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Abstract: Safe autonomous vehicle (AV) operations depend on an accurate perception of the driving
environment, which necessitates the use of a variety of sensors. Computational algorithms must then
process all of this sensor data, which typically results in a high on-vehicle computational load. For example,
existing lane markings are designed for human drivers, can fade over time, and can be contradictory in
construction zones, which require specialized sensing and computational processing in an AV. But, this
standard process can be avoided if the lane information is simply transmitted directly to the AV. High
definition maps and road side units (RSUs) can be used for direct data transmission to the AV, but can be
prohibitively expensive to establish and maintain. Additionally, to ensure robust and safe AV operations,
more redundancy is beneficial. A cost-effective and passive solution is essential to address this need
effectively. In this research, we propose a new infrastructure information source (IIS), chip-enabled raised
pavement markers (CERPMs), which provide environmental data to the AV while also decreasing the
AV compute load and the associated increase in vehicle energy use. CERPMs are installed in place of
traditional ubiquitous raised pavement markers along road lane lines to transmit geospatial information
along with the speed limit using long range wide area network (LoRaWAN) protocol directly to nearby
vehicles. This information is then compared to the Mobileye commercial off-the-shelf traditional system
that uses computer vision processing of lane markings. Our perception subsystem processes the raw
data from both CEPRMs and Mobileye to generate a viable path required for a lane centering (LC)
application. To evaluate the detection performance of both systems, we consider three test routes with
varying conditions. Our results show that the Mobileye system failed to detect lane markings when the
road curvature exceeded ±0.016 m−1. For the steep curvature test scenario, it could only detect lane
markings on both sides of the road for just 6.7% of the given test route. On the other hand, the CERPMs
transmit the programmed geospatial information to the perception subsystem on the vehicle to generate
a reference trajectory required for vehicle control. The CERPMs successfully generated the reference
trajectory for vehicle control in all test scenarios. Moreover, the CERPMs can be detected up to 340 m
from the vehicle’s position. Our overall conclusion is that CERPM technology is viable and that it has
the potential to address the operational robustness and energy efficiency concerns plaguing the current
generation of AVs.

Keywords: autonomous vehicles (AV); advanced driver assistance systems (ADAS); chip enabled
raised pavement marker (CERPM); perception; controls; vehicle-to-infrastructure (V2I); infrastructure
sensors; lane centering; Mobileye; computer vision
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1. Introduction

Autonomous vehicle (AV) technology has the potential to improve safety by using
advanced sensors to map the vehicle’s surroundings. Additionally, data processing helps
the AV make rapid decisions, aiding drivers in complex traffic, detecting obstacles, min-
imizing risks by reducing human errors, and enabling new energy-efficient operational
strategies. However, research efforts are still required to fully optimize their potential.
AVs traditionally use inputs from an array of on-vehicle sensors, such as cameras, radio
detection and ranging (RADAR), global navigation satellite system (GNSS), and light de-
tection and ranging (LiDAR) [1]. These sensors are used for environmental perception,
such as vehicle detection and tracking, pedestrian detection, road surface detection, road
lane detection, and traffic sign detection. The data from these sensors are processed us-
ing advanced fusion algorithms where the outputs are used in the planning and control
subsystems. The information gathered from sensors is used by the current state-of-the-art
fusion and machine-learning algorithms. This typically requires an onboard computer with
high operating speeds and/or multiple processors [2]. Advanced driver assistance systems
(ADAS) are the current widespread commercially available application of AV technology.
By leveraging the on-vehicle sensors, ADAS provides specific functionality, such as lane
keeping assist (LKA), lane centering (LC), automated emergency braking (AEB), and much
more. These systems aid the driver by providing proactive safety and comfort [2,3].

ADAS is set to be mandated by the National Highway Traffic Safety Administration
(NHTSA) for all passenger vehicles and light trucks by 2030 [4]. These systems rely on
onboard sensors and computations for real-time applications. For example, LC, a Society of
Automotive Engineers (SAE) designated level 2 automation, also known as auto-steer, is a
system that is responsible for keeping the vehicle in the center of a lane [5]. ADAS, such as
LC and LKA, utilizes computer vision (CV) techniques to process the information and use
it for vehicle control. For example, Mobileye, which is a common component used in ADAS
products for LC and LKA, provides computer vision processing. Mobileye can perform LKA
and LC when clear, visible lane markings are present [6]. Typical lane detection technology
based on computer vision utilizes image processing algorithms. These algorithms extract
features of lane lines by reducing image channels, processing acquired images, and fitting
lane lines after extraction [7,8]. Computer vision systems, although useful, have limitations.
They may struggle in bad weather or low light, and obstacles can block their view. Poor
lane markings and lane line obstructions decrease their reliability and performance as
well [9]. Moreover, the sensors on the vehicle only have information about the immediate
surroundings within their limited range. There is a notable shortfall in the performance of
vehicle automation products when navigating sharp curves, other extreme road geometries,
poor environmental conditions, and poor lane markings [10–12]. Moreover, in tackling the
limitations of computer vision systems, contemporary ADAS incorporates neural network-
based detection algorithms. While these algorithms offer enhanced robustness and accuracy,
they come with the trade-off of increased computational demands that translate to an
additional load on the vehicle’s computer and difficulty overcoming instances of failure [13].
In response to these drawbacks, we have previously undertaken the development of a novel,
infrastructure-based technology [14]. This technology aims to transmit environmental
information directly to the vehicle using infrastructure-based sensors.

