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Abstract: RPL—Routing Protocol for Low-Power and Lossy Networks (usually pronounced “ripple”)—is
the de facto standard for IoT networks. However, it neglects to exploit IoT devices’ full capacity
to optimize their transmission power, mainly because it is quite challenging to do so in parallel
with the routing strategy, given the dynamic nature of wireless links and the typically constrained
resources of IoT devices. Adapting the transmission power requires dynamically assessing many
parameters, such as the probability of packet collisions, energy consumption, the number of hops,
and interference. This paper introduces Adaptive Control of Transmission Power for RPL (ACTOR) for
the dynamic optimization of transmission power. ACTOR aims to improve throughput in dense
networks by passively exploring different transmission power levels. The classic solutions of bandit
theory, including the Upper Confidence Bound (UCB) and Discounted UCB, accelerate the convergence
of the exploration and guarantee its optimality. ACTOR is also enhanced via mechanisms to blacklist
undesirable transmission power levels and stabilize the topology of parent–child negotiations. The
results of the experiments conducted on our 40-node, 12-node testbed demonstrate that ACTOR
achieves a higher packet delivery ratio by almost 20%, reduces the transmission power of nodes by
up to 10 dBm, and maintains a stable topology with significantly fewer parent switches compared
to the standard RPL and the selected benchmarks. These findings are consistent with simulations
conducted across 7 different scenarios, where improvements in end-to-end delay, packet delivery,
and energy consumption were observed by up to 50%.

Keywords: wireless sensor networks; Routing Protocol for Low-Power Lossy Networks (RPL); radio
resource management; transmission power control; multi-armed bandit; reinforcement learning;
Upper Confidence Bound (UCB); performance evaluation; simulation; testbed; IPv6; 6LoWPAN;
IEEE 802.15.4

1. Introduction

The increasing adoption of Low-Power and Lossy Networks (LLNs) as a leading
class of Internet-of-Things (IoT) communication technologies has led to a high density of
wireless nodes in the already congested unlicensed industrial, scientific, and medical (ISM)
bands. LLNs are typically composed of battery-operated and resource-constrained devices
connected via a mesh network over unreliable links. For LLNs, the Internet Engineering
Task Force (IETF) has proposed a protocol stack consisting of the Routing Protocol for LLNs
(RPL) [1] and IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN) [2]. RPL
targets scaling to thousands of IP-connected devices, to fulfill the vision of IoT. Modern IoT
applications not only require the scalability and lightweight operation that RPL provides but
may also impose a heavy traffic load and dense deployments. e.g., habitat monitoring [3],
underground mining [4], and smart grids [5].

However, this protocol stack shows degraded performance when subjected to high
traffic or a dense topology [6]. In such cases, RPL solicits information from other possible
parents and switches to another parent. Parent switching might not always enhance

Sensors 2024, 24, 2330. https://doi.org/10.3390/s24072330 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24072330
https://doi.org/10.3390/s24072330
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2644-1085
https://orcid.org/0000-0001-5590-0784
https://orcid.org/0000-0002-6139-6542
https://orcid.org/0000-0002-7755-4795
https://orcid.org/0000-0002-2419-2735
https://doi.org/10.3390/s24072330
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24072330?type=check_update&version=3


Sensors 2024, 24, 2330 2 of 24

the network performance, particularly in densely deployed networks, since the potential
parents may also perform poorly.

One reason is that in RPL networks, the predominant choice is to set the transmis-
sion power to the maximum for all the nodes to simplify the operation of the protocol.
Alternatively, the wireless nodes can adjust their transmission power to increase spatial
reuse in the network consequently improving the quality of service under dense and heavy
traffic scenarios. First, it may increase channel contention and reduce spatial reuse in the
channel. Consequently, nodes waste their limited energy due to (i) unnecessary large values
of transmission power and (ii) the re-transmission of packets due to collision with other nodes.
On the other hand, radically reducing the transmission power may compromise the network
connectivity since receivers may experience a lower Signal-to-Noise Ratio (SNR) [7].

Commercially available off-the-shelf (COTS) radios provide metrics such as the Re-
ceiver Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI). These metrics provide
an instantaneous metric to decide on the transmission power but are volatile in nature and
not very accurate for the long-term estimation of wireless link quality [8,9]. That is why
accurate methods require nodes to probe different transmission power settings continu-
ously, which implies severe overhead to the network. Moreover, adding extra control traffic
escalates congestion, which is the underlying cause of packet loss and delay. By passively
measuring the delivery rate of various settings, node can infer the link quality without
requiring additional control traffic. Passive probing can be costly if it is not performed
properly, as nodes may sacrifice some data packets by reducing the transmission power for
the sake of exploring the opportunity. Some existing works probe different transmission
powers using simple algorithms without providing a theoretical background on conver-
gence to the optimal setting. For instance, window-based protocols [10] assume they have
found the best transmission power if they successfully transmit a certain number of packets.
Our preliminary study shows that, even in a simple two-node scenario, this assumption is
unrealistic. In such settings, these algorithms might not select the optimal transmission
power or converge very slowly.

An intelligent exploration strategy is required to ensure the probing of different
settings is performed faster and is guaranteed to converge. We resorted to the exploration–
exploitation dilemma in the Multi-Armed Bandit framework and UCB algorithm to optimize
the probing of the transmission power settings. Multi-Armed Bandits are a class of reinforce-
ment algorithms in which a single-state agent has no prior knowledge of the rewards. In
this framework, each node simultaneously learns and optimizes its rewards.

We present Adaptive Control of Transmission Power for RPL (ACTOR), which includes
a set of methods that extend RPL to adapt transmission power settings based on bandit
theory. ACTOR aims to increase the throughput while minimizing the transmission power
in dense and high-traffic LLNs. This also has the potential to preserve energy in the batteries
through spatial reuse and lower internal interference.

ACTOR takes advantage of the routing information in the transmission power control.
The reliable communication of nodes in a multi-hop network hinges on the parents to
relay the traffic. When a parent node reduces its transmission power, it is not supposed to
jeopardize communications with its children. In ACTOR, children inform their preferred
parent of their expected transmission power settings so the parents do not abandon their
children. To further accelerate the convergence of the learning process, ACTOR also
employs a blacklisting mechanism to filter out transmission power settings that are too
unreliable. Importantly, ACTOR is backward-compatible with the RPL protocol and easy
to implement in COTS devices with minimal overhead.

Transmission power control is advantageous in many scenarios. In a multiple-cluster
network, ACTOR is beneficial since it allows the clusters to limit their destructive inter-
ference to a smaller region. Figure 1 illustrates a multi-cluster topology in which the two
clusters do not interfere with each other when using ACTOR (Figure 1b). When running
RPL, the transmission ranges of nodes A3 and B2 collide with a lot of nodes in the neighbor-
ing cluster (Figure 1a). The figure also shows a sample of the table that ACTOR maintains
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for storing the action values and the number of times they have been explored. By using
ACTOR, nodes can improve their throughput in dense or high-throughput scenarios while
minimizing their energy consumption. This is achieved through optimal transmission
power control, fast convergence, and keeping the topology stable.

A2 A3

Root 

A

A4

B3

Root 

B

B4

B2

0 dBm

0 dBm

A2 A3

Root 
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−10 dBm 0 % 100

−15 dBm 0 % 100

−25 dBm 0 % 100

Routing table at node B2

for best parent (B):

(a) (b)

Figure 1. ACTOR confines the channel contention among nodes in a multi-cluster topology. (a) The
clusters interfere with each other when using the maximum transmission power. (b) The clusters
have minimal interference with each other when using ACTOR.

