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Abstract: With the rapid development of 3D reconstruction, especially the emergence of algorithms
such as NeRF and 3DGS, 3D reconstruction has become a popular research topic in recent years. 3D
reconstruction technology provides crucial support for training extensive computer vision models
and advancing the development of general artificial intelligence. With the development of deep
learning and GPU technology, the demand for high-precision and high-efficiency 3D reconstruction
information is increasing, especially in the fields of unmanned systems, human-computer interaction,
virtual reality, and medicine. The rapid development of 3D reconstruction is becoming inevitable. This
survey categorizes the various methods and technologies used in 3D reconstruction. It explores and
classifies them based on three aspects: traditional static, dynamic, and machine learning. Furthermore,
it compares and discusses these methods. At the end of the survey, which includes a detailed analysis
of the trends and challenges in 3D reconstruction development, we aim to provide a comprehensive
introduction for individuals who are currently engaged in or planning to conduct research on
3D reconstruction. Our goal is to help them gain a comprehensive understanding of the relevant
knowledge related to 3D reconstruction.

Keywords: static 3D reconstruction; dynamic 3D reconstruction; 3DGS; deep learning; NeRF

1. Introduction

Vision, serving as one of the most important capabilities of human beings, enables
humans to recognize and interact with the 3D physical world. The digital representation
and construction of 3D scenes in computers form the foundation for many crucial appli-
cations today. This is evident from the increasing number of relevant papers published
in well-known international conferences and journals, showcasing the degree of research
development in this field. In many cases, three-dimensional reconstruction technology
provides an alternative to replicating real objects for precious or delicate cultural heritage
artifacts, avoiding the overly invasiveness that traditional plaster casting techniques may
bring. It is also useful for protecting historical relics, cultural heritage, etc. plays an
extremely important role [1]. In the game and movie industry, dynamic 3D scene recon-
struction can be used for real-time rendering to enhance the viewing experience of games
and movies [2]. In medical imaging, it is used to construct patient-specific organ models for
surgical planning [3–5]. In robot navigation, dynamic 3D scene reconstruction enables the
robot to better comprehend its surrounding environment and improve navigation accuracy
and safety [6]. In the field of industrial design, 3D reconstruction technology can assist in
creating precise digital models by capturing the 3D geometric information of real objects.
It aids users in comprehending the dynamic changes in data [7]. By capturing the user’s
body shape, needs, or preferences, designers can personalize customized products [8].
Additionally, it can capture and record the geometry and structure of actual equipment or
mechanical parts, providing a digital foundation for equipment maintenance [9].
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Different from traditional manual 3D modeling using Computer-Aided Design (CAD)
software or Digital Content Creation (DCC) software, 3D reconstruction technology aims to
begin with sensor input, such as pictures, point clouds, and other data. The corresponding
3D structure and scene are automatically reconstructed without manual intervention. In
the field of photogrammetry, German scientists Albrecht Meydenbauer and Carl Pulfrich
made significant contributions to image measurement and photogrammetry from the late
19th to the early 20th century. Their work provided a theoretical basis for subsequent
3D measurement and reconstruction [10]. The photogrammetry method mainly captures
images through cameras and then uses image processing and measurement techniques to
obtain the 3D information of the target object. In the 1960s, MIT’s Roberts used computer
programs to extract 3D structures of polyhedra, such as cubes, wedges, and prisms, from
digital images. After studying multiple visual images of the building block world system,
he believed that in the building block world, 3D objects can be simply represented by
two-dimensional shape combinations [11]. This pioneering research laid the foundation
for studying 3D reconstruction to understand 3D scenes. In the 1970s, Marr and Poggio of
the Massachusetts Institute of Technology proposed a theoretical framework for how the
visual system reconstructs 3D structures from two-dimensional images [12]. The core of
this theory is to eliminate false matches, integrate previous advances in stereo matching,
and posit that the difficulty of stereo matching is related to image parallax. The range is
proportional to the resolution. Shortly after Marr proposed this theory, Grimson [13] further
implemented the algorithm and demonstrated its applicability to natural image matching.

3D reconstruction is divided into explicit and implicit expression methods based on
different approaches, offering diverse perspectives and processing techniques for data
obtained from the real world. Explicit expression refers to a representation method that
clearly defines geometric shapes and structures to directly describe the external or internal
geometry of an object. It is a discretized expression, which inevitably leads to a loss
of information, necessitating the development of new processes. There is a significant
overhead when synthesizing images from different perspectives. Implicit expression
describes the geometry of an object through a function instead of directly providing its
geometric representation. In implicit representation, the geometry of the object is implicitly
defined by an implicit function or implicit surface equation, and the function is used to
solve the problem. Values can be obtained from points on the surface.

1.1. Explicit Expression

The main methods for displaying data include point clouds, voxels, and meshes. Point
clouds consist of discrete data collected from various sensors or scanning devices. It is used
to represent the external surface of an object or the spatial structure of a scene. A point cloud
is an unordered collection of points in 3D space. Divide the 3D space into uniform cubic
units. Each cubic unit is called a voxel. Each voxel can contain information representing
spatial attributes, such as color, density, or depth. Voxels are commonly utilized in medical
image processing, computational fluid dynamics, and other fields. Voxel storage is used
to represent the structure and attributes within a space, but it has high space complexity.
The mesh is composed of connected vertices, edges, and faces. The mesh model can be
composed of triangles, quadrilaterals, or higher-order polygons, and can describe most
topological structures. It can accurately represent complex geometric shapes and details.
The surface described by each triangle is planar, making it suitable for numerous computer
graphics and engineering applications where triangle meshes are commonly used. This
ensures that the projection is always convex and easy to rasterize.

1.2. Implicit Expression

Implicit expression does not require explicit storage of geometric data; so, it offers
advantages in saving storage space and processing complex geometries. However, com-
puting the value of an implicit function can be time-consuming, and understanding and
manipulating the implicit expression can be challenging. Implicitly represented 3D models



Sensors 2024, 24, 2314 3 of 36

can be determined by continuous decision boundaries, enabling shape recovery at any
resolution. Commonly used implicit representations include implicit surfaces, Signed
Distance Function (SDF), Occupancy Field, Radiance Field, etc.

Implicit surfaces can be composed of equations of curves or surfaces, such as Bézier
curves, Bézier surfaces, NURBS, etc. Implicit surfaces can offer more precise and adaptable
representations, making them suitable for scenarios where accurately modeling and de-
signing simple geometric shapes is essential. For complex geometric structures, intricate
mathematical descriptions are necessary. In SDF, the value of each point represents the
signed distance from the point to the nearest object surface. This distance can be a positive
value (indicating that the point is outside the object), a zero value (indicating that the point
is on the object’s surface), or a negative value (indicating that the point is on the surface
of the object). The form of SDF can usually be expressed as D(p), where p represents the
point coordinates in 3D space. SDF implicitly represents the geometry of an object through
a function instead of directly providing the geometry of the object. The occupancy field
is a mapping from one vector to another vector or a number. The field in space can be
considered as the mapping from a “space midpoint” to “point attributes”; in other words,
each point corresponds to the attributes of that point. The radiation field maps a point
in space, a ray emitted by the point to the density value of the point, and the color value
corresponding to the direction of the ray [14].

In practical applications, explicit and implicit expressions are often used in combina-
tion [15]. The comprehensive utilization of the advantages of both explicit and implicit
expressions can enhance the modeling, analysis, and processing of 3D models. Explicit
expressions offer advantages in intuitiveness and accuracy, while implicit expressions have
unique features in flexibility and storage efficiency. Choosing the appropriate expression or
comprehensive application based on specific application requirements is crucial. It is an
impossible task to cover all possible 3D reconstruction techniques in this survey; so, we
have chosen representative techniques among them.

The remainder of this paper is structured as follows: Section 2 provides an overview
of static 3D reconstruction methods, details traditional static 3D reconstruction methods,
and includes computer graphics techniques related to 3D reconstruction. Section 3 summa-
rizes and discusses dynamic 3D reconstruction methods, including the currently popular
3DGS. Section 4 introduces 3D reconstruction based on machine learning in detail, fo-
cusing on the application of deep learning technology in 3D reconstruction. Section 5
introduces commonly used datasets for 3D reconstruction, including human bodies and
indoor and outdoor scenes. Section 6 discusses the application prospects and challenges
of 3D reconstruction technology. Finally, Section 7 summarizes the work presented in
this paper.