Wireless communications between infrastructure-based sensors enable vehicles to
exchange vital information through vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) applications [15]. The effectiveness of on-vehicle sensors is subject to external factors
like road conditions, lighting, lane markings, and weather. For instance, vision-based lane
detection systems may encounter difficulties when environmental conditions fluctuate,
such as changes in illumination, shadows, or inclement weather [16]. Other research from
our lab has shown that onboard sensors and onboard computation can have significant
toll on the vehicle’s range and efficiency [17]. This study will thoroughly examine one
of these solutions. Infrastructure-based sensors can transmit information directly to the
vehicle via wireless communications. This V2I data can enhance the performance of
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existing perception systems and facilitate the development of novel methods for vehicles
to perceive their surroundings [18,19]. Roads currently use raised pavement markers
(RPMs) that are placed along lane markings to provide visual guidance for human drivers.
These markers are made of reflective materials that help with nighttime driving and are
maintained by state Departments of Transportation (DOTs) as a low-cost, passive solution.
They also have a snow-plowable alternative that can withstand winter treatments [20].
In our previous work, we developed a new way of gathering information for vehicle
subsystems using infrastructure information sources (IISs) [14]. We created chip-enabled
raised pavement markers (CERPMs). These are a modified version of standard RPMs,
designed to provide crucial information for the perception systems in AVs through V2I
communications. CERPMs are V2I sensors that provide static geospatial information to
surrounding vehicles. The CERPMs are small, cost-effective, and low-power IISs that have
a long transmission range and are suitable for on-road use. The CERPMs operate in the
United States unlicensed industrial, scientific, and medical (ISM) radio frequency band of
915 MHz. They can enable cooperative driving automation (CDA). In a subsequent study,
we tested a new strategy for AV lane-keeping using inputs from a camera sensor and the
CERPMs [14]. CERPMs were set up in the CARLA simulator to simulate real-world sensor
placement scenarios. We estimated the lateral offset using the data simulated in the CARLA
simulator, and all tests were performed in the simulator itself. Previous work has also been
performed to investigate the performance and operational impacts of CERPMs [14].

Although the simulation tests were useful, they worked under ideal conditions and
did not show the entire picture. Additionally, no controls were applied to the vehicle in
the study, and further testing would be required to test the LC/LKA using the CERPM
technology. To address the shortcomings of previous research, conducting a proof-of-
concept vehicle integration by testing the CERPMs with a vehicle in real-world conditions,
and incorporating an AV subsystem equivalent, is needed. In this novel study, we deployed
the CERPMs on actual roads and designed various test scenarios to evaluate their viability
as V2I sensors for real-world vehicle applications. The perception subsystem utilizes the
CERPMs and minimal data processing to generate the necessary trajectory for the test
route, followed by control for LC. We compared the performance of the CERPMs with the
Mobileye 6 Development Kit for LC, a commercially available off-the-shelf computer vision
solution [21]. The primary contributions are as follows:

• Implementing the initial proof-of-concept CERPMs on actual roads;
• Real-time data processing and vehicle integration for LC;
• Comparing V2I against traditional on-vehicle lane line detection methods for LC;
• On-road testing for vehicle control using CERPMs for LC.

2. Methodology

Initially, the focus here is on the perception subsystem and recent advancements since
the last studies [14,22]. Having gathered information from the perception systems using
either the Mobileye or the CERPM, the next step is to proceed to the control subsystem
and implement vehicle control. Both the CERPMs and Mobileye will be assessed for
their detection performance on two different test routes with varying curvatures. The
detections, which act as inputs to the perception subsystem, will then be used to create
a reference trajectory for vehicle control. This trajectory will be evaluated for controller
error. The tests were all conducted in clear and sunny conditions to obtain unobscured and
clear detections for the Mobileye. So overall, the performance in terms of perception and
controls will be evaluated in different test cases based on established drive cycles for the
two different systems.

2.1. AV Subsystem: Perception

The research studies presented in this work were conducted using the energy-efficient
autonomous vehicle (EEAV) laboratory research vehicle platform, as shown in Figure 1.
This platform is a 2019 Kia Niro that has been equipped with both sensor-based perception
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and control subsystems. These additions include a forward-facing stereo camera, two
global navigation satellite systems (GNSSs) receivers, a Polysync DriveKit that enables
drive-by-wire functionality, and the Mobileye.

The Polysync DriveKit connects to the controller area network (CAN) of the vehicle,
which can accurately read and control throttle, brake, and steering. Additionally, the drive
kit comes with its own robot operating system (ROS) driver, which facilitates communica-
tion between the various on-vehicle sensors. A detailed discussion about each sensor and
its setup are provided in the following sections.

Figure 1. Energy-efficient autonomous vehicle (EEAV) research platform along with an RSU CERPM
unit pictured at Western Michigan University.

2.1.1. On-Vehicle Sensor: GNSS

GNSS is a general technology used for vehicle positioning on land. To precisely
estimate the position of the ego-vehicle in the world, two GNSS receivers along with
real-time kinematics (RTK) were utilized. The instrumented research vehicle is equipped
with one SwiftNav Duro Inertial RTK kit and one SwiftNav Duro RTK kit placed on the
roof of the vehicle, as shown in Figure 2a, providing us with 2-centimeter accuracy using
SwiftNav’s Skylark Precise Positioning service. As shown in Figure 2b, the Duro Inertial
RTK is placed in the front, which includes a GNSS receiver and an inertial measurement
unit (IMU), and the Duro RTK is placed behind the Duro Inertial RTK. This enables heading
measurements and more accurate localization. Swift Navigation also provides the ROS
drivers for these sensors. Different topics are published in the ROS environment including
the position, orientation, heading, and accuracy of the receivers placed on the vehicle.