The recent efforts in the domain of deterministic networking in the IoT have led to the
standardization of the Time Slotted Channel Hopping (TSCH) and IPv6 over TSCH (6TiSCH)
framework [11]. The benefits of increasing spatial reuse in the network are not limited to
tackling the hidden terminal problem in a CSMA network. Avoiding excessive transmission
power settings reduces the interference incurred to the neighboring nodes. Hence, even
with the proliferation of TSCH mode in the MAC layer, the transmission power control
reduces the constraints of the scheduler, allowing higher throughput.

In summary, this paper outlines the following contributions:

• We experimentally analyze packet delivery ratio distribution with different transmis-
sion powers and distances for two nodes communicating with RPL, showing the need
for intelligent transmission power control (Section 4).

• We formulate the problem of transmission power control in RPL using the multi-
armed bandit paradigm and propose the ACTOR mechanism with two alternative
algorithms—UCB and Discounted UCB (Section 5).

• We implement and integrate the ACTOR mechanism in RPL in a way that is backward-
compatible with the standard protocol using Contiki-NG, and we publish the code
as open-source (https://github.com/iliar-rabet/ACTOR, accessed on 3 April 2024 )
(Section 5).

• We evaluate and compare ACTOR performance against the default RPL and two
benchmarks, both through simulations and a real testbed, showing improved reliability
and energy efficiency (Section 6).

The remainder of the paper is structured as follows: Section 2 reviews some back-
ground regarding bandit theory and the standard RPL protocol. Section 3 addresses the
related work. In Section 4, we analyze the upper bounds of the distribution of the PDR
using different transmission power settings. Section 5 addresses the proposed method,
which is then evaluated in Section 6. Finally, we conclude the paper in Section 7.

2. Background

ACTOR extends the standard RPL to optimize the TP using a specific reinforcement
learning algorithm named UCB. So, in this section, we first review the standard RPL and
its core mechanisms. Next, we present the reasoning behind choosing the UCB algorithm
among all reinforcement learning schemes.

https://github.com/iliar-rabet/ACTOR
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2.1. Background on RPL

All transmissions (upward, downward, and point-to-point) in RPL happen within a
set of links referred to as a Destination-Oriented Directed Acyclic Graph (DODAG). RPL nodes
construct a collection of DODAGs, each rooted at a border router. For each DODAG, the
root node starts the process by sending a Destination Information Object (DIO) indicating its
presence. Upon receiving a DIO, nodes can start sending data to the root and set a Trickle
timer to further advertise the network by sending more DIOs. Nodes also send Destination
Advertisement Object (DAO) packets to the root node to enable downward traffic to be routed.

Numerous RPL extensions, both centralized [12] and distributed [13], have been
proposed in the research community to address various challenges such as network density,
mobility, and interference. While centralized approaches offer certain advantages, such as
centralized control, they often introduce additional control traffic, which can be undesirable
in dense networks. Therefore, to mitigate these concerns, ACTOR proposes enhancements
to the standard in a distributed manner.

RPL was not initially tuned to cope with channel contention. In the event of packet
loss due to high traffic, RPL tries to initiate local or global repairs by sending more DIOs,
thereby further congesting the medium. Local repair refers to the scenario in which a
node starts searching for a parent with no implication on the global routing state. This is
triggered when the node does not have any active link toward the root node. A global
repair, however, can only be initiated via the root node, and it rebuilds the whole routing
graph on all the nodes from scratch. It has been shown that, under a heavy traffic load,
RPL shows unstable topology maintenance, unfairness, and high routing overhead. Also,
handling the hidden terminal problem is flawed since nodes do not use their capacity to
adapt their transmission power.

RPL nodes advertise the quality of their upward connection using an Objective Function
(OF). The Objective Function 0 (OF0) and Minimum Rank with Hysteresis Objective Function
(MRHOF) are well-known, famous OFs mostly used with different routing metrics, includ-
ing the expected transmission count (ETX), RSSI, and nodes’ remaining energy. Among
the metrics, ETX is the most commonly used, as it captures both the long-term link relia-
bility and energy consumption. The calculation of the routing metric assumes constant
transmission power in the standard RPL.

2.2. Bandit Theory

The classic Multi-Armed Bandit problem can be formulated as follows. The agent
repeatedly chooses from a set of actions (arms) with rewards that are initially unknown
and observes the associated reward. In the next iterations, the agent uses the knowledge it
has gained during the previous iterations. The goal of the agents is to minimize a regret
function, which is mathematically formulated as the difference between actual accumulated
rewards (with unknown statistics) and the optimal reward [14]. In parallel with optimizing
the accumulated reward, the agent aims to learn about the environment. The optimal
policy consists of always choosing the action with the maximum expectation of reward.
Intuitively, the faster an agent identifies the best action, the less regret it is likely to have.

Bounding the regret can be realized by balancing the tradeoff between exploration
and exploitation. Exploration can be defined by examining arms that have not been used
before. If the agents overspend their resources by excessively exploring actions, they lose
long-term rewards and increase their regret. Burnetas et al. [15] proved a lower bound for
the number of times that each arm needs to be pulled to learn about the environment. This
translates into an instance-independent lower bound of the regret of the agents. This lower
bound is usually used as a measure to assess the robustness of an exploration policy.

Unlike the classic ε-greedy, modern exploration policies such as the Upper Confidence
Bound (UCB) bring about fast convergence and optimal results. The intuition behind the
UCB algorithm is based on a principle called optimism in the face of uncertainty. Agents
employing this algorithm always take the action that is as large as plausibly possible.
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Auer et al. [16] proved that UCB achieves sublinear regret in time, outperforming the linear
regret associated with ε-greedy and matching the lower bound achieved by Burnetas [15].

Depending on how the problem is formulated, bandit theory proposes different solutions
and methods, including non-stationary bandits, adversarial bandits, and contextual bandits.
Non-stationary bandits can be applied when the distribution governing rewards is dynamic.
Secondly, for the adversarial version, the distributions not only are non-stationary, but also, an
adversary is trying to work against the agent by reducing the rewards. The algorithms that
are designed for these classes of problems are Discounted UCB and EXP3, respectively. For
the contextual bandits, the agent associates one model to each context, and when it detects the
context, it uses its associated model to choose the action.

2.3. Upper Confidence Bound Algorithm

In this subsection, we calculate the upper bounds for the family of UCB algorithms,
which is a delicate matter. These bounds are typically derived using a statistical theory called
concentration of measure. In this theory, exponential tail inequalities play a central role
in analyzing the tail of the distributions and, thus, finding tight upper bounds. Choosing
among the variants of UCB revolves around the defined bounds and their tightness [17].
The basic UCB algorithm relies on the concept of subgaussian random variables. For a
σ-subgaussian random variable, the tail decay is approximately as fast as that of a Gaussian
with the same variance.

Definition 1. A random variable, X, is said to be σ−subgaussian if it holds that

E[exp(λX)] ≤ exp(λ2σ2/2) (1)

In this paper, the delivery of the packets is the reward, and different transmission
powers are the arms. Given that PDR is always bounded to [0, 1], one possible upper bound
can be derived using the following bound:

Lemma 1. If a random variable, X, has a mean zero and X ∈ [a, b], then X is (b − a)/2-
subgaussian.

Another slightly tighter bound can be obtained using Hoeffding’s inequality, which
states that X is (b − a)2/4-subgaussian for a zero-mean [a,b]-bounded random variable, X.
(For proof, see the Appendix A.)