2. Traditional Static 3D Reconstruction Methods

Most creatures in nature, including humans, rely on vision to perceive and reconstruct
3D objects in the physical world. 3D reconstruction can be categorized into sparse recon-
struction and dense reconstruction based on the density of information acquired. Sparse
reconstruction focuses on obtaining the accurate 3D positions of a small number of key
points or feature points in the scene. It utilizes techniques such as feature point matching
and key point extraction to represent the geometric shape of the entire scene through these
discrete points. Dense reconstruction aims to obtain the accurate 3D coordinates of each
pixel in the scene. By estimating the depth of each pixel in the image, the system generates
a dense depth map, point cloud, or voxel, enabling high-density reconstruction of the entire
scene. Develop a model to create a comprehensive description of the entire scene.

In 1997, Varady et al. categorized data acquisition methods into two types: contact
and non-contact [16]. The contact method uses specific instruments to quickly and directly
measure the 3D information of the scene [17], which mainly includes trigger measurement
and continuous measurement. The contact method can only be used in situations where
the instrument can come into contact with the measurement scene, such as coordinate
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measuring machines (CMMs), etc. The non-contact method utilizes image analysis models
to acquire data from the measured object without physically touching it. The non-contact
3D reconstruction process involves capturing an image sequence using visual sensors (one
or more cameras). Subsequently, relevant information is extracted, and finally, reverse
engineering modeling is conducted using this information to reconstruct the 3D structural
model of the object [18]. In 2005, Isgro et al. [19] divided non-contact methods into two
categories: active and passive.

2.1. Active 3D Reconstruction Methods

Active methods of vision-based 3D reconstruction involve mechanical or radiometric
interference with the reconstructed object to acquire depth maps. These methods include
structured light, laser rangefinders, and other active sensing technologies. Among them,
3D reconstruction technologies based on active methods mainly include the laser scanning
method [20,21], industrial computed tomography (CT) scanning [22], structured light
method [23], time-of-flight (TOF) technology [24], shadow method [25], etc. These methods
primarily utilize optical instruments to scan the surface of an object and reconstruct the 3D
structure by analyzing the scanned data.

2.1.1. Laser Scanning

The system scans the target surface with a laser beam emitted by a laser scanner and
LiDAR [26]. It combines the controlled steering of the laser beam with a laser rangefinder,
measures the reflection or scattering of the laser, and calculates the distance on the object’s
surface. This method enables the rapid capture of the surface shape of objects, buildings,
and landscapes by conducting distance measurements in all directions [27,28]. A 3D model
created by laser scanning data collected with 3D laser scanning technology is represented
as a point cloud. 3D laser scanning can rapidly capture millions of point clouds, providing
an accurate representation of the characteristics of the measured target surface. It has the
characteristics of high precision and high density, providing a guarantee for 3D modeling
and visualization. However, it is not suitable for transparency and reflection. Surface
objects are less efficient. The process of 3D reconstruction using laser scanning method is
shown in Figure 1.
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Figure 1. 3D reconstruction process based on laser scanning. 
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aperture [33] to compress data by considering a subset of wavelengths for each pixel to 
achieve real-time 3D reconstruction. The laser line [34] reflected from the front surface of 
the target is used to enhance the accuracy of stereoscopic vision reconstruction of 
transparent or translucent objects. 
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providing a real data foundation for subsequent maintenance. The articulated arms of 
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In 1999, Yang et al. [29] proposed triangulation laser scanning, in which the laser
point, camera, and laser emitter form a triangle. They discussed in detail the factors that
affect the accuracy of laser scanning measurements based on the principle of large-scale
curved surface measurements [30]. Boehler et al. [31] analyzed and verified the impact
of using different types of 3D laser scanners on experimental results. Voisin et al. [32]
studied the impact of ambient light on 3D laser scanning. Tachella et al. proposed using
coded aperture [33] to compress data by considering a subset of wavelengths for each
pixel to achieve real-time 3D reconstruction. The laser line [34] reflected from the front
surface of the target is used to enhance the accuracy of stereoscopic vision reconstruction
of transparent or translucent objects.

The laser scanning method is primarily used in terrain surveying, architectural scan-
ning, cultural relic protection, manufacturing, virtual reality, and other fields. Among
them, the laser scanning method is a fundamental component of Building Information
Modeling [35]. It can create 3D records and archives of engineering construction, provid-
ing a real data foundation for subsequent maintenance. The articulated arms of modern
coordinate measuring machines and robots are equipped with non-contact laser scanners.
3D holographic projection technology [36] uses the principle of holographic imaging to
present optical information in a 3D form and generate realistic 3D images in space, allowing
observers to experience real 3D visuals.

2.1.2. CT Scanning

A CT scan is typically an X-ray computed tomography scan, which utilizes radiation to
produce a 3D internal and external representation of the scanned object [37,38]. Some of the
primary applications of CT scanning include defect detection, failure analysis, metrology,
assembly analysis, and reverse engineering applications [39].

In 1972, Godfrey Hounsfield invented the CT scanner for medical imaging, thereby
introducing CT scanning technology. Many advancements in CT scanning have allowed it
to be used for metrology in the industrial field [40], in addition to its primary application
for visual inspection in the medical field (medical CT scanning). Lorensen et al. proposed
the Marching Cubes algorithm [41] and outlined the fundamental process of 3D surface
reconstruction of medical images. Evans et al. [42] directly converted the 3D image data
from X-ray computed tomography into a grid to model complex geometries, such as
composite materials, or to accurately represent precision components at the microscopic
scale. Uhm et al. aggregated reconstructed 3D models from multiple CT phases by aligning
multiphase CT images [43] to generate a fused model with well-defined surfaces.

2.1.3. Structured Light

The structured light method involves projecting a specific pattern of light onto the
scene and using a camera to capture the shape and deformation of the light spot. This
process helps to infer the 3D structure of the object’s surface. The principle of structured
light triangulation is shown in Figure 2. In 2000, Kowarschik et al. [44] utilized a 3D
measurement system based on the grating structure method to address the occlusion
issue of structured light in measurements. In order to ensure the quality of the light strip
image, Zhang et al. [45] obtained multiple light strips by controlling the exposure time,
took pictures, and then fused the pictures to create a light stripe image with enhanced
quality. Ekstrand et al. [46] estimated the exposure time by analyzing the object’s surface,
resulting in an improved light stripe image. Yang et al. [47] achieved a better light stripe
image by adding controllable Liquid Crystal on Silicon (LCoS) for imaging with a wider
dynamic range of the camera. Jiang et al. [48] utilized a cubic polynomial curve to fit
the center point of the line structure light obtained through the weighted gray center
of gravity method. This approach yielded smooth pixel coordinates of the light bar’s
centerline, enhancing the accuracy of center extraction. The structured light method has
strong real-time performance in 3D reconstruction [9], but its effectiveness is limited in
environments with insufficient or excessive brightness. Santolaria et al. [49] integrated the
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line-structured light sensor and the articulated arm measurement system and provided a
method for system integration. The use of mechanical projectors [50] improves the real-time
performance of 3D reconstruction. Liu et al. utilized a rapid rotating mechanical projector
(RMP) [51], which can be obtained with a shorter camera exposure time through the error
diffusion binary encoding method and chrome plating technology. High-quality projected
fringes, while introducing a probability distribution function algorithm to correct errors,
ensuring the accuracy of the corresponding 3D shape measurement system. Zhang et al.
utilized a white plane calibration target matrix [52] to streamline the parallel-axis structured
light system and enhance the accuracy of the 3D reconstruction model.
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2.1.4. TOF

TOF technology continuously emits light pulses (typically invisible light) towards the
object under observation and then employs a sensor to detect the light reflected back from
the object. It determines the target distance by measuring the flight (round trip) time of
the light pulse. It is commonly used in cameras and lasers. The TOF method is divided
into Pulsed Modulation and Continuous Wave Modulation based on different modulation
techniques. It is commonly used in outdoor 3D scanning, virtual reality, autonomous
driving, and human posture detection.

Stipes et al. [53] utilized the Iterative Closest Point (ICP) algorithm to align the data
from two TOF frames and executed the iterative process of ICP through the acquired 3D
point cloud. Chua et al. [54] calculated the noise-weighted average range of the signal
detection threshold and system noise to mitigate the impact of noise, demonstrating
improved accuracy in distance reconstruction.

