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Abstract: In recent years, the development of intelligent sensor systems has experienced remark-
able growth, particularly in the domain of microwave and millimeter wave sensing, thanks to the
increased availability of affordable hardware components. With the development of smart Ground-
Based Synthetic Aperture Radar (GBSAR) system called GBSAR-Pi, we previously explored object
classification applications based on raw radar data. Building upon this foundation, in this study,
we analyze the potential of utilizing polarization information to improve the performance of deep
learning models based on raw GBSAR data. The data are obtained with a GBSAR operating at 24 GHz
with both vertical (VV) and horizontal (HH) polarization, resulting in two matrices (VV and HH)
per observed scene. We present several approaches demonstrating the integration of such data into
classification models based on a modified ResNet18 architecture. We also introduce a novel Siamese
architecture tailored to accommodate the dual input radar data. The results indicate that a simple
concatenation method is the most promising approach and underscore the importance of considering
antenna polarization and merging strategies in deep learning applications based on radar data.

Keywords: ground-based SAR; polarization; object classification; radar data; ResNet18

1. Introduction

Advancements in affordable microwave technology in recent years have allowed
for the research and development of various small radar systems, spawning many new
possibilities. In addition, further rapid development of these systems has been achieved
through integration with deep learning algorithms and tools to bring new smart sensing
applications to life. Synthetic aperture radar (SAR) systems are an important representative
in this sector as active microwave imaging sensor types used to generate radar images
which can be efficiently processed by the tools of artificial intelligence. Combining multiple
SAR images (i.e., multispectral or multi-polarization) in such applications offers additional
input to the algorithms and can enhance the accuracy of the application task, as it has been
demonstrated in several recent works [1,2].

In particular, the developments of Ground-Based Synthetic Aperture Radars (GBSARs)
have significantly been impacted by these advancements [3,4]. GBSAR is a terrestrial
remote sensing system that can provide high-resolution images of small areas. It utilizes
the SAR concept of sensor antenna motion to virtually extend the sensor antenna aperture
by acquiring radar signals from multiple positions along its path. At each of these positions,
the sensor extracts information about the distance, which is later used to reconstruct a two-
dimensional radar image of the observed area. Unlike satellite or airborne SAR systems, it
is typically used for applications which require stable and accurate measurements such
as surface deformation, dam and landslide monitoring, stability assessment. and other
cases [3–7]. Additionally, GBSAR systems offer space for significant parameter optimization,
depending on whether the goal is system efficiency, accuracy, or something else. One of
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the parameters that can be easily used and changed if necessary is antenna polarization.
Research focused on utilizing the information obtained from different polarizations is
well known and has been conducted in various SAR applications. For instance, in [8,9],
authors extract polarization properties from various terrain targets, while in [10], single-
polarization and dual-polarization radar data are compared in the hail detection. Recently,
investigations of various polarization in GBSAR applications have also shown potential, for
example, when dealing with circular polarizations [11,12] or using polarimetric information
for target classification [13].

In recent years, deep learning models have efficiently utilized the availability of such
multilayered data from sensors for various signal processing tasks. Different deep learning
models with SAR and GBSAR databases are being used [14] to advance the understanding
and potential of these systems, and in final applications help monitor and understand
complex physical processes [15]. However, the drawback in these applications often lies in
small datasets corresponding to a particular application. This means that the performance
of deep learning models is highly dependent on the input data and the radar parameters
used to acquire these data. On the other hand, the advantage of GBSAR systems is that
we can have access to the raw data (signal data which are normally used for generating
reconstructed radar images). Access to raw data by itself can be very beneficial in deep
learning classification applications since these data are not modified by reconstruction
algorithms [16]. Additional layers of such data, for example, data obtained using different
polarization, then allow for new options in utilizing those data in subsequent processing
and classification. Usually, SAR has two reconstructed images available for different polar-
izations later combined in processing, which can be computationally intensive. However, if
we use raw signals recorded using different polarizations, we can combine these signals
before deep learning processing and potentially make the final classification less computa-
tionally intensive. This aligns with our goal, as we aim to develop energy-efficient radar
systems based on low-power microprocessors.