When it is known that the underlying distribution of rewards is σ−subgaussian, the
relation between the probability of violating and the bound is as follows [17]:

P[X(t) ≥ X̄t(a) +

√
2σ2 log(1/δ)

Nt(a)
] < δ (2)

Assuming some values for delta (usually δ = 1/t2), we can calculate the UCB:

UCBi(t, δ) =

∞ if Ni(t − 1) = 0

X̄t(a) +
√

2σ2 log(1/δ)
Nt(a) otherwise

(3)

Building upon this upper bound, the UCB algorithm runs a simple loop which for
iteration (t) consists of the following operations:

1. Choose the Action(t) = arg max UCB(t − 1)
2. Observe Xt and update the bounds

Assume ∆i is the suboptimality gap or the immediate regret for action i, and Ni(t) is the
number of times arm a has been pulled before time t. Then, regret, Rn, can be formulated
as follows:
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Rn = ∑
a∈A

∆iE[Na(t)] (4)

The theorem below presents an analysis of the regret when using the UCB algorithm.
In the rest of this paper, by UCB algorithm, we mean UCB(δ). For a regret analysis of the
discounted version of UCB, please refer to [18].

Theorem 1. Consider the UCB algorithm in a stochastic 1-subgaussian k-armed bandit problem.
For any time horizon, t, when accepting an error probability of δ, then the regret, Rn (defined in
Equation (4)), is bounded by the following:

Rn ≤ 3
k

∑
i=1

∆i + ∑
i:∆i>0

16 log n
∆i

This theorem ensures that the regret growth of UCB is sub-linear relative to time.

3. Related Works

This section reviews the previous works in the field. First, we address the efforts to
jointly optimize the transmission power and routing. Then, we focus on research works
that employ reinforcement learning methods for transmission power control, and at last,
the two selected benchmarks are reviewed.

3.1. Transmission Power Control and Routing

A significant body of research investigates transmission power control. Santi [19]
provides a survey on a wealth of research on transmission power control. The majority of
these research works focus on theoretical aspects, including maintaining graph properties
such as k-connectivity. A major gap that authors notice in the literature is that the theoret-
ical transmission power control algorithms have not been efficiently integrated with the
standard protocols (including RPL).

Lin et al. [20] classify the literature on transmission power control into approaches that
select the transmission power for (i) the whole network, (ii) each node, and (iii) each pair
of nodes. The authors also introduce Adaptive Transmission Power Control (ATPC), and at
run time, the transmission power is set for each pair adaptively. Pairs build a linear model
to map the transmission power to the RSSI at the destination. To this end, nodes gather
samples by sending a set of beacons at different transmission power settings and adopt
a least-squares approximation to find the two coefficients for the linear model (slope and
bias). Based on the empirical results, the authors analyzed how the linear model changes
over time. The slope is shown to be almost constant for the same physical environment, but
the bias changes more significantly over time. So, after initializing the model according to
the approximation, pairs update the bias to cope with the link dynamics over time. The fact
that ATPC nodes piggyback RSSI readings (rather than ETX or PDR) is an important design
choice, as it may be impossible to retrieve all the RSSI readings due to interference. On the
other hand, ACTOR aims at reducing the size of the neighbor table by only evaluating the
links for possible parents and reasonable transmission power settings.

While ATPC and many of its counterparts lack integration with RPL, the most promi-
nent works that extend RPL to adapt transmission power control are PC-RPL [10] and
XRPL [21]. We studied these two proposals in more detail as the selected benchmarks. The
remaining works in the literature that focus on this research problem are as follows.

Barcelo et al. [22] extend RPL to jointly perform routing, channel selection, and
transmission power control. The proposed method consists of two strategies, namely the
Maximum Probability Delivery Ratio (MaxPDR) and the Minimum Aggregated Power (MinAP).
For both strategies, DIO packets are sent in batches (rather than a single packet) using all
the available power levels. Based on the reception ratio of the DIO batch, nodes select
their transmission power before making any routing decision. MinAP prioritizes energy
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consumption over the reliability of the network. Under MaxPDR, however, first, the
node with the highest end-to-end PDR gets selected as the parent. Then, the transmission
power is configured to the lowest level that yields sufficient PDR (for example, 80% of the
maxPDR). The drawback of both MaxPDR and MinAP is the increasing number of DIO
packets that introduce a tangible communication overhead.

TCOR [23] combines an opportunistic routing approach with transmission power control
to reduce energy expenditure while maintaining link reliability. In this theme, the transmitter
keeps retransmitting its packets until one of the forwarders acknowledges the packet. To
select the appropriate forwarders set and their associated transmission power, nodes estimate
the probability of packet delivery based on a shadowing propagation model.

Adaptive Robust Topology control (ART) [8] defines a sliding window and two thresh-
olds. If the ratio of correctly acknowledged packets during the sliding window is high, it
tries to reduce the transmission power in a “trial” state. If the reception ratio falls, ART
may increase or decrease the transmission power based on history. Ko et al. [24] take a
similar approach by actively probing the transmission power settings. In the active probing
mechanism, if a certain number of packets is transmitted successfully, the transmission
power is decreased by one unit. If any of the packets are not acknowledged, the nodes
increase the transmission power. These two proposals are based on the same assumption
that a link is reliable if it is able to successfully transmit a certain number of consecutive
packets. Our preliminary study shows situations in which this definition of a good link is
not useful. Neither of these two proposals is integrated with RPL.

Miguel et al. [25] adjust the transmission power to keep the size of the parent table as
close as possible to a predefined threshold. Their proposed DODAG-oriented method was
designed to be executed offline. The authors also mention the problem of the initialization
of ETX, which can be optimistic/pessimistic.

3.2. Applications of Reinforcement Learning in Link Quality Estimation

Estimating radio link quality plays an essential role in both routing and topology control.
A comprehensive study of the wireless link behavior in a low-power setting is conducted
in [26]. The lossy and time-varying nature of the radio links requires frequent evaluation of
the link quality towards each neighbor. Hence, among different classes of machine learning
algorithms, Reinforcement Learning emerges as the most suitable mathematical framework for
real-time and adaptable resource optimization. Li et al. [14] conduct a survey that delves into
applying bandit theory, a pivotal problem domain within Reinforcement Learning, specifically
in the domain of scheduling wireless links.

QL-TPC [27] models the transmission power control problem as a Markov Decision
Problem (MDP). The authors apply Q-learning, which is a Temporal Difference method, to
find the optimal transmission power. The states are defined by the number of retransmis-
sions and Clear Channel Assessments (CCA) attempts, and rewards are determined when
receiving acknowledgments. QL-TPC employs ε-greedy as the exploration strategy, which
introduces sub-optimal exploration.

A basic solution for the exploration–exploitation dilemma is the famous ε-greedy
algorithm, which has a rich history of being used in wireless systems [14]. Nodes choose a
constant value for ε, and in each slot, either select the highest rewarded arm in a greedy
approach using probability 1-ε or randomly select among other arms to explore using
probability. The selection of the arms in the exploration phase is purely random.

ε-greedy has two major shortcomings that more advanced solutions try to overcome.
First, the exploration continues worthlessly even when it is obvious which actions are better
rewarded. Second, the agent naively takes random actions in the exploration phase and
discards all the retrieved information.

Maghsudi et al. [28] model the problem of channel and transmission power selection
using adversarial bandits. In these types of bandit problems, the probability distribution of
the rewards cannot be attributed to any static distribution since an adversary is opposing
the agent. Nodes that incur interference with each other when selecting transmission power
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are modeled as adversaries. If all agents (nodes) take a strategy with vanishing regret, the
joint distribution converges to an equilibrium. Hence, they employ two such strategies,
namely the exponential-based weighted average and Follow The Perturbed Leader (FTPL).
The main idea of the former is assigning a probability for the selection of actions that
is proportional to the accumulated regret. In the latter strategy, agents add a random
perturbation to the regrets and then select the action with minimum accumulated regret.