The 3D reconstruction method based on TOF has excellent real-time performance
and is well-suited for complex environments. The current consumer-grade TOF depth
cameras include Microsoft’s Kinect v2 in Redmond, WA, USA, MESA’s SR4000 in Zurich,
Switzerland, Google Project Tango’s PMD Tech in San Jose, CA, USA, etc. These products
have already been used in somatosensory recognition and gesture recognition. Environ-
ment modeling and other aspects have found numerous applications, with one of the most
typical examples being Kinect v2.
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2.1.5. Photometric Stereo

It utilizes variations in illumination angles from multiple light sources to deduce the
surface’s normal and depth by analyzing the changes in brightness on the object. It is suit-
able for objects with complex topological structures but is sensitive to lighting conditions.
Woodham originally proposed Photometric Stereo in 1980 [55], and the special case where
the data are a single image is called “shadow shape”, which was compared and analyzed
by BKP Horn in 1989 [56]. For purely textureless objects with unknown surface reflectivity,
especially non-Lambertian objects [57], use low-rank/RANSAC outlier rejection [58,59], fac-
torization [60], and other methods. Karami et al. [61] utilized photogrammetry to produce
geometric information and then combined it with the high spatial resolution of photomet-
ric stereo to obtain surface depth information. Ju et al. applied dual-position threshold
normalization preprocessing to process the spatially varying reflectivity of non-Lambertian
surfaces and adopted a parallel multi-scale feature extractor to preserve high-resolution
representation and extract depth features [62].

Shadow photogrammetry utilizes light sources and cameras to deduce the shape and
contour of an object by analyzing the shadow cast on its surface [63]. It involves capturing
a series of images from a consistent viewpoint of a light source with a known movement
pattern. Utilize the motion of cast shadows to reconstruct scene structure [64], especially
effective for topologically simple objects [65,66].

2.1.6. Multi-Sensor Fusion

Multi-source heterogeneous information fusion (MSHIF) comprehensively utilizes
information obtained from different sensors, such as radar [67], lidar, camera, ultrasound,
infrared thermal imager [68], GPS [69], MRI [70], IMU, and V2X, to overcome the limitations
of individual sensors and create a more comprehensive perception of the environment or
target, thereby enhancing the accuracy of 3D reconstruction [71]. Yu proposed a multi-
modal 3D object reconstruction method based on variational autoencoders [72]. This
method automatically determines the modality during training, which includes specific
categories of information. It utilizes the transmission elements of the prior distribution to
determine the pattern of latent variables in the latent space, enabling robust implementation
of latent vector retrieval and 3D shape reconstruction.

2.2. Passive 3D Reconstruction Methods

The passive 3D reconstruction method based on vision does not interfere with the
reconstructed object. It only uses optical sensors to measure the radiance reflected or
emitted by the object’s surface and infers its 3D structure through the image [73].

2.2.1. Texture Mapping

For objects with obvious texture features, utilizing the texture information on the
object surface [74] to map the two-dimensional image to the 3D model can significantly
enhance the realism of the model’s appearance. However, this process necessitates higher
texture quality [75]. Lee et al. [76] directly associated the vertices of the implicit geometry
with a voxel grid having texture coordinates and applied spatially varying perspective
mapping to the input image, enabling real-time texture distortion and geometry update.
Xu et al. [77] utilized background noise smoothing technology within a self-supervised
framework to accomplish high-fidelity texture generation in high-resolution scenarios.

2.2.2. Shape from Focus

The focusing method utilizes the camera’s focal length adjustment to calculate depth
information by observing changes in the focal depth of the object. This is determined by
the degree of image blur of the object at various focal lengths. Use a camera to capture
images of the same scene at various focal lengths. In the image, the farther the object
is from the focal plane, the blurrier its image will become. Depth estimation is another
important aspect to consider. By utilizing the relationship between image blur level and
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depth, it is possible to estimate the object. The depth value of each part, and finally, the
3D reconstruction, convert the depth information into 3D coordinates, thereby obtaining
the 3D reconstruction model of the object [78–82]. Yan et al. [83] used the multi-directional
modified Laplacian operator to map the depth maps corresponding to different focal points
and employed an iterative edge repair method to refine the reconstruction results. The
focus method has better effects on objects with rich textures and does not require the use
of multiple cameras or perspectives. However, it is more sensitive to lighting conditions.
The texture method is often used for close-range shooting and is useful when dealing with
low-texture or transparent objects.

2.2.3. Binocular Stereo Vision

The stereo vision method utilizes binocular cameras to capture different viewing
angles of the scene or object to be measured. It calculates the object’s depth by analyzing
the parallax of matching feature points in the images. The process is shown in Figure 3.
The parallax of the binocular camera corresponds one-to-one to depth. As the depth value
increases, the parallax value decreases. In other words, for the same parallax range, the
corresponding depth range is larger. Binocular vision is low-cost and suitable for short-
range measurements, but it has high texture requirements. It is very important in fields
such as robotics as it can extract information about the relative positions of 3D objects near
autonomous systems.
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In 1960, Bela Julesz invented the random dot stereogram [84]. Consumer-grade RGB-
D cameras are being used more frequently because of their affordability and portability.
Izadi et al. [9] first proposed the Truncated Signed Distance Function (TSDF) model repre-
sentation in KinectFusion, which simplifies model updating and enables real-time dense
reconstruction using consumer-level binocular cameras. TSDF is a function that can de-
scribe the distance of a point from the surface of an object. A threshold for the distance of
the 3D reconstruction is set, based on the SDF, and normalized to limit or “truncate” the
distance beyond the threshold. By using distance fields, the representation of 3D shapes
can be simplified, reducing the amount of data that needs to be stored.

In the binocular stereo vision system, epipolar geometry [85] describes a plane cluster
with the binocular image baseline as the rotation axis. The object position P on a certain
epipolar plane in this plane cluster is related to the optical centers of the left and right
cameras of the binoculars. The geometric relationship that exists when c0 and c1 are
coplanar is shown in Figure 4. In the binocular stereo vision system, the connection
between the optical centers of the left and right cameras is the baseline B. B serves as
the rotation axis of the epipolar geometric plane cluster. In the binocular stereo vision
system, the connection between the optical centers c0 and c1 of the left and right cameras
is the baseline B. The intersection lines of the epipolar plane and the image planes of the
left and right binocular cameras are the left epipolar line l0 and the right epipolar line l1,
respectively. The intersection points of the left and right epipolar lines with the baseline are
the left pole points, respectively. e0 is the projection of the c0 onto the left pole e1, and e1 is
the projection of c1 onto the right pole. The right epipolar line l1 and the imaging point x1
of the measured object on the right camera image plane are situated on the epipolar plane
and the right camera image plane. Therefore, the image point x1 lies on the epipolar line l1.
Thus, for the observed object P on the left camera, the matching point with the same name
corresponding to the projection point x0 on the right image is constrained to l1, effectively
reducing the search range for the corresponding point.
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Whelan et al. integrated loop detection and loop optimization, utilized a deformation
graph for non-rigid body transformation in real-time 3D rigid body reconstruction, and
updated the coordinates of points based on the results of loop closure to align the two
reconstructions [86], employing the surface element expression method [87]. Choi et al.
combined numerous “model-to-model” local closed loops and larger-scale global closed
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loops to guarantee the global consistency of the reconstruction results. They divided the
input RGB-D video stream into several scene segments as a group of frames and combined
the geometric registration of the scene segments with global optimization [88]. Xin et al. [89]
transferred the texture from the polarized surface to the fusion depth, utilized the depth
map from the binocular camera to enhance the accuracy of the fusion depth, and applied
the multiplier alternating direction method to optimize the reconstruction accuracy. In [90],
the authors transferred the texture from the polarization surface to the fusion depth, used
the depth map of the binocular camera to improve the accuracy of the fusion depth, and
used the multiplier alternating direction method to optimize the reconstruction accuracy.
Wang et al. [91] utilized calibration rods for calibration calculations based on epipolar
correction and then used a weighted least squares filter to denoise and smooth the depth
map, enabling the stable and accurate reconstruction of 3D point clouds in large scenes.
Binocular cameras currently available on the market include ZED from Stereolabs in Paris,
France, Kinect by Microsoft in Redmond, WA, USA, CamCube 3.0 by PMD in Siegen,
Germany, Swiss Ranger 4000 by Mesa in Zurich, Switzerland, Bumblebee2Leap Motion
by Point Gray in Vancouver, BC, Canada, Stereo IR 170 by Ultraleap in Bristol, UK, OAK
camera by Luxonis Company in Mansfield, TX, USA, RealSense (D455) by Intel Corporation
in Santa Clara, CA, USA, DUO by DUO3D Company in Henderson, NV, USA, etc.

2.2.4. Structure from Motion (SFM)

In 1979, Ullman and Shimon proposed inferring the 3D structure and motion of objects
through the two-dimensional transformation of the projected image [92]. In 1981, Longuet-
Higgins and Tomasi proposed a method for recovering 3D structures from multiple images.
This method is based on the relationship between camera motion and scene structure,
utilizing the movement of the camera at different times or locations. Motion, which involves
restoring the 3D structure of a scene through image sequences, is a crucial milestone in
vision-based 3D reconstruction. SFM is mainly divided into four groups: incremental
SFM [93], global SFM [94], hybrid SFM [95], and hierarchical SFM [96].