Figure 2. Dual SwiftNav GNSS setup on the EEAV research vehicle platform: (a) Placement of the
SwiftNav Duro Inetrial RTK represented with the red star and placement of the SwiftNav Duro RTK
represented with the blue star. The setup from (a) is mounted on the vehicle roof as shown with the
green arrow. (b) Placement of the Dual GNSS RTK Setup on the EEAV research vehicle.
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2.1.2. On-Vehicle Sensor: Mobileye Camera

The Mobileye system used for this study is the 6 Development Kit, as shown in
Figure 3a. The Mobileye was placed on the windshield, as shown in Figure 3b. Mobileye is
an advanced driver assistance system that includes a high dynamic range complementary
metal-oxide-semiconductor (CMOS HDRC) camera, on-board image processing, and also
supports a ROS driver. Following the mounting of the Mobileye, it is calibrated using a
thorough calibration process based on its placement, both for images and communication
with the vehicle’s CAN bus, allowing it to fetch information from the vehicle.

Figure 3. Mobileye 6 Development Kit mounting position on the EEAV research vehicle platform.
(a) The Mobileye 6 Development Kit. (b) Mounting position of the Mobileye 6 Development Kit on the
windshield. The green arrow shows the mounting position of the Mobileye on the vehicle windshield.

Setup

The Mobileye is connected to the vehicle CAN bus using a Kvaser USB-can adapter [23].
The adapter offers two high-speed CAN channels and one USB 2.0 interface that enables
communication between the Mobileye, on-vehicle computer, and the vehicle CAN bus.
Kvaser provides drivers and a software development kit (SDK) for Linux, which is writ-
ten in both Python and C, and enables configuration and communication protocol. The
Mobileye does not provide the raw image data, but provides information such as lane
boundaries, dynamic obstacles, traffic signs, collision warnings, lane departure warnings,
and headway information. The Mobileye 6 Development Kit is developed for roads that
have clear and visible lane markings on both sides of the lane. The Mobileye can operate in
low lighting conditions and during adverse weather conditions, but the performance is not
as robust. It can accurately detect the fully visible bicycles and rear end of cars as well as
fully visible pedestrians.

Data Routing for AV System

The ROS driver developed by Autonomous Stuff integrates the sensor with the ROS
ecosystem, offering crucial information such as lane data for detected lanes including
confidence value, offset distance, type, and curvature [24]. The lane information and
published data can be used for developing the lane model and the reference trajectory. The
published information in the ROS workspace can be processed using custom algorithms
for the perception subsystem. The output from the perception task can be further used for
vehicle control. Figure 4 shows the overall Mobileye data routing plan.
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Figure 4. The Mobileye raw detections are sent from the sensor to the in-vehicle perception system
using the ROS environment. The perception system carries out data processing for generating the
reference trajectory, which is then made available for the controls subsystem.

Data Processing

The information published by the Mobileye ROS drivers contains topics that can be
used for obtaining information such as detected lane positions, offset distance, and lane
curvature, which can be processed and used for the perception subsystem. We used the
topic as_tx/lane_markers , which provides visualization and location information about
the detected lanes. The detected lane markings with their corresponding identification
number, type, and positions are published in a local coordinate frame that is centered and
originated at the sensor. If no lanes are detected, then no detections are published to the
topic. The detections follow a right-handed coordinate system, where the positive X-axis
points straight ahead, The positive Y-axis points to the left and the positive Z-axis points up.
The different lane model types outputted by the topic are linear, parabolic, and 3D. Since
these calculations are handled internally by Mobileye, we will leverage the information
provided by the ROS driver, such as the lane models, and generate a reference trajectory.
We can obtain the reference trajectory by obtaining the lane offsets from the left lane line
and the right lane line individually and computing the center. Figure 5a shows the output
from the Mobileye for a single lane using RViz, which is a visualization tool for ROS. This
is for visualization purposes only and does not accurately represent distances in terms of
scale or position. Starting from the left, the green line represents the left lane line marking,
the second green line is the right lane line marking, and the red line is the lane boundary.
The center of the current lane, i.e., the reference trajectory, is shown using the purple line
in Figure 5b. The reference trajectory is taken as the path needed for vehicle control and
further compared to the CERPM path.

Figure 5. Visualization information obtained through the as_tx/lane_markers topic displayed in
RViz for a single lane road: (a) Starting from the left, the green line represents the left lane line
marking, the second green line is the right lane line marking, and the red line is the lane boundary.
(b) The center of the current lane, the reference trajectory, is shown using the purple line. The
processing goes from (a) to (b) shown using the blue arrow.
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Preparation for Lane Centering (LC) Using Mobileye

The ego-vehicle is to travel within the center of the lane defined by the reference trajectory
as mentioned in Section 2.1.2. Using the trajectory information via the perception subsystem,
we would apply control by passing the control output to the control subsystem, so that the
ego-vehicle follows the center of the lane. We will discuss this in detail in Section 2.3.2.

2.2. Chip Enabled Raised Pavement Markers

As established in our previous work, we developed a new method of transmitting lane
information to on-road vehicles using sensors that act as active IIS using V2I technology [22].
Low-cost sensors, referred to as CERPMs, were developed. RPMs shown in Figure 6a were
utilized with modifications to transmit geospatial information such as latitude, longitude,
and altitude. Various tests with CERPMs were conducted both at the Western Michigan
University and the Oak Ridge National Laboratory [14,22]. In this section, the CERPM
technology is expanded for real-world vehicle perception and control tasks.

Component Selection and Communication Protocol

Using long-range (LoRa), and a low-power wide-area network (LPWAN) protocol, an
IoT development board was added to the RPMs to transmit information. The transmitter
(Tx) was placed in the given RPM, as shown in Figure 6b. An IoT development board called
WiFi LoRa 32 was chosen as it is integrated with the SX1276 LoRa Connect transceiver that
supports industrial, scientific, and medical (ISM) band of data transmission frequencies [25].
The chip also allows the support of the Arduino library. A rechargeable 3.7 V Lithium
battery of 1000 mAh is connected to power the IoT board. This powers the IoT board.
An antenna is attached to the board to help transmit the information. The antenna does
not require external power and is powered through the IoT board itself. The Tx, along
with the antenna and the battery enclosed in the RPMs, are referred to as CERPMs. The
receiver (Rx) was set up similarly, however, it was modified from the original antenna
by AEACAQ190012-S915 [26] for increased antenna gain. The Tx LoRa nodes transmit
the information in form of radio packets from the LoRa Tx node to the Rx LoRa node.
The Rx also receives information such as the receiver signal strength index (RSSI), and
signal-to-noise ratio (SNR). Both the in-vehicle Rx and CERPMs were programmed to
operate at a radio frequency of 915 MHz, which is an unlicensed ISM radio frequency band.