Aboubakar et al. [29] employ a multi-layer perceptron (MLP) model to estimate the
optimal transmission power in RPL networks with various topologies. This necessitates
model training through an offline approach and a labeled dataset.

Sohail et al. [30] formulate the problem of selecting an efficient cluster head as an
evolutionary game. Each node is modeled as a self-interest agent that continuously adapts
its strategy to maximize energy efficiency. This approach aims to strike a balance between
the remaining energy, hop level, density, and degree of connectivity. This proposal is not
integrated with the RPL protocol stack.

In the context of Wireless Body Area Networks, the anatomical constraints of body
movements, and the orientations measured via motion sensors can be exploited in favor of
topology control. Tuatara [31] takes such an approach and employs learning automata as a
learning technique to optimize the transmission power.

In the context of cellular IoT and massive MIMO networks, the problem can be
approached using methods such as Channel Inversion, which adjusts the transmitted
power inversely proportional to the channel gain. An alternative approach is the Max
Min power control scheme, for which the main idea is to find an optimal power allocation
strategy that maximizes the minimum SNR among all users [32]. However, transmission
power control is fundamentally more challenging in a multihop mesh network with the
presence of a routing protocol.

3.3. The Benchmarks

Among numerous proposals in the literature, the most relevant benchmarks are those
that are integrated with RPL. As a benchmark, ACTOR has been compared to two recent
works: TPP and XRPL.

3.3.1. Transmission Power Probing (TPP)

Our first benchmark implements the window-based technique which is common in
the literature [8,10,24]. Nodes select and keep a transmission power and during a window
certain number of packets are transmitted using the selected transmission power. This
window-based mechanism is dubbed as transmission power probing (TPP) throughout the
paper. By selecting TPP as benchmark we can check if ACTOR’s probing is more efficient.
Our implementation of TPP closely follows a recent work titled PC-RPL [10]. TPP was
implemented by the authors since similar works were either not integrated with RPL or their
implementation was not available. To the best of our knowledge, three previous works have
employed variations of the window-based probing approach: PC-RPL [10] is a recent study
that jointly performs transmission power control and routing. In PC-RPL, DIO packets are
sent with the maximum transmission power, but for the data packets, the transmission
power is decided at run-time using a window-based adaptive mechanism. When joining
the network, the measured RSSI is used to initialize the transmission power. Then, at
run-time, if the node succeeds in transmitting M consecutive packets, it will try reducing
the transmission power by 1 level. Upon packet loss, PC-RPL increases the transmission
power by 2 levels and doubles M to make future decisions more conservative. Despite
the previous works, PC-RPL consolidates the transmission power control with a load-
balancing mechanism in which parent nodes can inform their children to switch to another
parent. The load balancing is advantageous in combination with transmission power
control since the parent node will not be committed to serving the children. Unfortunately,
the implementation was not available to reproduce the results.
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All three of the mentioned works define “reliable” links as those that deliver a certain
number of successful packets consecutively. In a scenario in which all of the transmission
power settings are less than ideal, this definition is not useful. For example, consider that
setting the transmission power to −30 dBm achieves 90% PDR but with 0 dBm only 50% of
the packets are received (due to collision). In this case, PC-RPL [10] and active probing [24]
choose 0 dBm, and ART [8] will keep changing its transmission power without converging.
An example run of TPP is illustrated in Figure 2. TPP considers a window of size M, which
is managed in a similar way to the PC-RPL transmission power control mechanism. For a
fair comparison, TPP initializes the transmission power based on RSSI from the first DIO.

5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 7 7 7 7 7 7 7 7 7 77 7 7 7 7 7 7 7 7 7

3 3 3 3 3 3 3 3 3 3

If all packets are 
sent successfully

Decrease TX 
power

Decrease TX 
power

Upon a packet 
loss

1. Increase TX power (by two levels) 
2. double the window size

Figure 2. Transmission Power Control in TPP.

In addition to finding the “optimal” transmission power in a scenario in which no
“reliable” link can be found, it is also important to quickly converge. The reinforcement
learning formulation allows ACTOR to explore the alternatives efficiently. We show that
fast convergence and optimal transmission power control and routing can be achieved,
along with stable topology, on resource-constrained COTS devices.

3.3.2. XRPL

XRPL [21] is our second benchmark, which takes a cross-layer approach to jointly
adjusting the transmission power and the routes. Their proposal integrates an OF called the
Minimum Expected Transmission Power OF (METOF), which basically multiplies ETX with
the transmission power. XRPL defines a new Information Element (IE) in the 802.15.4 frame
that notifies the receiver of the transmitter’s transmission power. The receiver utilizes this
information to calculate its OF and route selection. XRPL is fast to respond to evolving link
qualities, as it adapts to the environment upon receiving each packet. On the other hand,
XRPL only allows two transmission power settings to simplify the exploration.

4. Preliminary Study on the Impact of Transmission Power on the Reliability of
Wireless Links

This section analyzes the probability distribution of the delivery of packets. This can
be considered a preliminary study that guides the selection of transmission power for
ACTOR. This is essential to check the applicability of the UCB algorithms and their variants.
Defining tighter upper bounds contributes to minimizing the regret of the UCB algorithm.

In this experiment, two NRF5340 nodes [33] are positioned at specific distances within
each other’s line of sight. The two nodes (one as a server and one as a client) are pro-
grammed to communicate with different transmission power levels. The client sends
200 batches of packets for each power level to sample the link quality.

In the literature [34], three classes of wireless links are identified, namely (i) connected,
(ii) disconnected, and (iii) the links in the transitional region. The former two demonstrate
a deterministic behavior; packets either go through or are dropped. However, for the
transitional region, an element of randomness is involved.

Figure 3 illustrates the probability of delivering the packets being sent over a distance
of 1, 10, and 20 m. The box plots show the spread and skewness of the measured data
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by showing their four quartiles. The transitional region is also determined using a shade
of gray. It can be seen that the probabilities for delivery of packets associated with all
transmission power settings fall with an increasing distance. For example, when the
transmitter and the receiver are only one meter apart, the packets are very likely to be
delivered even with the lowest power level, and higher transmission power settings almost
surely guarantee the delivery of the packets. On the other hand, at a distance of 20 m, even
the highest transmission power cannot guarantee 100% PDR.
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Figure 3. Measured PDR for samples of packets being sent with different transmission power settings
at specific distances.

Based on the above results, ACTOR blacklists the transmission power settings that lead
to disconnected links. Blacklisting speeds up the process of finding the optimal transmission
power during the initialization of the protocol, as described in Section 5.2. These results also
indicate that, even in simplistic scenarios where only two nodes are involved, a 100% delivery
of packets cannot be assumed for higher transmission power settings. This assumption, as far
as it is from reality, has been used in the related work to find the best transmission power. In
the two-node scenario, this can be due to many reasons, ranging from the shadowing effect
to external noise. In a mesh network, the complexity of estimating the link quality tends to
increase. These results require us to come up with transmission power control solutions that
consider lossy links and the dynamic nature of radio links.

5. ACTOR Design

This section describes the design of ACTOR, beginning with an introduction to the
building blocks and the design, followed by reviewing each module in detail. Two versions
of the algorithm are introduced. First, the basic ACTOR is designed for static environments.
The second algorithm, ACTOR-D, differs from ACTOR by implementing the Discounted
UCB algorithm while retaining all of the other core features.