Judging from the input and output of the data stream, the SFM method takes a set
of partially overlapping photos of the same object captured from various perspectives as
input. The output includes the 3D reconstruction of the object and the internal and external
parameters of the camera acquired during the reconstruction process. There are two main
types of SFM: the factorization method and the multi-view geometry method.

(1) Factorization methods are mathematical models based on factorization, which obtain
3D structural information by decomposing image matrices [97]. Extract feature points
from images captured at various viewing angles and then match them. These feature
points can be corner points, edge points, and other points that have corresponding
relationships in different viewing angles. The process involves converting the matched
feature points into an observation matrix, which contains multiple feature point
coordinates under each viewing angle. The next step is to factorize the observation
matrix to decompose the factor matrix containing the 3D structure and camera motion
information. Subsequently, the 3D structure information of the scene is extracted from
the factor matrix, which includes the spatial coordinates of each feature point and
the camera motion information, such as rotation and translation parameters, used to
optimize the reconstruction results. Nonlinear optimization methods are typically
utilized to enhance the accuracy of reconstruction. The advantage of the factorization
method is that it can estimate the 3D structure and camera motion simultaneously
without prior knowledge of the camera’s internal parameters. However, it is sensitive
to noise and outliers, necessitating the use of suitable optimization methods to enhance
robustness. Paul et al. [98] assumed that points are located on the object surface as a
geometric prior to construct 3D point reconstruction and used affine and perspective
cameras to estimate these quadratic surfaces and recover the 3D space in a closed form.
Cin et al. [99] estimated the fundamental matrix by conducting motion segmentation
on unstructured images to encode rigid motion in the scene. The depth map is used
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to resolve scale ambiguity, and the multi-body plane scanning algorithm is employed
to integrate the multi-view depth and camera pose estimation network for generating
the depth map.

(2) Multi-view 3D reconstruction is a method based on observing the same scene from
multiple perspectives or cameras and reconstructing the 3D structure of the scene
using image or video information [100], as illustrated in Figure 5. The MVS method
has high requirements for image quality and viewing angle. It needs to address
challenges such as inadequate viewing angle overlap and shadows. At the same time,
the accuracy of the image matching algorithm also greatly impacts the reconstruction
effect. The primary objective of image registration is to address variations in viewing
angles and postures in scale and time, ensuring consistent geometric information.
This, in turn, enhances the reliability and accuracy of the subsequent 3D reconstruction
process. This method has high requirements for camera calibration.
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Moulon et al. proposed a global fusion relative motion method [101] to achieve
robust, accurate, and scalable 3D structure reconstruction. They used a camera pose
estimation method based on SIFT features to calculate the relative motion between multiple
perspectives. Motion relationships: Through a global optimization algorithm, this relative
motion information is fused to achieve more accurate, robust, and scalable 3D structure
reconstruction. Plan3d [102] efficiently handles occlusion within a restricted range by
maximizing information from sparsely sampled viewpoints and hierarchically representing
volumes. Zhu et al. [103] performed feature matching between synthetic images and ground
images by employing descriptor search and geometrically constrained outlier removal,
used synthetic depth and normal images to formulate oriented 3D patches, and combined
the corresponding patches through patch-based matching. Relationships propagate to the
bird’s-eye view.

The multi-view stereo vision algorithm first establishes correspondences between
multiple views through feature point matching. It then utilizes basic matrix estimation
techniques to calculate the relative posture between each view, followed by triangulation
technology to merge the two-dimensional images from multiple views. The image coordi-
nates are converted into a 3D point cloud. Finally, a dense depth map is obtained through a
dense matching algorithm to ensure consistency in pixel brightness, adjacent pixel depth,
and view visibility [104–108].

2.3. Introduction to 3D Reconstruction Technology
2.3.1. Camera Calibration

Camera parameters are represented by a projection matrix, known as the camera
matrix. The external parameters define the camera pose (position and orientation), while
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the internal parameters specify the camera image format (focal length, pixel size, and image
origin). This process is often referred to as geometric camera calibration or simply camera
calibration. Classic camera calibration requires specific features in the scene for locating
and measuring, such as checkerboards or landmarks, while automatic camera calibration
does not require them. They may leverage other means, such as automatically calibrating
the camera by leveraging sensor data within the camera or by analyzing the geometry and
structure of the image. There are many different approaches to calculate the intrinsic and
extrinsic parameters for a specific camera setup. The most common methods include the
Direct Linear Transformation (DLT) method, Zhang’s method [109], Tsai’s method [110],
Calibration pole [111], and Selby’s method (specifically for X-ray cameras) [112]. Compared
to traditional camera calibration methods, automatic calibration does not require any
special calibration objects in the scene. In the visual effects industry, automatic camera
calibration is often a component of the “match move” process. This process deals with
synthetic camera trajectories and intrinsic projection models to re-project synthetic content
into video [113].

2.3.2. Image Local Feature Point Detection

Feature detection involves methods for computing abstractions of image information
and making local decisions at each image point to determine whether a specific type of
image feature is present at that point [114–119]. Features are subsets of the image domain,
often considered in the form of points, continuous curves, or connected areas.

The method of blob detection (BLOB) mainly includes the methods of using the Lapla-
cian of Gaussian operator [120], and the method employing the pixel Hessian matrix [121]
(second-order differential) and its determinant value [122].

In 2004, Lowe proposed an efficient method, known as Scale-Invariant Feature Trans-
form (SIFT) [123], which utilizes the convolution of the original image and a Gaussian
kernel to establish the scale space. It extracts scale-invariant features on the Gaussian
difference space pyramid. This algorithm exhibits affine invariance, perspective invari-
ance, rotation invariance, and illumination invariance, making it the most widely used for
enhancing image features.

The Speeded-up Robust Features (SURF) method is an enhancement of SIFT and
enables quicker feature extraction through the utilization of integral images and rapid
Hessian matrix detection. SURF also exhibits scale invariance and rotation invariance [124].

Corner point detection. Corner detection includes the Harris algorithm [125,126] and
the FAST algorithm [127]. The Harris corner detector identifies corners by calculating the
grayscale change in the local area of each pixel in the image. It utilizes the first-order and
second-order derivative information of the grayscale image to identify corner points by
computing a specific matrix. FAST is a high-speed corner detector that defines a circular
area around a pixel and detects whether there are enough pixels that are brighter or darker
than the central pixel to determine if it is a corner point.

Binary string feature descriptor. The BRIEF algorithm selects multiple pixel point
pairs in the vicinity of the feature point, compares the gray values of these point pairs, and
aggregates the comparison results into a binary string to represent the feature point. Finally,
the Hamming distance is used to calculate whether the feature descriptors match [128].
The BRISK algorithm does not use FAST feature point detection in the feature point de-
tection part but uses the more stable AGAST algorithm. In the construction of the feature
descriptor, the BRISK algorithm uses simple pixel gray value comparison to obtain a cas-
cade binary bit string to describe each feature point. BRISK adopts the neighborhood
sampling mode, taking the feature point as the center of the circle, constructing multiple
discretized Bresenham concentric circles with different radii, and then obtaining the same
spacing on each concentric circle N sampling point [129]. The ORB algorithm uses FAST to
detect feature points and then uses BRIEF to describe the feature points. It introduces a
directional calculation method based on BRIEF and utilizes a greedy search algorithm to
select point pairs, focusing on highly differentiated ones. Point pairs are used to represent



Sensors 2024, 24, 2314 13 of 36

binary strings [130]. Fast Retina Keypoint (FREAK) is a descriptor method that emphasizes
speed and computational efficiency [131]. It generates efficient binary string descriptors by
extracting features from the Retina model around key points and utilizing a rapid feature
generation method.

2.3.3. Image Segmentation

Image segmentation plays an important role in 3D reconstruction. It can help segment
objects or scenes in the image into different areas, providing more accurate and meaningful
information for subsequent 3D reconstruction. Image segmentation plays an important
role in 3D reconstruction. Applications include object segmentation [132,133], background
removal [134,135], contour extraction [136–139], semantic segmentation [140–142], dynamic
scene segmentation [143–147], etc. Through effective image segmentation, the accuracy
and stability of 3D reconstruction can be improved, providing a 3D model with more
semantic information.

