

[ ∫ n

1

(
TD + PD + QD + PrD

)
∗ 1

r

]]]
(33)

Collision rate (σ): The collision rate refers to the proportion of collision occurrences
in a communication system, particularly in scenarios where multiple devices contend for
access to a shared communication medium. For the collision count (CC), among the total
number of transmission attempts (T), the average of σ is expressed in Equation (34).

µAvg =

[(
r

∑
test=1

( ∫ LL

1

[ ∫ n

1

CC
T

])
∗ 1

r

)]
(34)

4.3. Simulation Outcomes

This subsection presented the simulation outcomes of this study, illustrating the
efficacy of the proposed approach. With this methodology, numerous experiments were
conducted, and the system’s performance was assessed across diverse scenarios through
extensive simulations. To scrutinize the necessity of total local leaders (LL) in each subgroup
for a random population, Experiment 1 was conducted, involving the variation in both
LL and the population size over simulated time. Figure 11 demonstrates the analytical
behavior of the experiment through a probabilistic approach for LL with a population
size through a simulation. To the specific members limit, the number of subgroups are
directly proportional to the monkey population. The analysis outcomes clearly represent
the requirement for balance in LL with the increases in the population for the effective
functioning and optimization of various systems, especially in scenarios involving large-
scale networks. Careful consideration and adjustment of subgroup values become pivotal
to achieving optimal performance and maintaining a harmonized operation as the number
of nodes in the network grows.

Figure 11. Experiment 1: probability analysis for LL with population size.

Moreover, we assessed the stability of the proposed system by examining the various
arrangements of both the minimum and maximum values for the LL and the population
size in Experiment 2. Table 5 illustrates the groups with the combination of minimum and
maximum values for LL and P for the cases of experiment. The results of the experiment
are visually depicted in Figure 12.
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Figure 12. Experiment 2: w−SMNO network stability under (min, max) group.

Table 5. Network stability under (min, max) group.

Category
Spider Monkey (Vehicles)

Groups
(LL)

Population
(P)

ine A (min, min) 10 600
ine B (min, max) 10 1000
ine C (max, min) 40 600
ine D (max, max) 40 1000

ine

While the stability of the system in networks with the maximum population and LL
was relatively diminished compared to networks with the minimum LL and the maximum
population, it is important to note that, concurrently, the overall performance of the w-
SMNO method demonstrated a noteworthy enhancement. Opting for the minimum local
leader (LL) value, coupled with the maximum population, proves advantageous when
compared to other combinations. This choice minimizes the need for relay candidates,
leading to a more streamlined and efficient system. The network exhibits increased stability,
and the overall processing time is significantly reduced. With fewer relay candidates to
manage, the system experiences enhanced efficiency and reliability, making the combi-
nation of the minimum LL and the maximum population a favorable configuration for
optimal performance.

A comprehensive examination was undertaken through Experiment 3, concentrat-
ing on performance metrics like network coverage, the message delivery proportion, the
end-to-end delay, and the collision rate as defined earlier to demonstrate the superior-
ity of w-SMNO. This investigation involved a varying spider population (vehicles) and
simulation time while maintaining a constant number of subgroups percentage (LL) to
5, 25, and 35 as an average of the minimum and maximum, with an initial population
size of 50 nodes. Members of subgroups were allocated through the member allocation
algorithm, as discussed in previous sections. The simulation result for the same is shown
in Tables 6 and 7.
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Table 6. Simulation results proposed for delay and network coverage.

Factors E2E Delay (msec) Network Coverage (%)

State-of-the-Art Proposed SES AISM AJ-MOFA Proposed SES AISM AJ-MOFA

Time (s)

30 46.93 55.36 57.73 52.29 41.35 35.66 27.63 31.54

60 58.67 73.9 65.86 60.9 49.88 36.76 30.61 35.08

90 64.19 80.5 79.86 62.38 57.69 42.13 33.49 40.77

120 71.09 83.22 85.17 78.47 74.18 53.37 39.22 50.71

150 92.63 79.86 88.11 94.65 85.74 67.28 43 63.52

180 90.43 75.36 94.45 91.37 92.33 68.47 44.62 70.57

210 83.2 98.93 108.48 85.44 96 69.53 47.36 71.62

240 86.47 112.57 125.93 94.58 97.58 72.15 48.58 73.55

270 91.58 121.36 132.67 99.72 98.44 81.39 59.41 83.46

300 98.36 133.49 156.71 110.51 99.58 85.66 67.84 87.23

Population (Count)