5.1. The Building Blocks

ACTOR differentiates from the previous works [10,21,24] as follows: Primarily, AC-
TOR aims to improve the throughput by mitigating the density of the networks and the
hidden terminal problem. Consequently, the energy consumption is also reduced due
to lower transmission power settings and fewer retransmissions of packets. Second, the
selection of the transmission power settings is based on the UCB algorithm. Also, the
non-stationary extension (discounted UCB) allows ACTOR to adapt to the dynamism in the
links. ACTOR uses lightweight integer arithmetic to simplify the complexities of handling
floating point operations. Third, ACTOR updates the ETX as a routing metric to avoid
excessive parent changes while the algorithm figures out the best transmission power.
Fourth, ACTOR integrates mechanisms to take care of parent–child links while adapting
the transmission power so that parents do not neglect the link to children and selfishly
reduce their transmission power.

When tuning transmission power based on the reception ratio of the packets, nodes
encounter the exploration–exploitation trade-off. That is because, the more often a trans-
mission power is used, the more confident one can get about the reliability of that specific
transmission power. The drawback of this exploration is that trying sub-optimal transmis-
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sion power settings only to evaluate them may cause some packets to be lost. However, a
certain level of exploration is inevitable since the agent (node) learns about the environment
based on the rewards (acknowledgments) that correspond to the actions (transmission
power settings). The ultimate goal of the agent is to find the optimal action with the
minimum exploration. Before sending actual packets, the reliability of the links can only be
determined by measuring the signal strength and the noise ratio.

Despite a small memory footprint, RPL networks are expected to scale to thousands
of nodes. Hence, the protocol limits the number of neighbors in its routing table. In non-
storing mode, only the root node keeps track of the downward routes. Both the storing and
non-storing modes of RPL favor collection-based traffic. We exploit these design choices in
the transmission power control to limit the exploration to a reasonable level. This leads
to faster exploration and reduces the size of the routing table, and fewer data packets are
sacrificed to evaluate the transmission power settings.

Algorithm 1 summarizes the algorithm used by ACTOR to select the transmission
power. Nodes initialize their neighbor table by setting their transmission power to the
maximum and adding the neighbor to the table if required. After sending each packet,
nodes update their action values. In this case, action values are the ratio of acknowledged
packets for each transmission power and parent. Then, they select the action (transmission
power and parent) that maximizes the UCB (as defined in Section 5.3). This selection only
considers the upward link, but each node must also meet the requirements of its children.
In ACTOR, children declare their demands to their preferred parents using a bit in the data
packet’s header. Each node uses a transmission power that (i) satisfies its children and
(ii) satisfies the UCB requirements.

Algorithm 1 ACTOR

1: Upon receiving a DIO, measure RSSI
2: Initialize the Action Values-Based Equation (5)
3: for each packet p sent through neighbor Nbr do
4: if Nbr not in the neighbor table AND Received ACK then
5: Add Nbr to neighbor table
6: set Nt(a) and X̄t(a) to zero for all transmission power settings
7: end if
8: if Parent Switch happened then
9: Reset the learned Action Values

10: end if
11: Calculate UCB index and select transmission power based on based on Equation (8)
12: Select UCB index based on Equation (9)
13: Transmit packet with selected transmission power
14: Increment the counter for transmission power a: Nt(a) = Nt(a) + 1
15: Update demandNbr from
16: if packet sent successfully then
17: the Action Values based on Equation (7)
18: end if
19: if packet sent failed then
20: the Action Values based on Equation (7)
21: end if
22: Set the transmission power to max(UCB, demandi)
23: if At ̸= At−1 (if optimal transmission power changes) then
24: signals the demand (At) to the parent
25: end if
26: end for

We also help the UCB by filtering the transmission power settings that can be classified
as insufficient. If a transmission power has been used at least three times and the action
value is zero, we avoid using that action and lower power levels in the future.
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It is also worth mentioning that, due to the lack of comprehensive support for floating
point operation in the target IoT micro-controllers, we perform the mathematical operations
in the integer domain.

5.2. Initialization of Action Values

RSSI is not always correlated with PDR due to variations in local link quality [35]
and, thus, is not the best candidate for the long-term selection of transmission power.
To take external interference and link asymmetry into consideration, ACTOR uses the
reception/loss of the packets as the reward. However, for the initialization of the action
values, RSSI can be advantageous, as nodes can estimate their distance.

This mechanism requires the DIO packets to be sent with maximum transmission power
(0 dBm) or a constant transmission power level noted as PDIO. Upon receiving a DIO, nodes
measure the loss in the signal strength, ∆P, which is simply the difference between PDIO and
the received power, (PRX). If we assume the link is symmetric, and the transmission power
is configured to a, then the received power at the receiver would be a − ∆P. Based on the
empirical results from Section 4, we estimate the θ− and θ+, which are the minimum and
maximum RSSI measurements that put the link in the transitional region.

ACTOR initializes the Action Values in three classes, as in Equation (5). Simply put,
X0(a) is the estimated value of the PDR of the link if the transmission power is set to
a. If a certain transmission power puts the link in the transitional region, the PDR is set
using a linear function of the power loss and the difference between θ+ and θ− [34]. This
initialization is performed quickly, but it needs to be augmented later with the probing
mechanism since it cannot capture noise or link asymmetry.

X0(a) =


1, if θ+ < a − ∆P
a−∆P

θ+−θ−
, if θ− < a − ∆P < θ+

0, if a − ∆P < θ−

(5)

5.3. Upper Confidence Bound (ACTOR)

The optimal regret achieved through the UCB algorithm is the primary driving force
of ACTOR. The UCB algorithm uses the upper bounds proposed in the previous section to
handle the exploration–exploitation trade-off.

The UCB algorithm measures the confidence in the knowledge of the rewards of each
arm in which the term arm corresponds to the transmission power settings. The agent
keeps track of the number of times each node has been selected, based on which the UCB
index is calculated. The UCB index expresses the estimated upper bound for the rewards
that an arm can achieve. At each iteration, the agent chooses the action with the maximum
UCB index calculated as in Equation (7) [36].

UCBa(t) = X̄t(a) +

√
2σ2 log(t)

Nt(a)
(6)

Action(t) = arg max
a∈A

[UCBa(t − 1)] (7)

The first term, X̄t(a), denotes the empirical mean of the rewards associated with action a
by time t. Equation (8) presents a recursive definition of the empirical mean of rewards. The
reason we use a recursive method, rather than a simple 1

n ∑t X(t), is to reduce the memory
footprint on the resource-constrained device. r represents the most recent reward. Nt(a) is the
number of times action a has been chosen until time t. For the calculation of σ, we use Lemma 1.

X̄t(a) =
X̄t−1(a)·Nt(a) + r

Nt(a) + 1
(8)
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The second term is known as the exploration bonus or confidence width, and it denotes
the degree of confidence in the expected reward, and it decreases with the number of times
that arm is pulled. UCB shows more of a tendency to explore arms if they are either (a)
promising, because X̄t(a) is large, or (b) not well explored due to a large confidence width.

Blacklisting of the futile transmission power settings (based on RSSI) is performed
during the initialization. In the example illustrated in Figure 1b, for the lowest three
transmission power settings, the link is put in a disconnected region. Hence, ACTOR sets
the PDR to 0 and virtually increases Na(t). This will reduce the tendency of the exploration
strategy to select those power levels.

5.4. UCB for Non-Stationary Bandits (ACTOR-D)

The basic version of UCB assumes that the distribution of rewards for each arm
(transmission power) is stationary in time. However, that is rarely the case, and these
distributions are subject to severe change due to evolving environments and mobility [37].
To handle non-stationary rewards, Garivier [18] proposes a variant of UCB called the
Discounted UCB.

The Discounted UCB alters the calculation of the first term in the UCB index by
applying an adjustable discount factor (λ) to the older observations, giving more importance
to the new ones. Equation (9) determines how the discounted UCB calculates rewards.