Edge-based methods, such as Canny edge detection and the Sobel operator, are uti-
lized to detect object edges in images [148]. The region growing method is employed for
segmenting images, point clouds, or voxel data. It does not require pre-specifying the
number of segmentations and can handle areas of various shapes and sizes. Segments
are formed by merging adjacent pixels with similar attributes. The optical flow method
utilizes optical flow information between adjacent frames in the image sequence to achieve
segmentation of dynamic objects [149,150]. The K-means algorithm is an iterative tech-
nique that divides the dataset into K clusters and assigns similar pixels to the same cluster
to achieve image segmentation [151]. Deep Convolutional Neural Networks (DCNNs)
are primarily utilized for pixel-level segmentation tasks in image segmentation [152,153].
Semantic segmentation networks are utilized to semantically annotate pixels in images,
providing segmentation results with richer semantic information, including DeepLab [154]
and PSPNet [155], among others. Instance segmentation networks like Mask R-CNN [156]
are used to segment distinct instances in an image, particularly effective for scenes with
multiple targets. Attention mechanisms have been introduced in image segmentation, such
as Non-local Neural Networks (NLNet) [157], to enhance focus on crucial areas within the
image. On April 5, 2023, Meta launched the Segment Anything semantic segmentation
model [158]. The model’s generalization ability is considered a groundbreaking advance-
ment in the field of computer vision (CV). It essentially addresses the generalization issue
in deep learning for computer vision. Its pre-training model is suitable for various subjects.
Scenes, objects, etc., that have not been trained have good segmentation capabilities.

Image segmentation algorithms can be selected based on specific scenarios and re-
quirements. Traditional methods still perform well in some scenarios, while deep learning
methods can typically deliver more accurate segmentation results when trained on large-
scale datasets. Choose the appropriate one. The algorithm typically depends on the specific
requirements of the application, computing resources, and data availability.

2.3.4. Rendering

In 3D reconstruction, rendering is the process of projecting a 3D model onto a 2D image
or display screen. It also serves the function of visualizing implicit surfaces. The rendering
method plays a key role in 3D reconstruction and affects the final result of the reconstruction.
The following are some common rendering methods used in 3D reconstruction:

(1) Rasterization rendering is a pixel-based rendering method that fragments the triangles
of the 3D model into two-dimensional pixels and then colors each pixel, such as
scanline rendering [159]. It has good real-time performance, but it struggles with
handling transparency and reflection. It may not be as accurate as other methods
when dealing with complex effects.

(2) Ray tracing rendering is a method of simulating the propagation of light in a scene.
It calculates the lighting and shadows in the scene by tracing the path of the light
and considering the interaction between the light and the object. It takes into account
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the reflection, refraction, shadows, etc., of the light [160]. Ray tracing produces high-
quality images but is computationally expensive. Monte Carlo rendering estimates the
rendering equation through random sampling [161] and uses Monte Carlo integration
to simulate real lighting effects [162]. In order to improve rendering efficiency, Monte
Carlo rendering uses Importance Sampling to select the direction of the light path.

(3) The radiometric algorithm is used to simulate the global illumination effect in the
scene [163]. It considers the mutual radiation between objects and achieves realistic
lighting effects by iteratively calculating the radiometric value of the surface.

(4) Shadow rendering is a technology that generates shadows in real time. It renders
the scene from the perspective of the light source, stores the depth information in
the shadow map, and then uses the shadow map in regular rendering to determine
whether the object is in shadow, simulating the interaction between light and ob-
jects. The occlusion relationship between them is used to produce realistic shadow
effects [164]. Shadow rendering is divided into hard shadows and soft shadows. In
the former, there are obvious shadow boundaries between objects, while in the latter,
the shadow boundaries are gradually blurred, producing a more natural effect.

(5) Ambient occlusion is a local lighting effect that considers the occlusion relationship
between objects in the scene. It enhances shadows in deep recesses on the surface of
objects, thereby enhancing the realism of the image [165].

(6) The non-photorealistic rendering (NPR) method aims to imitate painting styles and
produce non-realistic images, such as cartoon style and brush effects [166].

(7) Volume rendering is a rendering technology used for visualizing volume data. It
represents volume data as 3D textures and utilizes methods such as ray tracing to vi-
sualize the structure and features within the volume. The direct volume renderer [167]
maps each sample value to opacity and color. The volume ray casting technique can
be derived directly from the rendering equation. Volume ray casting is classified as an
image-based volume rendering technique because the calculations are based on the
output image rather than input volumetric data as in object-based techniques. The
shear distortion method of volume rendering was developed by Cameron and Undrill
and popularized by Philippe Lacroute and Marc Levoy [168]. Texture-based volume
rendering utilizes texture mapping to apply images or textures to geometric objects.

(8) The splash operation blurs or diffuses the point cloud data into the surrounding area,
transferring the color and intensity information of the points during the splashing
process. This can be achieved by transferring the attributes of the point (such as
color, normal vector, etc.) to the surrounding area using a specific weighting method.
In adjacent splash areas, there may be overlapping parts where color and intensity
superposition operations are performed to obtain the final rendering result [169].

The technology utilizes prior knowledge or models to improve the 3D reconstruction
effect. These prior pieces of information can include the shape of the object, surface
material, motion model, etc. [170]. By incorporating this information, the system can
become more robust in handling challenges like noise and occlusion, enhancing accuracy
and resilience to specific scenes or objects. Motion capture focuses on capturing and
analyzing the movement of objects to provide precise data for 3D reconstruction and
enhance the accuracy of the process.

3. Dynamic 3D Reconstruction Methods

Dynamic 3D reconstruction aims to capture and present the 3D structure of objects and
environments, as well as their changes in dynamic scenes. It involves effectively handling
dynamic factors such as moving objects, lighting changes, and scene evolution to create
accurate and up-to-date images that reflect the current state of the scene. The essence of
dynamic 3D reconstruction lies in capturing and modeling the 3D structure of an object or
scene as it experiences dynamic changes, such as object movement, variations in lighting
conditions, or environmental changes. Dynamic 3D reconstruction methods are typically
based on techniques like feature point matching and motion estimation. Feature point
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matching is used to track key feature points in the scene, while motion estimation is used
to estimate camera motion between adjacent frames.

3.1. Introduction to Multi-View Dynamic 3D Reconstruction

Multi-view dynamic 3D reconstruction involves utilizing multiple cameras or video
cameras to observe the same scene from various perspectives and integrating temporal
information to reconstruct the 3D structure of the dynamic scene. Observe the same
scene from various angles, ensuring that all cameras can capture images simultaneously.
Make sure that images taken by different cameras have consistent timestamps and that
the matching and reconstruction results between adjacent frames are coherent. For each
frame of an image, computer vision technology is used to extract feature points or feature
descriptors in the image. By matching these feature points, the correspondence between
different images is established. This process combines the pose information of the camera
and the structural information of the scene. Simultaneously, scene modeling and camera
positioning are carried out [171]. Dynamic scenes are processed through motion estimation,
motion removal, and other technologies. The obtained 3D point cloud or model is then
optimized and post-processed to enhance accuracy, remove noise, etc. [172,173].

Dynamic 3D reconstruction is primarily used for estimating the posture of the human
body. By analyzing the captured data, the posture information of the human body at
each time point is determined, including joint angles, body proportions, etc. Compared to
general flexible body movements, human body movements have stronger priors. The shape
of the human body conforms to a fixed geometric distribution. The SMPL/X model [174] or
expanded versions of hands, faces, and other body parts are commonly utilized in academic
circles [175] to describe the geometry of the human body using these parametric models.
To achieve dense 3D reconstruction of multi-camera dynamic scenes, Matsuyama et al.
proposed a parallel pipeline processing method [176] for reconstructing dynamic 3D object
shapes from multi-view video images. Through this method, the time series of the full 3D
voxel representation of the object’s behavior can be obtained in real-time, and the 3D object
can be generated.

3.2. Dynamic 3D Reconstruction Based on RGB-D Camera

In dynamic 3D reconstruction based on RGB-D cameras, depth information and color
image data are input. Advanced computer vision algorithms and technologies are utilized
to process data gathered by sensors to fulfill requirements such as real-time performance,
reconstruction accuracy, and perception of dynamic objects. Dynamic 3D reconstruction
algorithms based on binocular cameras generally involve processes such as identifying and
tracking objects, estimating camera poses, calculating depth information, and creating 3D
models in real time.

In 2016, Newcombe et al. proposed a real-time dynamic 3D reconstruction and track-
ing method for non-rigid scenes. DynamicFusion [177], a reconstruction algorithm that is
not reliant on any template prior information, can be considered the pioneer of real-time
dynamic reconstruction. The DynamicFusion system reconstructs the geometry of the
scene while also estimating the 6D deformation domain of the dense volume represen-
tation, warping the estimated geometry into real-time frames. As more measurements
are combined, a progressively denoised, detail-preserving, and more complete image is
obtained. This method is suitable for a wide range of moving objects and scenes. However,
DynamicFusion does not utilize any prior information, making the algorithm less robust to
significant movements between frames and motions in occluded areas. It is more adept
at handling closed topology. Surface reconstruction, especially the reconstruction of topo-
logical changes, is poor. Innmann proposed the Volume Deform algorithm [178], which
combines global sparse color features (such as SIFT operators) and dense depth maps to
enhance the robustness of finding accurate feature matching points, thereby significantly re-
ducing the cumulative error of the reconstruction model. The shortcoming of this algorithm
is the drift phenomenon. Although matching the global SIFT feature operator enhances
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the system’s robustness and reduces alignment errors, the drift phenomenon cannot be
completely eliminated. Moreover, due to the regularization term setting, reconstructions of
highly curved objects may appear smoother and less curved during motion.