Figure 6. Modifying a regular RPM to serve as a CERPM, which will serve as the Tx and placed on
the road for geospatial data transmission (a) standard raised pavement marker. (b) Modified raised
pavement marker that includes the IoT development board, this would serve as the CERPM.
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CERPM Setup

Geospatial data were collected using the Trimble Catalyst DA2, a GNSS positioning
sensor, in the World Geodetic System 1984 (WGS 84) coordinate system. This data consist
of latitude, longitude, altitude, and additional parameters, such as horizontal accuracy,
vertical accuracy, precision, point identification, and timestamp. The sensor has a maximum
precision of 2 cm in horizontal accuracy and 2 cm in vertical accuracy. The CERPMs were
programmed to transmit the geospatial information. Additionally, each CERPM was
assigned a unique identification number for tracking and processing purposes.

Data Routing for AV System

Figure 7 shows the plan for AV control using the CERPMs. A serial communication
from the CERPM was established with the on-vehicle computer via the CP2102 USB to
serial chip on the IoT board using the Rx.

Figure 7. The CERPM Data Routing Plan: The on-road Tx’s information is received by the in-vehicle
Rx and sent to the in-vehicle computer using the custom ROS driver. This information is further
processed by the perception subsystem. The output from the perception system is used for control
calculation and lastly used to apply vehicle control.

Data packets received from the Rx were read using the serial library in a Python
script. Unlike the Mobileye, a custom ROS driver had to be created to publish the obtained
information from the Txs to the ROS environment for the perception subsystem. The Rx,
when connected to the in-vehicle computer, sends the received packets using the serial
port to the computer. The data within these packets can be extracted using a Python script
in conjunction with the serial library. Subsequently, this information can be decoded
and transmitted to the ROS environment via the same Python script, thereby enabling
accessibility to all other processes within the ROS master. The CERPM ROS driver operates
at 20 hz, which is every 0.05 s.

Data Processing

By utilizing the CERPM information collected through the ROS driver, the CERPMs
can be processed based on their geospatial information. To establish a feasible vehicle path
using GNSS data, the CERPMs are categorized into the following two groups: CERPMs
belonging to the left lane boundary and the right lane boundary. This separation is based
on whether they are placed on the left lane line or the right lane line within a given lane.
However, due to the limited number of CERPMs placed at specific intervals along the
pavement, interpolation became crucial to fill the gaps between these markers. Interpolation
ensures a complete set of CERPMs on both sides, compensating for any missing CERPMs
due to signal dropout. After separating the CERPMs into left and right lane edges and
performing cubic interpolation, the reference trajectory for the vehicle is derived. The cubic
spline interpolation polynomial Si(x) for the interval [xi, xi+1] is given by:

Si(x) = ai + bi(x − xi) + ci(x − xi)
2 + di(x − xi)

3 (1)

where ai, bi, ci, and di are coefficients determined by the interpolation and continuity
conditions, and i is the number of points used for interpolation.
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The interpolated CERPM information is transformed into local coordinates about
the North-East-Down coordinate frame (NED) relative to the ego vehicle’s position and
orientation. This is achieved using the pymap3d library in Python. Transforming geospatial
information maps everything local to the vehicle. This transformation generates a local
path for the ego-vehicle to follow. The reference trajectory is obtained by calculating the
midpoints between the interpolated CERPMs. The resulting reference trajectory represents
the local coordinates (x, y, z) of the path that the vehicle should follow.

Pseudo Lane-Line Projection for Visual Verification

To verify the accurate conversion of the geospatial information from the global co-
ordinate frame to the local coordinate frame, as discussed in Section 2.2, the local lane
line coordinates are projected on the forward camera feed based on the vehicle’s current
position and orientation.

The goal was to transform and align the local coordinates to the camera placed on
the vehicle, which could be then overlaid on the camera feed obtained from the ZED2i
camera sensor. To perform projection, the local coordinates were shifted from the GNSS
base station to the ZED2i using an extrinsic matrix. The extrinsic matrix includes the
translation and rotation information between two given sensor frames. Now that all the
local coordinates have been translated to the camera frame, the points were converted from
the NED coordinate frame to the OpenCV coordinate frame [27].

Next, the points need to be rotated and aligned with the heading (θ) of the ego
vehicle. In summary, the coordinate frame was rotated and adjusted with θ along the down
axis, which is represented in Equation (2). Our previous study presents a comprehensive
methodology for the material discussed in this section [28].Xc

Yc
Zc

 =

− sin θ cos θ 0
0 0 1

cos θ sin θ 0

N
E
D

 (2)

The points were now in the required coordinate frame, rotated, and aligned. The next
step was the projection of these points onto the camera feed. This required determining
the pixel location (u, v) for each point, which was performed using the camera intrinsic
matrix obtained from the camera data. The 3D points were appropriately projected onto
the 2D image plane, using their determined pixel locations. A detailed methodology for
this has been established in our previous work [28].

The resulting image has the CERPMs projected as points onto the raw camera feed and
can be further used for visual verification. This method does not require the lane lines to be
visible or a direct line of sight to the lane. Figure 8a shows the projection of four CERPMs
on the camera feed. The left lane markings, represented with blue markers, are the two
non-interpolated CERPMs placed at a separation of 40 feet, whereas the two CERPMs on
the right lane boundary are interpolated to have more points in between. Figure 8b shows
the generation of pseudo lane lines using a total of 10 CERPMs on the right lane boundary
and ten CERPMs on the left lane boundary at a separation of 40 feet.