X̄t(a) =
X̄t−1(a) · (RewardScale − λ) + r · λ

RewardScale
(9)

RewardScale is the maximum possible value for the rewards (100). For tuning λ, a
simple choice is to resemble the weight that Contiki-NG RPL assigns to the new packet’s
ETX in the routing [38]. Since there is no need to keep track of previous rewards, the
Discounted UCB occupies a smaller space in the memory. Given the memory limitations,
we chose the Discounted UCB algorithm to be integrated with ACTOR.

The use of bandit models in embedded systems has been minimal due to practical
limitations such as missing floating point operations and a small memory capacity. To tackle
this challenge, fixed-point arithmetic has been proposed in the literature. Krentz et al. [36]
propose methods to efficiently calculate two variants of the UCB algorithm (namely the
Discounted UCB and the Sliding Window UCB) for the channel selection problem in IEEE
802.15.4. Through Monte Carlo simulations, they also showed that the accuracy loss in
their method is negligible.

ACTOR requires efficient algorithms to determine the natural logarithm and square
root. The natural logarithm is easily convertible to base-2 since loge(x) = log2(x)/ log2(e).
Then, the binary logarithms can be calculated via repeated squaring and dividing [39].

For the implementation of the square root, efficient algorithms exist. The simplest
algorithm consists of a linear search that starts checking all the second power of all integers
starting from 2 and returns the maximum integer that has a square that is smaller than the
input. A more efficient solution improves this search to be binary. All of these methods
work fine to determine the UCB.

5.5. Topology Control

Providing connectivity for the farther nodes is not a concern when selecting the
transmission power in a single-hop setting, but ACTOR is designed for multi-hop networks.
A selfish parent could reduce the transmission power and increase its own battery life,
leaving its children to find other parents. Another potential problem is that the abrupt
changes in the topology may trigger global/local repair mechanisms that incur an overhead
of the control packets when the nodes are changing their transmission power.

ACTOR’s topology control mechanism tries to avert excessive changes in the RPL’s
DODAG. When children acquire a level of certainty in their desired transmission power,
they demand the parent keep their transmission power at least as high. In other words,
nodes send a packet to their parent asking for a minimum transmission power. As illus-
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trated in Figure 4, the parent node can choose a low transmission power for its own data
packets, but it commits to higher levels to support its children. Topology control not only
avoids the RPL’s repair mechanism but also keeps the children connected.

ABD

C
cv

Transmission 
Range

Parent

cv
Requested TXP 

from child D

cvRequested TXP 
from child C

cv
Optimum TXP 

for parent
node (UCB)

Figure 4. In ACTOR, the parent node (node B) commits to the requirements of children (nodes C and D)
to keep the topology stable.

5.6. Routing Metric

ETX is the most commonly used routing metric for RPL. We updated ETX to account for
the transmission power control mechanism. Calculating ETX in the open implementation of
Contiki consists of applying an Exponentially Weighted Moving Average (EWMA) to the ETX,
as in Equation (10). The factor α determines the weight based on which new observations
are preferred to the old ones.

¯ETXt(p) =
¯ETXt−1(p) · (Scale − α) + PacketETX · α

Scale
(10)

ACTOR’s calculation of ETX must consider that the transmission power is changing.
For example, if a node temporarily tries to evaluate a link with a low transmission power,
the ETX associated with this transmission power should not be advertised to the farther
nodes. Hence, for each neighbor, ACTOR maintains a table (rather than a single value) for
the ETX associated with each transmission power, according to Equation (11).

ETXt(p, a) =
ETXt−1(p, a) · (Scale − α) + PacketETX · α

Scale
(11)

When the trickle algorithm triggers the transmission of a DIO, the ETX value that is
advertised is associated with the transmission power that maximizes the ETX index at that
point in time.

ETXt(p) = max
At∈A

ETXt(p, At)

6. Evaluation

In this section, we evaluate the performance of ACTOR and ACTOR-D, and we
compare them with standard RPL (with the maximum transmission power) and our two
selected benchmarks, TPP and XRPL. The evaluations are based on both simulations and
a physical testbed that consists of NRF5340 boards. Due to compatibility issues with the
hardware platform in our testbed (NRF5340), XRPL was evaluated only in the simulations.
We first took a look at the setup for the simulations and the physical testbed and then
analyzed the results obtained using each of them.

We used a single-channel CSMA for the communication between nodes to show that
the proposed method succeeds in reducing channel contention. RPL’s objective function is
set to Minimum Rank with Hysteresis Objective Function (MRHOF) with ETX as the routing
metric. We repeated the experiments during working hours and after working hours to
confirm the results, with each run lasting 10 min (both in experiments and the simulation),
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which gave the protocol enough time to converge and be fairly compared. To support
reproducible results and measurable confidence, we benefited from a recent framework
called TriScale [40]. At least five independent runs are required to estimate the mean of a
measured metric with a probability of 95 percent. We show the 95% confidence interval (a
minimum and a maximum of five runs) in the results using error bars.

6.1. Simulation Setup

The simulations were conducted using the built-in simulator of Contiki, Cooja, which
comes with plenty of options to model the radio models, including the Unit Disk Graph
Model (UDGM) and the Logistic Loss Model (LLM). The UDGM model plots two disks
around each node, representing the connectivity range and the interference area. LLM
provides a more realistic model, as it uses the logistic function to calculate the reception
probability of packets based on RSSI. The simulated boards are Sky Motes with TI’s MSP430
F1611 controller with 10 kB of RAM and 48 kB of flash. They are equipped with a cc2420
radio that supports eight different settings for transmission power. This choice of sky motes
was made to demonstrate the possibility of running the algorithm on legacy COTS since, in
the experiments, we used a rather modern board. The current consumption associated with
all the transmission power settings for sky motes is detailed in Table 1. For the NRF motes
that are used in the experiments, the possible transmission powers are shown in Table 2.

Table 1. Sky mote’s current consumption for different transmission power settings (used in simulations).

Transmission Power (dBm) Current (mA)

0 17.4
−1 16.5
−3 15.2
−5 13.9
−7 12.5
−10 11.2
−15 9.9
−25 8.5

Table 2. NRF5340’s current consumption for different transmission power configurations (used in the
experimental testbed).

Transmission Power (dBm) Current (mA)

+3 5.1
0 3.4
−4 2.7
−8 2.2
−12 2.0
−16 1.8
−20 1.7
−40 1.5

We considered 7 different scenarios, as detailed in Table 3. The parameters in these
scenarios were chosen deliberately to exemplify challenging conditions for routing and
transmission power control.

• Scenario A represents a small-scale network with nodes positioned at distances where
there is no benefit in reducing the transmission power. This scenario portrays a sparse
deployment that is challenging for ACTOR. In such a deployment, ACTOR is expected
to converge on high transmission power settings, and trying lower transmission power
will only waste resources.

• In scenario B, the parameters were chosen to exhibit density. Forty nodes were
positioned randomly in a 100 × 100 square. If the RPL nodes transmitted at their
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maximum power (0 dBm) with a 50 m range, then most of the nodes would have a
high number of neighbors (at least 20).

• Scenario C (illustrated in Figure 5) resembles a multi-cluster topology, and it is based
on the multi-instance feature of RPL. If the nodes in a cluster manage their transmission
power properly, the clusters will not interfere with each other. The hop distance of the
nodes is less than in the previous scenario. With fewer children, parent nodes have
more freedom to tune their transmission power.

• In scenario D, a high load of traffic is applied to a medium-dense network.
• Scenario E presents the same 5 × 5 grid with a lower link quality, and it uses the more

realistic LLM link model.
• Scenario F includes a 5 × 5 grid and one mobile node. The mobility pattern is simple,

and it can be dealt with using only the transmission power control. This topology is
illustrated in Figure 5.