Double Fusion [179], proposed by Yu et al., fully integrates the digitally driven tem-
plate (SMPL model) with real-time reconstructed dense geometry, non-rigid motion, and
inner human body shape. It introduces a double-layer surface representation: the in-
ner layer, which is the parameterized model surface (inner body), and the outer surface
obtained through deep fusion. Joint motion tracking based on a double-layer surface
representation is proposed to ensure the robustness of the entire system, even during
rapid motion. The shortcoming of the system is that when the user wears relatively thick
clothing, the estimated human body also appears larger. Additionally, it cannot accurately
distinguish between the outer surface and the interactions between people and objects.

Fusion4D [180] was proposed by Dou et al. The method is based on a multi-view
scheme and does not rely on any prior information, allowing for the reconstruction of any
scene or object in theory. As shown in the video, in addition to dynamically reconstructing
the human body, it can also dynamically reconstruct dogs. An important contribution of
this algorithm is the introduction of key volume, making it highly robust to large inter-
frame motions and changes in mesh topology. Additionally, Fusion4D also incorporates
voxel collision detection to ensure the correct TSDF model. The disadvantage of this system
is that when the frame rate of the RGBD input stream is too low or the inter-frame motion is
too large, the corresponding matching point estimation between frames will be inaccurate,
leading to the failure of the non-rigid alignment process to converge.

Lin et al. proposed OcclusionFusion [181], which infers the motion of the occlusion
area through Long Short-Term Memory (LSTM) and Graph Neural Network to calculate
the confidence of the motion. This is achieved by modeling the network output using a
probabilistic model confidence, thereby reducing implausible motion, enhances robust
tracking, and ultimately improves reconstruction results. As a result, this method leads to
improved results. Pan et al. [182] used an optimized epipolar geometric model and Mask
R-CNN to jointly segment the image. They employed kernel principal component analysis
to reduce point cloud noise and then applied an octree-based dynamic filtering method to
eliminate outliers, ultimately achieving high-precision 3D reconstruction.

3.3. 3D Gaussian Splatting (3DGS)

Kerbl et al. proposed 3DGS, which utilizes 3D Gaussian functions to represent the
scene. This method retains the characteristics of a continuous volume radiation field and
introduces 3D Gaussian interleaving optimization, density control, and a fast visibility-
aware rendering algorithm that supports anisotropic splattering. It ensures a real-time
display rate while enhancing visual quality [183]. 3DGS maps point cloud data to the image
plane and utilizes Gaussian functions to produce realistic images. Colors at different angles
are represented using spherical harmonics to simulate the effect of viewing the scene from
a different perspective. Spherical harmonics can attenuate high frequencies to a certain
extent. Information is essentially a form of lossy compression that can convert discrete
information into continuous information for computation [184]. The process of 3DGS is
shown in Figure 6.

Antoine et al. [185] utilized Poisson reconstruction to extract meshes from Gaussian
distributions, flatten the Gaussian sphere, bind Gaussian functions to the mesh surface, and
jointly optimize these Gaussian functions and meshes through Gaussian splash rendering
Physically based Newtonian dynamics can be seamlessly integrated into 3D Gaussian to
achieve high-quality novel motion synthesis [185–188]. Chung et al. introduced a deep
regularization method to avoid overfitting in few-shot image synthesis [189]. Geomet-
ric constraints are introduced by utilizing sparse and dense depth maps obtained from
COLMAP and monocular depth estimation models, respectively. In order to prevent
overfitting, this method incorporates unsupervised constraints on geometric smoothness
and utilizes Canny edge detector to avoid regularization of edge regions with significant
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depth changes. The 4D Gaussian distribution incorporates a temporal component to model
complex motion while maintaining efficiency [190,191]. Lin et al. proposed a progressive
partitioning strategy called VastGaussian [192] based on 3D Gaussian distribution. This
method divides a large scene into multiple units, optimizes these units in parallel, and then
merges them into a complete scene. At the same time, decoupled appearance modeling
is introduced into the optimization process to minimize appearance changes in rendered
images, enabling high-quality reconstruction and real-time rendering of large scenes. Jiang
et al. [193] combined the adaptive canonical point upsampling strategy and adaptive defor-
mation to propose 3D Point Splatting Hand Reconstruction (3D-PSHR) to achieve real-time
dynamic reconstruction of the pose-free hand. 3D-PSHR separates the appearance color
into texture modeling with intrinsic albedo and pose-aware shading based on normal
deformation. Chen et al. [194] introduced a unified representation model called Periodic
Vibrating Gaussian (PVG). PVG extends the 3D Gaussian splatter paradigm to solve the
problem of modeling large-scale scenes with complex geometries and unconstrained dy-
namics without relying on manually labeled object bounding boxes or expensive optical
flow estimation. Gao et al. [195] combined grid representation with 3D Gaussian. By
adopting Gaussian representation, not only the vertex positions but also the deformation
gradients were used to guide the 3DGS. By utilizing the grid deformation method, this
approach ensures real-time rendering and effectively maintains a high-quality appearance
even when subjected to significant deformations.
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Currently a very hot technology, 3DGS has revolutionary significance, redefining the
boundaries of scene representation and rendering. It is expected to have a significant
impact on the future progress of 3D reconstruction and representation.

3.4. Simultaneous Localization and Mapping (SLAM)

SLAM is primarily utilized to construct or update maps of unfamiliar environments
while simultaneously tracking the location of targets within them. SLAM always utilizes
multiple types of sensors, and various sensor types will result in different SLAM algo-
rithms [196]. The SLAM algorithm utilizes visual and inertial sensors for data fusion
to enhance the accuracy of attitude and motion estimation in dynamic scenes. Inertial
information provides an important supplement to understanding the movement of objects
that cannot be observed over a short period [197–199]. SLAM is primarily utilized to de-
scribe the mapping process employed when navigating in an unfamiliar environment. The
SLAM system can run in real time (online SLAM) or process the collected data afterward
(offline SLAM). In a dynamic environment, the system needs to process revisiting previous
positions. Loop closure detection is a critical step in identifying and correcting errors that
may accumulate during the mapping process. It involves using each new estimate to create
an updated map during an iterative process [200–202]. Yan et al. [203] proposed GS-SLAM
to integrate a 3D Gaussian representation into the SLAM system. GS-SLAM utilizes a
real-time differentiable splatting rendering pipeline to greatly improve map optimization
and RGB-D re-rendering speeds. GS-SLAM introduces an extended 3D Gaussian adaptive
strategy designed to efficiently reconstruct newly observed scene geometries. Matsuki
et al. [204] introduced a real-time SLAM system that utilized 3D-GS for incremental 3D
reconstruction and introduced geometric verification and regularization to address am-
biguities in incremental 3D dense reconstruction. This method is applicable to mobile
single-lens cameras and RGB-D cameras.

Compared to static 3D scene reconstruction, dynamic 3D reconstruction involves
changes in scene form such as moving objects, changing lighting, and evolving structures.
These changes necessitate the use of various technologies in the field, including compre-
hensive motion estimation, recognition, and analysis. In the context of the Metaverse and
General Artificial Intelligence (AGI), the increasing demand for real-time, high-precision,
and intricate 3D scene reconstruction in complex environments is revealing a gap between
current dynamic 3D reconstruction technology and application requirements.

4. 3D Reconstruction Methods Based on Machine Learning
4.1. Statistical Learning Methods

Statistical learning: Statistical learning methods can be utilized in 3D reconstruction
to model and learn the mapping relationship from input data (such as images and point
clouds) to 3D structures, learn scene and object shapes from large-scale data, and predict
the 3D shape of objects through training models. This process enables the restoration and
comprehension of 3D scenes [205–207].

4.2. 3D Semantic Occupancy Prediction Methods

3D semantic occupancy prediction methods utilize machine learning technology for
semantic segmentation and scene understanding. This enables the improved identification
and reconstruction of the geometric structure and semantic information of various objects
in the scene.