100 15.37 20.07 27.56 23.93 99.87 93.27 95.12 96.75

200 18.73 26.96 30.24 28.47 99.04 90.18 92.77 95.3

300 25.19 35.84 41.06 40.52 97.19 87.26 90.43 94.83

400 34.46 56.76 57.87 58.45 96.24 86.14 88.62 90.74

500 57.44 72.08 75.34 65.29 95.76 84.7 85.94 85.47

600 69.95 93.53 97.55 90.8 95.17 80.35 84.27 82.77

700 61.25 115.29 126.64 115.62 93.78 70.12 81.46 78.26

800 67.56 120.57 136.14 122.84 92.92 68.56 79.56 76.68

900 78.69 126.12 141.08 135.88 92.11 63.84 77.51 71.59

1000 88.48 131.26 161 158.65 91.64 56.61 76.48 68.34

Local Leader Density

10 97.44 116.84 111.71 107.27 81.63 75.28 78.63 80.09

20 101.56 125.51 119 113.68 82.24 76.564 79.958 80.678

30 108.02 136.7 128.08 122.67 85.006 75.682 81.347 82.956

40 116.77 152.34 141.87 135.12 83.78 74.192 82.813 81.518
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Table 6. Cont.

Factors E2E Delay (msec) Network Coverage (%)

State-of-Art Proposed SES AISM AJ-MOFA Proposed SES AISM AJ-MOFA

Local Leader Density

50 127.85 173.46 159.79 150.99 87.66 76.107 80.251 83.127

60 142.6 202.15 180.97 169.41 87.49 78.348 85.813 82.195

70 160.43 243.82 207.85 193.15 92.319 80.443 83.477 84.264

80 182.49 298.78 244.02 224.37 97.861 84.837 84.698 86.236

90 210.38 364.02 286.83 262.8 98.332 86.304 87.435 85.117

100 244.93 435.66 342.5 312.08 99.157 87.774 91.738 88.421

Table 7. Simulations result of proposed for message delivery rate and collision rate.

Factors Message Delivery Rate (%) Collision Rate (%)

State-of-Art Proposed SES AISM AJ-MOFA Proposed SES AISM AJ-MOFA

Time (s)

30 98.56 85.49 77.21 68.43 2.35 5.73 3.76 6.11

60 97.24 82.76 78.66 72.59 3.61 10.26 8.83 8.95

90 89.37 84.64 82.42 77.91 5.42 18.46 9.48 10.37

120 78.19 74.28 86.57 77.02 8.68 25.54 12.2 16.77

150 72.43 65.36 80.62 73.25 12.7 35.76 20.27 24.62

180 75.41 52.81 74.18 71.84 20.35 44.68 31.18 29.43

210 77.52 53.16 67 64.73 12.8 30.57 24.84 36.82

240 83.77 57.33 55.07 63.34 13.21 31.22 20.26 40.41

270 85 65.74 62.46 60.08 14.55 34.37 26.34 33.08

300 92.6 69.35 73.58 65.16 15.16 39.63 32.08 37.51

Population (Count)

100 99.48 87.44 85.2 85.76 3.36 4.35 4.08 5.45

200 98.75 81.43 84.68 81.28 3.92 5.73 5.46 6.75

300 96.07 77.6 81.7 75.19 4.71 11.91 7.52 8.39

400 85.4 70.09 72.16 70.32 6.84 15.43 11.61 12.27
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Table 7. Cont.

Factors Message Delivery Rate (%) Collision Rate (%)

State-of-Art Proposed SES AISM AJ-MOFA Proposed SES AISM AJ-MOFA

Population (Count)