Preparation for Lane Centering (LC) Using CERPMs

In Section 2.2, raw information from the CERPMs was received using the ROS driver.
The information was processed using the perception subsystem, which created a reference
path in local coordinates. This local path was then used as the final reference trajectory for
the AV control subsystem’s lateral control calculation, as discussed in Section 2.3.2.
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Figure 8. Projection of CERPMs on the camera feed for visual verification and pseudo drivable
region generation. (a) Projection of four CERPMs on the camera feed. Two non-interpolated CERPMs
were placed at a separation of 40 feet denoting the left lane boundary shown in blue markers. Two
interpolated CERPMs on the right lane boundary shown with green markers. (b) Using 10 CERPMs
on each lane boundary to generate pseudo lane lines for drivable region creation shown using the
blue arrow from (a) to (b).

2.3. AV Subsystem: Controls

For LC using either the Mobileye or the CERPM derived reference trajectory, a lateral
controller is required, which keeps the vehicle centered in the given lane of travel. For
our study, we obtained the lane-line data from either Mobileye or CERPMs. A lateral
controller is used to adjust the ego-vehicle’s trajectory based on the offset between its actual
position and the reference trajectory. The control output is used to align the vehicle in the
given lane. Additionally, a longitudinal controller consider the recommended speed limit
for the route, ensuring the ego-vehicle maintains the desired speed, which would be the
maximum allowable speed limit for the given route. Figure 9 presents a brief flow diagram
demonstrating how perception data from Mobileye or CERPMs can be used to perform LC.

Figure 9. Flow diagram for using perception data to apply vehicle control. Either Mobileye or
CERPMs are used to obtain the inputs for the perception subsystem. The processed data from the
perception subsystem is then passed on to the control subsystem. The control output is used for LC.

2.3.1. Fixed Longitudinal Controller

The ego-vehicle was set to follow a fixed target speed, which was the speed limit for
the test route. The DriveKit published the wheel speed information from all four wheels,
using the wheel speed encoder data, which essentially served as the perception subsystem.
Using the wheel speed information, the ego-vehicle speed was calculated and published
to the ROS environment. For control calculation, a proportional-integral-derivative (PID)
controller was designed. The PID controller is a standard control algorithm that is a single-
input single-output system (SISO). The PID uses the error between the reference input and
the current input to drive it to zero. The system then uses the output from the PID as its
control input. The difference between the current speed and the target speed, i.e., the error
(Equation (3)), was the input to the PID, the output from the PID was used to adjust the
throttle and brake. This was achieved by sending throttle and brake requests to the vehicle
using the DriveKit.

error = target speed − current speed (3)

If the output is positive that means that the target speed is more than current speed, in
which case we send a throttle request and the vehicle maintains the target velocity. If the
output is negative, the vehicle may either coast or brake, depending on the output.
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2.3.2. Lateral Controller

The lateral controller is responsible for minimizing the variance between the current
position and the reference trajectory. The Stanley controller was implemented for lateral
control. It is a path-tracking algorithm designed and implemented by Stanford University’s
DARPA Grand Challenge team [29]. The Stanley controller algorithm uses the front axle of
the vehicle as the reference point. It minimizes both the heading and the cross-track error
for the given trajectory. The cross-track error is the distance between the closest point on
the reference trajectory with respect to the vehicle’s front axle. The heading error is the
direction the vehicle should be facing on the given trajectory versus the current heading.
Figure 10 shows the Stanley controller diagram. ψ denotes the angle between the trajectory
heading and the vehicle’s heading, δ represents the steering angle of the vehicle, v stands
for the velocity of the vehicle, L is the wheelbase, and ce is the cross-track error, which is
the error between the center of the front axle and the closest point on the path.

Figure 10. Given the cross-track error and heading error, the Stanley controller minimizes both errors
and aligns the vehicle to the reference path. The dashed lines show the path parallel to the reference
path, the solid black line that goes through the center of the vehicle shows the vehicle heading, the
green marker shows the center of the front axle and the arrow shows the cross-track error.

Equation (4) computes the desired steering wheel angle for the ego-vehicle to follow
the trajectory.

δ(t) = ψ(t) + arctan
( k × ce(t)

v(t)

)
(4)

where ψ(t) is the heading error, k denotes a smoothing constant, ce(t) stands for the cross-
track error, and v(t) represents the ego-vehicle velocity. The standard Stanley controller
was modified using a look-ahead distance to the controller, as shown in Equation (5). The
look-ahead distance dl is the distance on the reference trajectory, at which the cross-track
error is computed.

δ(t) = ψ(t) + arctan
( k × ce(t, dl)

v(t)

)
(5)

Adding a look-ahead distance gives the control system knowledge about the trajectory
at dl meters in front of the vehicle, providing a smoother response. dl was set to be a
constant value for both LC systems. Figure 11 shows an overall systems-level diagram for
both longitudinal and lateral control outputs.

Similar to the PID controller developed in Section 2.3.1, a low-level PID controller is
implemented to minimize the cross-track error and obtain the desired steering wheel angle.
The DriveKit has access to the motor-driven power steering (MDPS) system on the EEAV
research platform. The output from the PID is then utilized to send steer requests to the
MDPS until the error is minimized.
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Figure 11. For longitudinal control, the wheel speed encoders provide information to the perception
subsystem and is further used for painting the target speed. Similarly, for lateral control, the Mobileye
and the CERPMs are used to perform LC using the same control subsystem.