• Scenario G tests the scalability of the system in a topology with 100 randomly placed nodes.

Table 3. Simulation scenarios and parameters.

Scenario Topology Clients/Servers Traffic Load
(pkt/min/node) Explanation

A Random 10/1 6 Upward traffic + sparse
B Random 40 /1 6 Upward traffic + dense
C Three-cluster 30/3 6 (Up + Down)−ward traffic
D Random mid-density 20/1 60 Upward traffic + congestion
E Grid 5 × 5 unreliable links 25/1 6 RX Ratio = 0.7, Radio = LLM
F Grid 5 × 5 mobile node 25/1 6 Mobile nodes = 1
G Random 100/1 30 In a 200 × 200 m area

Scenario F: large grid with mobility Scenario C: 3 clusters

Figure 5. Simulation topology for scenarios F and C.

6.2. Experimental Setup

Conventional simulators and their radio models fail to accurately model physical
characteristics such as the capture effect or the distribution of the noise since they are too
simplistic and usually overlook some details. For radios with narrow band modulation,
it is not only the receiver threshold and non-ideal antennas that cause the transitional
region. Multi-path fading plays a major role [34] in the connectivity of these radios, and
transmission power control is a decisive parameter in managing the shadowing effect. Most
simulators for low-power radios fall short of modeling the shadowing effect by considering
a log-normal shadowing model. Real-world experiments are undeniably more accurate in
this matter.
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In order to obtain more accurate evaluations, we assembled a physical testbed containing
40 NRF5340 boards. The experiments were conducted using the modern NRF5340 devel-
opment boards introduced by Nordic Semiconductor [33] featuring two Arm Cortex-M33
processors. The first processor, referred to as the network core, comes with 256 kB of flash and
64 kB of RAM, and it runs at a low power mode, while the application core provides a con-
siderably higher computation capacity. To optimize the power consumption, this application
core gives up control to the network core upon initialization and remains inactive thereafter.

According to the datasheets, the NRF5340 affords the flexibility to configure 24 distinct
settings for transmission power, offering a finer granularity of control over the transmis-
sion power in comparison to the eight levels available in sky motes [41]. In an effort to
maintain a fair utilization of system memory, we opted to restrict the NRF5340 to employ
eight transmission power settings. As shown in Table 2, NRF5340 consumes less energy
compared to sky motes, owing to its more recent radio.

Part of the experimental setup is illustrated in Figure 6. Ten Raspberry Pis (only two
are shown) are powering up and controlling the NRF5340 boards. The Raspberry Pis are
then managed through a Secure Shell (SSH) protocol over a Wi-Fi access point configured to
operate on a specific channel so that it does not interfere with the operation of NRF boards.

NRF5340

WiFi
Connection

Router

Server

Clients

Raspberry Pi

USB 
Connection

Figure 6. The configuration for programming the nodes and gathering measurements from the
testbed involved utilizing a Raspberry Pi model 4B, which interfaced with the NRF nodes via serial
connections, supplemented with Wi-Fi connectivity for broader functionality.

The testbed was located in the corridors and rooms of the IDT school of the Mälardalen
University, as illustrated in Figure 7a. The experiments were performed using two settings
with (i) orange nodes establishing a sparse topology for a 12-node scenario and (ii) utilizing
all 40 nodes for a dense deployment. The running topology (for both ACTOR and default
RPL) is dynamic, and it depends on time and the randomness caused due to the trickle
algorithm that triggers the dissemination of DIO packets. The most recurring topology
consists of almost half of the nodes being connected in a single hop, while the rest are being
connected with two hop links (as demonstrated in Figure 7b. ACTOR-D and standard RPL
ended up having very a similar topology but with a much lower rate of parent switching.
Analyzing the normal Wi-Fi traffic in the office environment showed that channel 24 in IEEE
802.15.4 was the least disrupted. We fixed the communication of our testbed on this channel to
minimize Wi-Fi interference.
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Figure 7. The NRF5340 nodes are placed in the corridors of the Engineering School at Mälardalen
University (a). The 12-node experiment only used the orange nodes, while in the 40-node experiment,
all the nodes were used. The most recurring topology that the network converges to is a tree with a
maximum distance of two hops (b).

6.3. Simulation Results

Figure 8 summarizes the results of the conducted simulations in terms of PDR, the
end-to-end delay, and the current used for transmission. Figure 8b plots the average PDR
and shows that ACTOR and ACTOR-D achieve a lower packet loss compared to RPL and
the benchmarks in dense (B), multi-cluster (C), high-rate (D), lossy (E), mobile (F), and
100-node (G) scenarios. This is mainly due to spatial reuse in ACTOR that overcomes the
congestion in the wireless medium. In a dense network, ACTOR exhibits better resilience
against heavy traffic loads compared to TPP and XRPL. In scenario A, ACTOR leads to
negligible loss (attributable to exploration), indicating that reducing the transmission power
in a sparse network is not as beneficial as in a dense network. Under ACTOR, CSMA nodes
happen to have fewer backoffs and failed CCAs. This leads to a significant improvement in
the delay for ACTOR in scenarios C, D, E, and G which is demonstrated in Figure 8a. Like
PDR, ACTOR outperforms RPL, TPP, and XRPL in terms of end-to-end delay in the dense
scenarios, confirming that ACTOR reduces channel contention. In order to test the scalability
of the system, we included a scenario with 100 randomly positioned nodes. As you can see, in
scenario G, ACTOR improves the delay and current consumption (Figure 8c) while providing
the same level of PDR. Please note that, in scenarios E and G, RPL provides a very small delay,
which is irrelevant since most of the packets are dropped by RPL. In ACTOR, all the nodes
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send a packet to their parents to indicate the minimum required transmission power to agree
on a transmission power that does not jeopardize the routing protocol. When normal data
transmission is challenged due to intensive collisions, the overhead caused by the negotiation
can be excessive. Specifically, in scenario G, ACTOR nodes transmitted 12 thousand extra
packets for transmission power negotiations with all 100 of the nodes during the 10 min, while
the transmitted data packets summed up to almost 30 thousands. Despite this overhead, the
optimal selection of transmission power of ACTOR led to good results in such large scale.
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Figure 8. Simulation results considering seven different scenarios showing: (a) End-to-end delay,
(b) Packet Delivery Ratio, and (c) the current used for radio transmission.

We also measured the current consumption using Energest (https://docs.contiki-ng.
org/en/develop/doc/programming/Energest.html accessed on 3 January 2024), which is a
software-based energy estimation module. Figure 8c depicts the average current consumption
for all of the nodes. ACTOR consistently (even in a sparse scenario) achieves lower energy con-
sumption due to its regret-optimal transmission power selection. Reducing the transmission
power not only reduces the per-transmission energy but also leads to fewer retransmission of
packets, further improving the energy consumption. ACTOR nodes report (i) less time spent
with their radio in transmission mode and (ii) a lower transmission power. In the dense and
multi-cluster topology, the benefits of employing ACTOR are even more palpable.

In the sparse topology (A), the nodes cannot meaningfully reduce their transmission
power. Hence, ACTOR cannot demonstrate its advantages in PDR, and there is only a
small gain in terms of energy consumption. Nevertheless, ACTOR may sacrifice a few
data packets to explore lower transmission power settings that are not helpful in a sparse
setting, and this leads to lower PDR. ACTOR tries to minimize this so-called exploration
loss to a negligible level via its blacklisting mechanism and the UCB exploration strategy.
As we can see in the transition from scenarios A to G as the topology becomes dense, the
exploration loss becomes more important. In most of the scenarios, ACTOR outperforms
XRPL. The advantages of optimal exploration (UCB) are more evident in the scenario with
unreliable links (E), as XRPL shows a lower PDR and higher delay without being able
to reduce its transmission power. In the scenario with mobility (F), we see that ACTOR
manages to keep the connectivity better than TPP and almost at the same level as RPL
(which performs well due to its high transmission power). However, it is worth noting that
sustaining connectivity for mobile nodes is even challenging for ACTOR, as the previously
established rewards have become irrelevant.