Huang et al. utilized a TPV encoder (TPVFormer) [208] to efficiently extract TPV
features and employed an attention mechanism to combine the image features related to
each query in every TPV plane. A model trained solely with sparse point supervision
can efficiently predict the semantic occupancy of all voxels. Ming et al. proposed a novel
method based on a projection matrix for constructing local 3D feature volumes and global
Bird’s Eye View (BEV) features. A global–local fusion module has been proposed to
combine global information with local information to obtain the final 3D volume [209]. Li
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et al. [210] represented objects as a collection of deformable parts, enhancing the semantic
consistency between the reconstructed mesh and the original image, and achieved single-
view reconstruction through unsupervised learning.

4.3. Deep Learning Methods

Deep learning methods outperform most existing machine learning methods in sev-
eral areas, with computer vision being a prominent one. With the advancement of deep
learning technology, dynamic 3D scene reconstruction methods based on neural networks
have started to capture the interest of researchers. Neural networks can discover feature
information that humans may not be able to interpret, and it can extract high-dimensional
features [211–213].

4.3.1. Depth Map

Dou et al. proposed a technology based on deep neural networks (DNNs) to recon-
struct a 3D face from a single 2D image in an end-to-end manner [214]. In 2018, Yao et al.
proposed an end-to-end deep learning architecture called MVSNet for inferring depth
maps from multi-view images. The method involves extracting depth visual image features
initially and then constructing a 3D cost volume based on the reference camera frustum
through differentiable monotonic distortions. Subsequently, 3D convolution is applied
to regularize and regress the initial depth map. Finally, the reference image is utilized to
optimize and generate the final output [215]. After MVSNet was proposed, it achieved very
good results in estimating depth maps [216]. Sun et al. utilized a multi-scale approach to
predict TSDF values, aiming to achieve higher-quality reconstruction accuracy. In addition,
to address the issue of traditional 3D convolution consuming significant video memory, the
3D sparse convolution method is introduced to enhance operator efficiency. This method
utilizes lower memory resources in exchange for higher-quality scene reconstruction and
incorporates the 3D GRU module. To replace the traditional TSDF fusion method, consider
using the GRU module, which can self-learn to enhance the model’s generalizability [217].

Objects in the real world almost never exhibit Lambertian reflection characteris-
tics [218]. In 2017, DPSN [219] was used for the first time in the method of photometric
stereo for three-dimensional reconstruction in response to the nonlinear relationship caused
by non-Lambertian surface reflectance. On this basis, the calibrated photometric stereo
method using orthogonal cameras and directional light sources is combined with deep
learning, WJ20 [220], utilizing additional information, PS-FCN [221] employing supervised
methods, GR-PSN [222], CNN-PS [223], NormAttention-PSN [224], DR-PSN [225], etc.
Ikehata proposed a scalable universal photometric stereo network (SDM-UniPS) [226] that
can operate reliably under unknown and arbitrary lighting conditions.

4.3.2. Point Cloud

3D point cloud processing algorithms based on deep learning generally include
voxel-based algorithms [227,228], view-based algorithms [229,230], and point-based al-
gorithms [231,232]. The point-based algorithm directly uses point coordinates as input
and can learn directly from the original data in an end-to-end manner, simplifying feature
engineering and rule design in the traditional process. It has strong generalization ability
and robustness and is suitable for scenarios of all types and sizes. Chen et al. proposed
Point-BLS [233], which extracts point cloud features through a deep learning-based feature
extraction network and then utilizes a comprehensive learning system for classification.
Zhou et al. [234] used an instance segmentation method to extract and associate multiple
key points on multi-view ISAR images and used an enhanced factorization method to
derive the projection vector between the 3D geometry of the space target and the multi-view
ISAR image. The 3D geometry reconstruction problem is transformed into an unconstrained
optimization problem, and the 3D model is obtained using the quantum behavioral particle
swarm optimization (QPSO) method.
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Point cloud-based unsupervised representation learning (URL), which aims to learn
robust and general feature representations from unlabeled data, has been intensively stud-
ied recently. This approach involves generating point cloud objects during training to
alleviate the laborious and time-consuming challenge of data annotation [235]. Methods
based on point cloud generation include point cloud self-reconstruction [236], point cloud
GAN [237,238], point cloud upsampling [239], and point cloud completion [240,241], de-
pending on the specific pre-task utilized. Methods based on point cloud context utilize
context similarity for learning. Sanghi et al. [242] proposed enhancing feature represen-
tation by maximizing the mutual information between 3D objects and their local parts.
Spatial context structures can also be used for learning. Poursaeed et al. [243] proposed
learning the location of key points by predicting the rotation angle of 3D objects. Chen
et al. [244] proposed learning the spatial context of objects by segmenting the distorted
parts of the shape and correcting them.

4.3.3. Neural Radiance Field (NeRF)

Mildenhall et al. proposed a method called NeRF [245], which utilizes 5D neural
radiation fields to represent complex geometry and material in continuous scenes. It is a
new paradigm in the field of deep learning and computer vision, marking the transition
from the conventional approach of deep learning to processing 3D data. NeRF utilizes the
Multilayer Perceptron (MLP) network for parameterization and introduces a differentiable
rendering method that enhances traditional voxel rendering techniques. RGB images
are obtained through differentiable rendering. Each 5D coordinate is mapped to a higher-
dimensional space using the position encoding method, enabling optimization of the neural
radiation field to better express high-frequency details. Refer to Figure 7 for more details.
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Figure 7. An overview of NeRF scene representation and differentiable rendering procedure. 
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Barron et al. structurally replaced position encoding with integrated positional en-
coding and utilized multivariate Gaussians for approximation. By effectively rendering
anti-aliased frustum cones instead of rays, the accuracy and efficiency of NeRF represen-
tation were significantly improved [246]. Wang et al. [247] introduced SDF as an implicit
representation of 3D surfaces and proposed a volume rendering method based on SDF,
enabling multi-view 3D reconstruction through volume rendering. The derivation of NeuS
is result-oriented and directly constructs SDF. The relationship between weights and the
sampling process also uses hierarchical sampling, similar to NeRF. Block-NeRF [248], pro-
posed by Tancik et al., is used for perspective synthesis of large-scale scenes. By dividing
the scene into blocks, the NeRF algorithm, which originally required a large number of
calculations, is converted into calculations of small blocks, thus improving the scalability
of the algorithm. Performance and operational efficiency: The Mega-NeRF [249] algorithm,
proposed by Turki et al., introduces a new GPU-accelerated algorithm that can efficiently
generate large-scale scenes with high-quality perspective synthesis. It offers better scal-
ability and faster processing capabilities. Train the NeRF model, and by processing the
input scene data in layers, you can effectively manage large-scale scenes and enhance the
scalability and operational efficiency of the algorithm. The InstantNGP proposed by Müller
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is different from NeRF’s positional encoding. It uses a hash table to store features [250]
and sets multiple resolutions to gather more information. This hash encoding idea can not
only replace the positional encoding in NeRF but also be used for SDF network extraction,
etc. NesF [251], proposed by Vora et al., provides a pre-trained NeRF model. It samples
its volume density grid to obtain a 3D scene representation and converts the grid into
semantics by utilizing a fully convolutional volume-to-volume network. A feature grid
is used to obtain a geometrically reconstructed image. Mip-NeRF 360 [252] introduces a
proposed MLP and distortion-based regularizer to achieve high-quality reconstruction.
Geo-NeuS [253], proposed by Fu et al., explicitly performs multi-view geometry optimiza-
tion by exploiting the sparse geometry of SFM and photometric consistency in multi-view
stereo. Vinod et al. [254] trained a conditional NeRF without explicit 3D supervision by
mapping input image pixels into texture space to learn 3D representations from a collection
of single-view in-the-wild images of objects belonging to a specific category. Dai et al. [255]
utilized scene context information and adopted a synthetic rendering formula to generate
high-quality and harmonious 3D objects in existing NeRF. Li et al. [256] trained a 3D percep-
tion preprocessing network that integrates real-world degradation modeling to address the
issue of information loss during image degradation and restoration by leveraging implicit
multi-view guidance.

In graphics, the density of a 3D scene is an isotropic attribute. Unlike color, it has no
viewing angle dependence. The output of NeRF is an image of the same scene captured
from various viewing angles. Unlike explicit geometries, such as point clouds, voxels, and
triangle meshes, that can be accessed by traversing all elements in the storage space, implicit
geometry requires selecting spatial coordinates as input for sampling points. Neural
implicit geometry involves converting the input and output through a neural network,
enabling the rendering of pixel colors through weighted integration of a series of sampling
points on the light source. The implicit scene will output the geometric density and color of
these points [257]. By utilizing hierarchical sampling to address the issues of point waste
and undersampling, NeRF can iteratively update parameters to refine the representation
towards the actual value, enabling the completion of high-quality synthesis tasks from new
perspectives. A NeRF neural network model can only store information about one object or
scene, and NeRF is prone to overfitting for specific scenes [258,259].