LC Using Mobileye

When clear lane lines are detected on both sides of the lane, the perception subsystem
computes the reference trajectory, and in turn, the cross-track error that is used as an input
to the lateral control algorithm. The look-ahead distance (dl) is set to be a fixed point
(15 m) on the reference trajectory. The maximum dl on the reference trajectory is 31 m.
Since the Mobileye detections are processed and obtained in a local frame, as mentioned in
Section 2.1.2, a fixed look-ahead distance is used to compute the offset. A fixed target speed
was set to be achieved by the longitudinal controller, which is the maximum allowable
speed limit for the test route.

LC Using CERPM

The local coordinates obtained from Section 2.2 are used as the reference trajectory for
LC. In contrast to the Section 2.1.2, where the path moves with the ego-vehicle, the CERPM
reference trajectory includes the first measurement from the GNSS on the ego-vehicle as
the origin and the rest of the path measured with respect to the origin. To include dl , the
position of the ego-vehicle is projected 15 m ahead using the vehicle heading. This enables
the calculation of cross-track error at dl . The computed cross-track error is used as an input
to compute the control output and necessary steer requests are sent to the DriveKit to
center the ego-vehicle in the given lane. A fixed target speed was set to be achieved by the
longitudinal controller, which is the maximum allowable speed limit for the test route.

3. Test Routes

The two different sensor technologies, namely, the Mobileye and the CERPMs were
used for LC. The tests were conducted at two different locations. Initial testing for the
CERPMs was conducted at Oak Ridge National Laboratory (ORNL), which would be
the first test route. The second and third tests were conducted on specific sections of a
fixed route at Western Michigan University’s (WMU) Parkview Campus Drive shown in
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Figure 12a. The testing routes were divided into sections based on different road conditions,
such as road curvature and cardinal directions. Figure 12b shows the fixed test route used
to conduct the different drive cycles, which contains different road curvatures and variance
in lane markings. For initial testing, only specific sections of the entire test route are used,
streamlining the testing process and maintaining brevity for performance evaluation.

Figure 12. Test route at Western Michigan University. (a) Parkview Campus Drive Map. (b) Fixed
route consisting of two-lane roads used for testing. Mapped for our previous study [28].

The first test route was at ORNL to investigate the use of CERPM technology for
on-road applications and the generation of a reference trajectory for LC. The second test
route was a selected section of the WMU campus drive with a steep curvature. Lastly,
the third test route was a portion of the WMU campus drive with a low curvature. It has
been observed that there is a notable difference in the performance of vehicle automation
products on arterial roads with steep road curvatures, uneven road surface finish, improper
lane markings, and lane marking obstructions [30]. The CERPM technology can be tested
to address these drawbacks. The first test route was established at ORNL to investigate
CERPMs for on-road trajectory generation and LC. The second test route at WMU consisted
of a steep curvature road section. Lastly, the third test route at WMU consisted of a low
curvature road section.

3.1. Route 1: Oak Ridge National Laboratory

An initial test was conducted to test on-road trajectory generation using CERPMs. For
this purpose, 10 CERPMs were set up on a section of the Old Bethel Valley Road at ORNL.
The geospatial data were collected using the Trimble DA2 catalyst and programmed into
each CERPM. The selected test route was unpaved and unmarked. The Mobileye was
not tested due to the need for lane markings. This preliminary study aimed to generate
the reference trajectory required for the control subsystem and evaluate the accuracy of
Section 2.2 without first using testing on marked roads.

The CERPMs are placed on the designated test routes following the guidelines pro-
vided by the US Department of Transportation’s (USDOT) Federal Highway Administration
(FHWA) [31]. There are different regulations for the placement depending on the road type,
such as urban, arterial, interstate, on-ramp, and off-ramp. Our tests were mainly conducted
on arterial and two-lane roads for initial proof-of-concept testing. The CERPMs were
placed on either side of the lane that the ego-vehicle would be traveling in with a specific
separation between each CERPM. Depending on the length of the test route, the number of
CERPMs and the separation between them was altered for initial testing. The test included
the generation of the reference trajectory by placing the ego-vehicle at point A of the route,
as shown in Figure 13a. The interpolated reference trajectory generated by the CERPMs
was plotted on an open-street map to verify its global position shown in Figure 13b. Addi-
tionally, tests were conducted for received signal strength and transmission range distance,
as discussed in Section 4.1.
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Figure 13. Test route 1 at Oak Ridge National Laboratory Main Campus. (a) Test route A to B at Old
Bethel Valley Road–Oak Ridge. (b) Successful trajectory generation using 10 CERPMs.

3.2. Route 2: WMU Campus Drive Loop Steep Curvature

After initial testing at ORNL, we tested the CERPM for LC alongside the Mobileye at
WMU’s test route 2, which was the steep curvature test route that has the starting point A
and ending point B, as shown in Figure 14, which had a length of 275 m. The campus drive
loop comprises two one-way lanes, with lane markings on both sides of the outermost
(right) lane, as shown in Figure 14. For this test, we tested both Mobileye and CERPM LC
on the outermost lane of the test route. We utilized the previously collected high-definition
lane-line data as the geospatial information necessary to program the CERPMs [28]. In
total, 10 CERPMs were placed on either side of the lane across from each other and the raw
data were passed onto the perception subsystem for creating the reference path. Similarly,
Mobileye data were passed to the perception subsystem for processing and reference path
generation. The perception output was sent to the control subsystem for LC using (1) The
Mobileye and (2) CERPMs. The performance of both the Mobileye and the CERPMs for
steep curvature is discussed in Section 4.2.

Figure 14. Test route 2 at Western Michigan University for steep curvature scenario. The outermost
lane consists of lane markings on both sides of the lane, which would be utilized for the LC using
Mobileye and CERPMs. Point A was the starting position for the test route and B was the end of
the route.
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3.3. Route 3: WMU Campus Drive Low Curvature

Figure 15 shows the low curvature test route. The test was conducted from point A
to point B. The length of this section was 350 m. The CERPMs were placed as mentioned
in Section 3.2. This analysis provides insights into the adaptability of both the Mobileye
and the CERPMs in roads characterized with low curvature. The performance of both the
Mobileye and CERPMs for LC in low curvature scenarios is discussed in Section 4.3.