500 73.63 68.42 63.84 65.46 10.29 16.15 17.85 16.8

600 79.48 54.59 54.91 51.27 15.08 16.03 21.22 20.46

700 83.8 55.1 57.71 60.14 14.86 17.66 20.53 21.59

800 84.28 58.64 63.18 65.51 14.22 21.49 19.87 19.95

900 87.56 65.58 70.5 68.7 15.87 25.68 24.11 25.52

1000 94.57 70.84 76.29 69.45 16.55 29.3 31.73 30.06

Local Leader Density

10 91.09 84.06 85.23 86.45 2.043 3.153 2.761 2.523

20 90.24 82.96 84.03 85.5 2.883 4.513 4.011 3.543

30 89 81.53 79.24 84.21 4.003 6.603 6.071 5.263

40 87.56 79.82 80.99 82.71 6.273 10.543 9.751 8.313

50 88.42 77.89 79.19 80.96 9.353 15.413 14.321 12.253

60 85.73 75.68 77.03 81.33 13.493 21.673 20.291 17.373

70 81.81 73.02 74.5 76.45 18.753 28.653 26.901 23.183

80 79.41 70.18 71.8 73.77 25.073 36.523 34.191 30.043

90 76.7 67.18 68.8 70.8 32.543 46.363 43.231 38.173

100 73.66 63.21 65.01 67.12 41.073 57.633 53.641 47.633



Sensors 2024, 24, 2334 27 of 35

Figures 13–24 present the acquired results. The analysis reveals a remarkable enhance-
ment in the reliability of the w-SMNO dissemination approach, manifested in a substantial
decrease in the end-to-end delay and the rate of collision of packets alongside an aug-
mentation in both network coverage and the message delivery rate to destinations. These
improvements are notably superior to the existing state-of-the-art solutions. As the popula-
tion size increases, the subgroups allocate members more effectively, thus improving the
rate of message delivery , reducing the numbers of collisions, and enhancing the network
coverage. Simultaneously, the early identification of relays further reducing the end-to-end
delay. Overall it is promoting efficient data dissemination in vehicular communication
across the entire network. These insights underscore the effectiveness of our approach,
showcasing its potential for real-world deployments.

The behavior of the w-SMNO, as shown in Figures 13–16, exhibited sufficient improve-
ment in efficiency over time, especially concerning the defined key metrics of network
coverage, the end-to-end delay, the message delivery rate, and the collision rate. As time
progressed, the algorithm demonstrated a significant enhancement in network coverage,
ensuring a wider span of effective communication. Similarly, the delay factor for the pro-
posed method was reduced satisfactorily, as the time taken for both node processing due
to local groups’ formation and the identification of an effective relay node was reduced.
Finally, from the simulation outcomes for delays, it can be concluded that the time taken
for information to traverse from a source to a destination showcases a favorable trend with
time, indicating an optimized and expedited data dissemination process. Moreover, the
message delivery rate exhibited a positive correlation with time, signifying an increasingly
successful transmission of messages within the network. Simultaneously, the collision rate,
representing instances of data packet conflicts, demonstrates a decreasing trend over time,
underlining the algorithm’s adeptness in mitigating collisions and optimizing resource
utilization. This efficient behavior of w-SMNO across these crucial metrics substantiates its
efficacy and suitability for addressing the challenges inherent to network communication
over varying temporal intervals.

Further, the competence of the w-SMNO method is notably pronounced, considering
the similar metrics, particularly with the increase in the variable size of the spider monkey
population, as shown in Figures 17–20. As the population of spider monkeys grows, the
algorithm exhibits an exceptional ability to adapt and optimize the network coverage. The
expanded population contributes to a more extensive and robust network reach, ensuring
that communication spans a larger area with increased efficiency. Simultaneously, the
delay in the data demonstrates a positive trend with the growing and flexible size of the
population. This is because, as the population rises, the sufficient number of local groups
increases in accordance with the current population through the algorithm, and it shows its
proficiency in minimizing delays, facilitating swift and efficient information dissemination
within the w-SMNO network. Likewise, the message delivery rate exhibits a significant
positive correlation with the enlarged spider monkey population. This is because of similar
reasons involving multiple group formation with an appropriate size for each one. This
indicates the algorithm’s capacity to handle larger populations adeptly, ensuring a higher
success rate in delivering messages across the network, and the w-SMNO method excels
in managing the complexities associated with an increased population size, contributing
to an overall improvement in message delivery efficiency. In terms of the collision rate, it
is reduced sufficiently. As we can see, there is an adequate increase in message delivery,
indicating the reduction in the broadcast storm and efficiently handling the congestion, if
any, due to heavy transmission. Related conclusions represent the instances of data packet
conflicts; the algorithm consistently demonstrates a decreasing trend as the population
expands. This shows the ability to mitigate collisions effectively via w-SMNO, optimizing
resource utilization and enhancing the overall reliability and effectiveness in addressing
the challenges posed in larger and more dynamic network environments.



Sensors 2024, 24, 2334 28 of 35

Figure 13. Coverage with time.

Figure 14. E2E delay with time.

Figure 15. MDR with time.
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Figure 16. Collision − rate with time.

Figure 17. Coverage with population.

Figure 18. E2E delay with population.



Sensors 2024, 24, 2334 30 of 35

Figure 19. MDR with population.

Figure 20. Collision − rate with population.

Figure 21. Coverage with LL node density.
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Figure 22. E2E delay with LL node density.

Figure 23. MDR with LL node density.