In 3D reconstruction, deep learning is often combined with reinforcement learning
methods [260–263]. The application of reinforcement learning in 3D reconstruction can
help optimize data collection, path planning, reconstruction algorithms, and result opti-
mization, thereby enhancing the efficiency, accuracy, and adaptability of three-dimensional
reconstruction. The application of reinforcement learning, especially hierarchical rein-
forcement learning [264–266], in three-dimensional reconstruction can help robots bet-
ter understand and perceive the environment [267], optimize the data collection pro-
cess, improve reconstruction efficiency and quality, and adapt to different scenarios and
environmental changes.

The loss function defines how to measure the difference between the current model
output and the target output. The weight parameters needed for model learning are
determined and adjusted by minimizing the results of the loss function. The commonly used
error metrics include the mean absolute error (MAE) [268], mean square error (MSE) [269],
normalized mean error (NME) [270], root mean square error (RMSE) [271], cross-entropy
loss (CE) [272], adversarial loss [273], etc. Additionally, a customized loss function can be
tailored to the specific requirements of tasks and models to more accurately align with the
problem’s characteristics.

5. Datasets

In the study of 3D reconstruction, it is essential to consider that there may be vari-
ations in the 3D reconstruction outcomes across different scenarios. Therefore, when
conducting experimental research, different datasets should be selected according to the
specific research purposes. There are numerous datasets available for evaluating real-world
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and synthetic scene reconstruction methods. We collected and analyzed commonly used
datasets for 3D reconstruction in Tables 1–3.

Table 1. Human body datasets.

Dataset Persons Total of Data Type of Data

Human3.6M [274] 11 3.6 million images
MPII-Pose [275] / 25K images

BUFF [276] 5 11,054 3D scans
UP-3D [277] / 7126 images
SHPD [278] / 23,334 images

SMPL-X [279] 31 5586 images, 3D scans
THUman [280] 230 7K images
HUMBI [281] 772 67 million images

HUMAN4D [282] 4 50,306 mRGBD, meshes
GRAB [283] 10 1.6M images

MVP-Human [284] 400 6K, 48K 3D scans, images
3DPeople Dataset [285] 80 2.5 million images

Table 2. Indoor scene datasets.

Dataset Total of Data Type of Data Scenes Objects

TUM RGB-D [286] 39 sequences images, depth 39 /
NYUD2 [287] 1449 images, 3D point cloud 464 894
SUN 3D [288] 415 scenes images, video 254 41
NYU v2 [289] 407,024 images, depth 464 894

ShapeNet [290] 300M CAD / 3135
SUNRGBD [291] 10,335 images 47 700

SceneNet RGB-D [292] 5M images 57 255
SceneNN [293] 100 scenes images, 3D meshes 100 /
SUNCG [294] 130,269 depth, 3D meshes 24 84
CoRBS [295] 20 sequences images 20 20

Matterport3D [296] 194,400 images, 3D meshes 90 10,800
2D-3D-S [297] 70,496 images, 3D point cloud 11 13
Scannet [298] 2.5M, 36123 images, 3D point cloud 1513 21

InteriorNet [299] 20M, 1M images, CAD 15k /

Table 3. Outdoor scene datasets.

Dataset Total of Data Type of Data Scenes Objects

KITTI [300] 41K images 22 80,256
PASCAL3D+ [301] 22,394 images, CAD / 13,898

Eth3D [302] 24 megapixels images, 3D point cloud / /
Semantic3D [303] 4 billion points images, 3D point cloud 30 8 classes

Paris-Lille-3D [304] 57.79 million images, 3D point cloud 2 50 classes
ApolloCar3D [305] 5277 images / 60k
Cityscapes 3D [306] 5000 images, 3D point cloud / 8 classes
BlendedMVS [307] 17k images, 3D meshes 113 /
CSPC-Dataset [308] 68 million points images, 3D point cloud 5 6 classes

Toronto-3D [309] 78.3 million points images, 3D point cloud / 8 classes
STPLS3D [310] 16 km2 images, 3D point cloud / /
KITTI-360 [311] 300k, 1 billon points images, 3D point cloud / /

DiTer [312] / images, 3D point cloud / /
SubT-MRS [313] 30 scenes images, 3D point cloud 30 /

Many datasets contain both indoor and outdoor scenes, such as ETH3D [302], PAS-
CAL3D+ [301], JRDB [314], etc. The dynamic 3D scene dataset is primarily utilized to
assess the rendering quality of new perspectives in 3D scene reconstruction tasks. Given a
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captured video, the algorithm must accurately reconstruct the scene to generate images
from a different perspective or time [315], commonly used datasets include Immersive
Video [316], Neural 3D Video [317], Nerfies [318], Dynamic Replica [319], Bonn RGB-D
Dynamic [320], etc.

6. Outlook and Challenges
6.1. Outlook

In indoor scenes, modeling the entire scene using a small number of color pictures
remains the prevailing trend for the future. This is due to the limited availability of pictures
in many indoor scenes, which restricts the opportunity to use a large number of images
for training purposes. In outdoor scenes, it is also necessary to use multiple images for
synthesis and training. At the same time, information from multiple perception modalities,
such as images, laser scanning, depth sensors, and voice, can be integrated to enhance the
accuracy of 3D reconstruction.

The application of hardware accelerators, such as GPUs, can significantly improve
the calculation speed of 3D reconstruction algorithms. Cloud computing platforms can
offer robust computing resources for large-scale data processing, supporting real-time
performance and processing of extensive data requirements. The equipment used in the
field of 3D reconstruction is gradually becoming simpler. The cameras and sensors on
smartphones are powerful enough to support some simple 3D reconstruction applications.
The popularity of mobile devices enables users to easily conduct image-based 3D scanning
and 3D reconstruction [321]. 3D reconstruction software tools enable users to perform
3D modeling without requiring an in-depth understanding of complex algorithms and
principles. This accessibility allows a growing number of individuals to utilize 3D recon-
struction technology across various application fields, thereby advancing the development
of this field.

In February 2024, OpenAI launched a new model, Sora, designed to generate videos
based on text input. In March 2024, Figure AI integrated ChatGPT as an intelligent brain,
which will be an important milestone in the development of AGI. The application of 3D
reconstruction in the metaverse is accompanied by the development of AR/VR products
by technology companies such as Apple, Meta, Google, and Sony. Some examples include
Apple Vision Pro, Meta Quest 3, Microsoft HoloLens 2, VIVE Pro, and PlayStation VR 2.
With the advancement of these products, individuals can work in the metaverse, engage in
face-to-face work from home, immerse themselves in 3D scenes, and experience movies
and games in an immersive manner. By combining robotics with brain–computer interface
technology, people can interact with machines using their bodies to complete various tasks
in work and life, truly liberating human hands.

6.2. Challenges

3D reconstruction is an open research field. Although vision-based 3D reconstruction
has made remarkable progress, there are still some challenges. Challenges such as managing
dynamic scenes, occlusions, topology changes, and efficiently processing large-scale data
still necessitate further in-depth research. The extensive data collection involved in 3D
reconstruction may raise privacy and ethical issues, particularly in public places and
personal areas.

The accuracy of 3D reconstruction is affected by sensor noise, changes in shooting
conditions, and environmental lighting, which result in data uncertainty. Many 3D re-
construction algorithms have limited robustness to various scenes, lighting conditions,
and object types, which can lead to failures or performance degradation in specific scenar-
ios. High-quality 3D reconstruction is computationally expensive, and finding ways to
efficiently create a realistic scene model using readily available equipment is currently a
significant challenge. Challenges are not only problems but also the source of innovation.
By overcoming these challenges, 3D reconstruction will better serve the development of
society and technology.
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7. Summary

This survey analyzes the key technologies of 3D reconstruction from the aspects of
static and dynamic scenes, machine learning, etc. It introduces the active vision method and
passive vision in detail and summarizes the research progress of various 3D reconstruction
methods and the effects of 3D reconstruction. Different application fields have varying
requirements for 3D reconstruction, and distinct 3D scenes should be reconstructed to serve
specific task-oriented purposes.

With the development of science and technology, artificial intelligence will eventually
reach or even surpass human intelligence in the future. With the aging of the population in
the future, robots will inevitably replace humans in various tasks. Vision-based 3D recon-
struction will provide accurate visual perception information and help the model better
transition from the two-dimensional world to the 3D world. Continuous innovation in this
field will equip computers with more advanced tools and perspectives to comprehend and
utilize the 3D world. This will enable us to understand and simulate the physical world
better, thus enhancing the intelligence of robots.
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