Figure 15. Test route 3 at Western Michigan University for low curvature scenario. The outermost
lane consists of lane markings on both sides of the lane, which would be utilized for the LC using
Mobileye and CERPMs. Test was conducted from point A to point B.

4. Results

The results section discusses the performance of the two LC systems for the three
different test routes. For test route 1, only CERPMs were tested for initial verification of
reference trajectory generation for real-world on-road purposes. Along with the generation
of the reference trajectory, the received signal strength indicator (RSSI) was analyzed for test
route 1. The reference trajectory trace was compared with the ground truth GNSS lane-line
data collected using the Trimble DA2 catalyst. The RSSI, which indicates the signal strength
at the Rx side in decibel milliwatts (dBm), will be analyzed first, followed by the results
from the Mobileye and the CERPM LC tests conducted at WMU’s Campus Drive.

4.1. Signal Strength Analysis

To profile the distance with RSSI for a given CERPM, one CERPM was placed on
test route 1 and the RSSI was measured from point A towards point B. The CERPM was
measured to be at a distance of 50 m from the starting position, which is point A where
the ego-vehicle was present. The RSSI measured −108 dBm at point A and −125 dBm at a
distance of 340 m towards point B.

Figure 16 shows a 3D plot of the CERPM’s location relative to the ego-vehicle and
the RSSI. The red data marker represents the CERPM’s position in global coordinates.
The dynamic Z-axis distance line illustrates the ego-vehicle’s position and its changing
proximity to the CERPM, along with the RSSI mapped to the colorbar.
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Figure 16. This plot shows the RSSI profile between the on-vehicle Rx and the on-road CERPM (Tx).
The red data point is the position of the CERPM on the road, and the line on the Z-axis the RSSI value
with different distances from the ego-vehicle. The colorbar maps the RSSI values.

4.2. Steep Curvature

The CERPMs and the Mobileye were tested on WMU’s campus drive where visible
lane markings were present. This section will look at the steep curvature scenario, which is
test scenario 2. CERPMs were set up as mentioned in Section 3.1. After processing the data
and generating a reference trajectory as explained in Section 2.2, the processed CERPM
data were sent to the control subsystem for both lateral and longitudinal control using
only CERPMs.

4.2.1. Mobileye

Figure 17 shows the trajectory generated for the steep curvature test route using
Mobileye detections. Along with ground truth data collected in our previous work [28].
Mobileye encountered difficulties in detecting both left and right lane lines for the steep
curvature test route. The Mobileye could only successfully detect the right lane line marking
for 81.7% of the given route. The detection rate for the left lane line was only 6.7%. The
system could detect both the left and right lane line markings for just 6.7% throughout the
entire route. It was seen that the Mobileye failed after curvatures greater than 0.016 m−1.
LC could not be tested due to inadequate detections, preventing the successful generation
of a reference trajectory.

Figure 17. Mobileye detections and ground truth data for test route 2.
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4.2.2. CEPRM

The raw CERPM data for both the left and right lane lines of the road is depicted
in Figure 18a. Figure 18b shows the generated reference trajectory using CEPRMs and
ground truth information during the steep curvature test. After interpolation, we could
successfully generate a reference trajectory for the entire path. The generated path was
passed onto the control subsystem for lateral control. As compared to the Mobileye, the
CERPMs could successfully generate the entire path for the given test route.

Figure 18. CERPM detections for test route 2 with steep curvature. (a) Raw detections from CERPMs.
(b) Processed CERPM information, providing the reference trajectory for vehicle control along with
ground truth data.

4.2.3. LC Performance

Due to insufficient detections from Mobileye, a reference trajectory could not be
generated; thus, LC using Mobileye could not be tested, as shown in Figure 19a. LC cannot
be engaged at the starting position of the test. Figure 19b shows the mean squared error
(MSE) for the path taken by the controller using the CERPM reference trajectory compared
to the ground truth. The MSE in X-direction was 0.25 m and the MSE in Y-direction
was 0.34 m.

Figure 19. LC path using the two different systems for test route 2 compared to ground truth.
(a) Controller path using Mobileye. (b) Controller path using CERPMs.
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4.3. Low Curvature

The CERPMs and the Mobileye were tested on test route 3, which was the low curva-
ture scenario. This section will look at the detections obtained from the two systems.

4.3.1. Mobileye

Figure 20 shows the generated reference trajectory for the low curvature test route
along with the ground truth. The Mobileye could successfully detect the right lane line
marking (solid white) for 93% of the route, and the left lane line (dashed white) for 86.1%.
Both the left and right lane line markings were detected for 86.1% of the route.

Figure 20. Mobileye detections and ground truth data for test route 3.

4.3.2. CERPM

Figure 21a shows the CERPM detections for test route 3 with low curvature. Figure 21b
shows the CERPM reference path along with the ground truth.

Figure 21. CERPM detections for test route 3 with low curvature. (a) Raw detections from CERPMs.
(b) Processed CERPM information, providing the reference trajectory for vehicle control along with
ground truth data.

4.3.3. LC Performance

The MSE for CERPM and Mobileye controller path to the ground truth is shown
in Figures 22a and 22b, respectively. The ground truth data were converted into local
coordinates (NED) to match the local coordinates of the reference trajectory from Mobileye.
MSE was computed in both X- and Y-directions. The MSE for CERPMs shown in Figure 22a
in X-direction was 0.24 meters and the MSE in Y-direction was 0.38 meters. Figure 22b
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shows the MSE for the path taken using the Mobileye and the zones with successful
detections have an MSE of 0.21 m in the X-direction and 0.45 m in the Y-direction.