Figure 24. Collision—rate with LL node density.
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5. Discussion

In this section, we delve into a comprehensive analysis that underscores the novelty
of our work and clarifies the challenges in solving the delay problem for dissemination
in VANETs through w-SMNO. Concurrently, we conduct a comparative study of the ex-
isting technologies, examining their impacts on transmission performance, including a
consideration of the relay from the next hop without cluster formation [45], considering
the challenge of a broadcast storm using a cluster-based forwarding mechanism [46], and
route optimization for messages to their destination using particle swarm methods [47].
Our findings provide a notable reduction in delays, attributed to a substantial decrease
in collisions and an enhanced success rate in message delivery facilitated via the imple-
mentation of the spider monkey technique. The proposed w-SMNO underwent a rigorous
comparative analysis compared to existing methods, showcasing its superiority over both
time and population in various performance metrics. As time advances, delays increase
across all methods due to escalating communication overhead and collisions. Likewise, the
message delivery ratio diminishes as the network congestion intensifies over time, resulting
in packet drops. Figure 15 illustrates these delivery trends distinctly. At around 150 s, the
packet drop rate peaks to alleviate congestion, followed by a subsequent rise in message
delivery rates around 180 s, indicating congestion relief. Similar to other observations, it
can be concluded that our approach outperforms others in reducing information delay,
minimizing collisions, ensuring efficient message delivery, and extending network coverage
over both with variable time and populations. w-SMNO strategically forms a sufficient
number of local leaders within subgroups, adapting to variable population sizes. Thus it’s
significantly improves service quality for vehicular ad hoc network (VANET) end users,
providing accurate and timely information. The increase in the vehicular volume leads
to a surge in information transmission, resulting in packet collisions that diminish both
packet delivery rates and coverage. This, in turn, introduces delays as packets fail to reach
their destinations. However, w-SMNO exhibits superior behavior and trends especially
when considering the density of vehicles in subgroups and referencing local leaders (LLs).
Figures 21–24 illustrate these comparisons comprehensively. Strong challenges had to be
overcome for the solution to work, including inconsistent speeds, frequent disconnections
in sparse networks, and link stability in a dynamic topology. The novel aspect is how
each subgroup’s relay vehicle selection procedure is created and executed with the help of
w-SMNO. The weight model takes into account dynamic parameter values to accommodate
real-time situations and handle coverage problems. Additionally, w-SMNO presents unique
optimization strategies and scenarios designed to significantly lower the number of relay
participants, reducing the communication overhead and addressing link stability issues
in sparse and dynamic network environments. We observed significant improvements in
coverage, message delivery, end-to-end delay, and collision rates, as demonstrated via our
evaluation of various metrics. Thus, we can state with confidence that w-SMNO tackles the
complexities of data distribution in VANETs and provides a thorough and well-thought-out
answer to the problems under consideration.

6. Conclusions and Future Work

Problems such as effective data handling surface more frequently as ad hoc networks
are used more and more. Overcoming these obstacles is essential to resolving issues like
broadcast storms, delays, and collisions. We have presented a milestone strategy with our
suggested method, which consists of grouping vehicles, determining sub-relays, and then
choosing the best relay from each group, in comparing the included methods. With this
novel approach, coverage and delay problems are successfully resolved using a population
of spider monkeys. The design also integrates a neural approach to machine learning,
which dynamically modifies parameters in real time, which is not utilized in existing
mechanisms of dissemination. This technique uses the cooperative behavior of the spider
monkey algorithm to act as a learning model for reconfiguration, encouraging the choice of
a global relay node. The suggested model outperforms current algorithms in identifying
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local and global leaders. When the population is smaller, w-SMNO and our proposed
algorithms demonstrated enhanced outcomes compared to the traditional ungrouped
approach. Moreover, with dynamic member allocation, the proposed algorithms exhibit
superior performance over other methods across varying population sizes. This study
was dedicated to creating an efficient spider monkey-inspired algorithm to address the
delay and collision challenges in data dissemination within VANETs. The primary goal
was to enhance the performance, addressing the shortcomings observed in existing models.
The results of the simulation at various time intervals indicate a significant improvement
in VANET data dissemination performance, with improvements ranging from 35% to
45% for the metrics. This represents improvements in the V2V network’s general quality,
trustworthiness, and dependability. In densely populated areas or situations with high
message transmission rates, the decision factors taken into account regularly live up to
expectations. The results highlight the accuracy of the suggested method in reducing
broadcast storms and validating its dependability and robustness in dynamic environments.
It is reasonable to conclude that the suggested method is dependable and efficient in light
of these encouraging results. In the future, the proposed method can be enhanced for the
analysis of security attacks, considering the compliance of spider monkey behavior with
artificial intelligence techniques.
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