6.4. Experimental Results

Using the testbed that we described previously, we compared the performance of two
versions of ACTOR with the baseline, RPL, and the benchmark, TPP. Figure 9 shows the
advantage of using ACTOR in terms of PDR, transmission power, and routing overhead as
the traffic increases.

https://docs.contiki-ng.org/en/develop/doc/programming/Energest.html
https://docs.contiki-ng.org/en/develop/doc/programming/Energest.html
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Figure 9. Experiment results for the 40-node scenario show ACTOR outperforming the benchmarks
at different data intervals showing: (a) Packet Delivery Ratio, (b) Average transmission power, and
(c) Routing overhead.

Figure 9a plots the aggregate packet delivery ratio of ACTOR, ACTOR-D, TPP, and stan-
dard RPL with different data intervals. The results suggest that the two versions of ACTOR
provide better throughput (PDR) than TPP and RPL. When a smaller volume of traffic is applied
to the network (5-s interval), ACTOR beats both RPL and TPP by almost 40 percent. In other
words, ACTOR reduces the packet loss rate by four times compared to the standard.

The advantages of using ACTOR in this scenario are better shown in the experiments
than in the simulations. This stems from the fact that, in a realistic environment, none of
the links are ideal. As we saw in Section 4, links behave randomly in the transitional region.
In this situation, benchmarks cannot find a transmission power that transmits a number
of consecutive packets successfully and select the maximum transmission power. UCB is
able to find the best transmission power in those cases, but the benchmarks fails to adapt
their simplistic transmission power control. The other reason is the local repair mechanism
in the RPL protocol. Once nodes detect an abrupt change in the measured routing metric
(ETX), they initiate the local repair mechanism of RPL, which consists of disconnecting
from the parent and sending a DODAG Informational Solicitation (DIS) asking for a new
parent. This can be seen in Figure 9c, which shows that the local repair mechanism causes
more control packets (both DIO and DAO) for RPL and TPP compared to ACTOR.

ACTOR-D slightly outperforms ACTOR in the 40-node experiment, thanks to the
discounting mechanism. Nodes that keep changing their transmission power impair the
wireless links belonging to other nodes. Hence, when nodes are not moving or when there
is a dynamic source of interference, this may be the source of dynamism in the quality of
the links, and ACTOR-D is tailored to handle this.

Figure 9b that ACTOR and ACTOR-D successfully reduce the transmission power
while providing better connectivity. For RPL, the transmission power is always at 0 dBm.
The quartile chart shows that TPP nodes barely try lowering their transmission power
and converge on the maximum. In addition, ACTOR improves the average number of
retransmissions for all of the nodes in the network. This metric depends on (i) the number
of hops and (ii) single-hop contention. Since the number of hops has not changed, a higher
number of retransmissions indicates more hidden terminals for the medium in the MAC
layer. We can see that ACTOR succeeds in reducing the hidden terminals.

In addition to the transmission power, another popular best practice to reduce energy
consumption is to reduce idle listening by allowing the node to put the radio in sleep
mode [42]. Although the results presented here considered CSMA, ACTOR is expected to
be beneficial for other MAC protocols as well. For example, TSCH networks take advantage
of diversity in both the frequency and time domains. TSCH nodes agree on a schedule
to use channels in time (time is divided into timeslots). These schedules contain shared
timeslots for broadcasts, reserved timeslots for unicast communications between pairs, and
also idle timeslots for the radio to sleep. The scheduler needs to take the interfering nodes
into account when assigning reserved slots. Optimizing the transmission power leads to
fewer interfering nodes and fewer constraints for the scheduler. However, transmission
power control in a duty cycling network is considered out of the scope of this work.
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We also performed the experiments in a scenario that consists of 11 clients and 1 server
providing a sparse topology, as illustrated using orange circles in Figure 7a. The measure-
ments are presented in Table 4. Another significant aspect is keeping the convergence time
of the routing protocol short. The number of parent switches can be an indication of the
convergence time of the routing protocol. The results also showed that ACTOR did not
increase the hops distance of the nodes, reduced the transmission power, and significantly
reduced the number of parent switches. Overall, the experimental results are in line with
the simulations, as they both show the advantages of tuning the transmission power when
wireless links are unreliable and network is dense.

Table 4. Measurements for the 12-node scenario.

Protocol RPL TPP ACTOR ACTOR-D

PDR 59.09% 73.4 % 82.5% 79.84%
Transmission power (dBm) 0 −6.5 −7.39 −7.95

Routing overhead (pkt/node) 12 7 6 7
No. of retransmissions 17.3 14.8 12.77 13.58
No. of parent switch 1.8 1.45 1.18 1.63

7. Conclusions

This paper has proposed ACTOR, an extension to RPL that adapts the transmission
power using reinforcement learning. The routing and transmission power control mutually
improve each other. The information derived using the routing protocol reduces the
number of transmission power settings that must be evaluated. Transmission power control
also helps RPL keep the topology stable by mitigating the interference among the nodes.
We have provided compelling evidence, including simulation and experimental results
indicating that the proposed method improves the performance of multi-hop networks in
different scenarios, such as dense networks and a high traffic load.

The results are indicative of a positive correlation between the success of the explo-
ration strategy to optimize the transmission power and networking performance. The
results vary, depending on the scenarios, but generally for dense networks, the experiments
showed a 20–40% increase compared to the benchmark in PDR, as well as the achievement
of up to 10 dBm lower transmission power. This enhancement is accompanied by a more
stable topology and lower routing overhead, which are attributable to the better manage-
ment of channel contention. The main catalyst behind the results is the intelligent UCB
and discounted UCB algorithm, which explores the transmission power settings with an
intelligent mechanism.

As future work, we plan to integrate ACTOR with solutions for the mobility of the
nodes under which RPL exhibits poor performance. The support for a dynamic environ-
ment can be extended to mobility, but it requires the tailoring of the exploration strategy
and integration with the existing mobility management solutions.
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Appendix A. Proof of Lemmas Used for the Upper Confidence Bound

Lemma A1 (Hoeffding’s Lemma). If a ≤ X ≤ b with probability 1, then X is a
(b − a)2

4
-

subgaussian random variable.

Proof. In the first step, we prove the following for any random variable, X:

Var(X) = inf
t
[(X − t)2]

= Var(X − (b − a)2

2
)

≤ (b − a)2

4

Now, let P denote the distribution of X and define ρ(λ) = log Ep[eλX ]. Let Qλ be the
distribution of X, defined as follows:

dQλ(x) =
eλx

EP[eλX ]
dPX

ρ′(λ) = EP[XeλX ]

EP[eλX ]
=

∫
x

eλX

EP[eλX ]
dP(x) = EQ[X]

ρ′′(λ) =
EP[X2eλX ]

EP[eλX ]
− EP[XeλX ]2

EP[eλX ]2
=

EQ[X2]− EQ[X]2 = VarQ(X)

From Step 1, we have ρ′′(λ) = VarQ(X) ≤ (b−a)2

4 . According to Taylor’s theorem,
there exists some λ̃ ∈ [0, λ] such that

ρ(λ) = ρ(0) + ρ′(0)λ + 1/2ρ′′(0) + ρ′′(λ̃)λ2

Given the convexity of eX , we can exponentiate both sides, and that finalizes the proof.
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