Figure 22. LC path taken by the vehicle using the two different systems for test route 3 compared to
ground truth. (a) Controller path using CERPMs. (b) Controller path using Mobileye.

5. Discussion

For test route 2, which has a steep curvature, it could detect the solid right lane
marking for 81.7% and the dashed left lane marking for 6.7% of the route. For test route
3, which consists of low curvature, it was able to detect the solid right lane marking for
93% of the route and the dashed left lane marking for 86.1% of the route. Based on our
observation, our new V2I CERPM technology yields better results when compared to
Mobileye in both detection and trajectory generation for both test scenarios. Using the
CERPM technology a trajectory could be generated successfully for both steep and low
curvature test scenarios. Both technologies have their shortcomings, which are discussed
in the next section. Table 1 shows the overall MSE magnitude in both the x and y directions
for Mobileye and CERPM routes.

Table 1. Summary of CERPM and Mobileye performance using the Stanley controller for LC. The
overall magnitude of the error from both the X- and Y-direction.

Type CERPM Mobileye

Test Route 2 MSE 0.42 m N/A1

Test Route 3 MSE 0.38 m 0.41 m
1 For test route 2 (steep curvature), the controller could not be enabled as there were no detections from the
Mobileye to pass to the control subsystem.

The Mobileye needs clear visible lane lines on both sides of the lane. During testing,
it was noticed that the Mobileye struggled to identify the lane markings on either side
of the lane on portions of the route with steep curvature, patchy lane markings with
uneven colors, and shadows cast from the trees and surroundings that caused improper
detections. Additionally, the Mobileye lacks information for lane markings beyond a
distance of 31 m [32]. Whenever the curvature exceeded ±0.016 m−1, the Mobileye did not
detect lane markings on either side of the lane. Our observation suggests that the Mobileye
system performed better in terms of detections in road sections with low curvature as
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compared to steep curvature. A few drawbacks with our new CERPM technology were
that, during the experiment, we observed that it was difficult to receive all CERPM signals
simultaneously with a low-fidelity receiver and we are actively working on procuring
and testing additional receiver options on the vehicle. Line-of-sight is crucial for a strong
CERPM signal, similar to various wireless communication technologies. Although the
CERPMs have some temporary shortcomings, they provide a preview of about 300 m
that helps in predicting future trajectories when compared to Mobileye. Even in scenarios
where there are signal dropouts or missing CERPMs, data processing techniques maintain
detection performance. CEPRMs can be utilized in unmarked roads and varied lighting
and weather conditions. Iterative improvements could lead to better detections, enabling
further technological expansion. If CERPMs are to be scaled up in the future, this technology
will essentially replace the current raised pavement markers. Each state’s Department
of Transportation (DOT) already has maintenance plans in place for RPMs, so it will not
require the development of new methods to install and maintain this technology. The
installation of this technology will take time due to the number of CERPMs needed to cover
the entire country, but depending on the use of this technology and its deployment, the
process could be streamlined. To maintain the safety and security of this technology, we will
explore the formal methods for implementing secure network protocols and information
exchange, such as IEEE 802.11p and C-V2X [33]. The addition of data encryption and Rx to
Tx authentication methods will help to ensure the safety of the data transmitted between
the CERPM and the vehicle [34].

6. Conclusions

This study expands on our previously established work on CERPMs for real-world on-
road V2I capabilities such as lane centering. The proposed work introduced a new method
of vehicle control using perception information provided by our newly developed CERPMs.
This new method of obtaining perception information was compared with a commercially
available off-the-shelf computer vision solution, the Mobileye 630 Development Kit. It
was observed that the Mobileye did not perform well on roads with sharp curves, varying
lighting conditions, and inadequate lane markings. On the other hand, CERPMs can gather
data up to a range of 350 m from the vehicle, enabling us to predict the vehicle’s future
trajectory. In general, the Mobileye could not identify lane markings, and performance
degraded when the road’s curvature exceeded ±0.016 m−1. Additionally, a controller was
developed to perform LC using the CERPMs and Mobileye, respectively.

This study has successfully demonstrated that by using V2I information and lever-
aging our CERPM technology, we can obtain accurate and computationally inexpensive
future lane information, which can then be used for AV perception and control. The
CERPM information is not dependent on lane line visibility or lighting conditions as it
does not depend on vision-based infrastructure. It can be successfully implemented for
ADAS or AV features such as LC. This technology can effectively address the challenging
drawbacks that come with commercial off-the-shelf vision providers used for drivable
region detection required for ADAS or AVs. Iterative improvements are planned for the
CEPRM hardware and software to enable large-scale testing. More advanced receiver tech-
nology and potentially using cellular integration could also be explored for future work.
Fusing the information from the CERPMs with other on-vehicle sensors could improve the
overall system performance for LC. Additionally, the CERPMs preview could be used to
implement a more robust control algorithm, such as model predictive control. This study
does not extensively delve into the economic feasibility of the CERPM technology, as it is
not the primary focus. However, upon primary examination of the economic feasibility, it
is important to note that the cost of setting up RSUs can amount to thousands of dollars
at each intersection. HD maps necessitate a probe vehicle and a substantial amount of
engineering hours. In contrast, regular raised pavement markers cost a couple of dollars
and can be adapted using off-the-shelf IoT boards. When produced in large quantities for
extensive road networks, the cost of CERPMs would be significantly lower.
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WGS World Geodetic System
IoT Internet of Things
NED North-East-Down
PID Proportional-Integral-Derivative
SISO Single-Input Single-Output
DARPA Defense Advanced Research Projects Agency
MDPS Motor-Driven Power Steering
EEAV Energy-Efficient Autonomous Vehicles
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ORNL Oak Ridge National Laboratory
USDOT US Department of Transportation
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