In this paper, we investigate the potential of utilizing polarization information to
enhance the performance of deep learning models for object classification. Based on our
earlier research with the GBSAR-Pi system developed by our group, we have explored
object classification using radar data. Now, our study aims to analyze how different
methods can utilize orthogonal polarization data to improve object classification through
deep learning techniques. Specifically, we want to compare the classification outcomes of
models trained on input data generated by applying various merging methods to the raw
GBSAR data obtained using both horizontal and vertical polarizations. We conduct a set of
recordings of observed scenes containing several objects of different material and shape,
recorded using two orthogonal polarizations, to evaluate the effectiveness of incorporating
such information in a classification model. The deep learning model for the classification
task is based on ResNet18 [17] architecture which is modified to operate with raw GBSAR
data. The classification results of various polarization combinations are used to provide
insights into their impact on radar data and, consequently, object classification. Additionally,
we introduce a novel deep learning architecture based on the modified ResNet18, which
utilizes two inputs separately: raw data obtained with horizontal and vertical polarization.
The results show that with optimal use of polarization data, both classification accuracy
and energy efficiency of the system can be improved. We note that besides straightforward
comparison of merging methods of different polarization data for improving classification
in signal-based applications, similar ideas of combining two or more kinds of data in the
form of matrices can be utilized to enhance various deep learning tasks.

The rest of this paper is structured as follows. In Section 2, we present a GBSAR system
for object classification. Section 3 describes the data acquisition process, including the
experiment setup, original datasets generated using the GBSAR-Pi system developed by
our group, and additional datasets generated by aforementioned various merging methods.
The results of the classifications based on the listed datasets and their interpretation are
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given in Section 4. Finally, we provide a discussion of the implications of our results in
Section 5.

2. Object Classification Using GBSAR Data

GBSAR, analogous to SAR, virtually extends sensor antennas by leveraging sensor
movement along a ground-based track while emitting and receiving EM waves, enabling
distance extraction and radar image reconstruction. The Frequency-Modulated Continuous
Wave (FMCW) radar principle is commonly used as a sensor in such systems due to its
simple implementation [5,18]. A FMCW radar emits a continuous signal with a changing
frequency, sweeping through a defined band B. Since this frequency sweep is also present
in the echo signal delayed by travel time, mixing it with the emitted signal enables the
extraction of delay using low-frequency differences, which is then used to calculate the
distance to the target [19]. Sensor movement can be in a continuous or a stop-and-go mode,
with the latter allowing precise selection of step and aperture length, impacting azimuth
resolution. Range resolution, on the other hand, is determined by the sensor’s bandwidth.
Hence, smaller step length and wider bandwidth provide more information about the
observed scene and better overall resolution of the reconstructed radar image. Additionally,
the polarization of the EM waves emitted by the sensor depends on the orientation and
type of the sensor antennas. This parameter is commonly utilized in SAR systems for
discriminating various targets [20].

Typically, using the distance information from multiple steps allows for us to recon-
struct a 2D radar image, which we can interpret more easily, and use such obtained image
in further processing. However, in applications where we have access to raw radar data
(signals), this is not always necessary since modern AI tools also allow for us to exploit the
raw data directly. This was demonstrated in [16], where comparison of object classification
based on raw data and reconstructed images was given. It was shown that using raw data
as input for deep learning had equal or even better classification results. The added benefit
was that there was no need to initially perform radar image reconstruction, which can be
time consuming for larger datasets.

The used model is based on ResNet18 architecture with an ajdustment to raw GBSAR
data. In the case of a smaller number of steps which corresponds to the dimensions of
one axis in the resulting matrix, the architecture is modified by removing downsampling
steps in that axis. Specifically, in our case, each column of the resulting matrix represents
the signal obtained after mixing from one sensor (the FMCW module) position along the
track. Therefore, the dimension of the vertical axis depends on the number of frequency
points of that signal which is, in our case, 1024. The number of such signals in the resulting
matrix (or the number of GBSAR steps) represents the horizontal spatial dimension and is,
in our case, 20. In Ref. [16], it was shown that on occasions in which one spatial dimension
is much larger than the other, it is beneficial to remove the downsampling steps of the
smaller axis. This is achieved by setting the horizontal stride to one, which prevents the
model from halving the horizontal dimension in each of the five convolution groups from
regular ResNet18 architecture. The proposed modification is displayed in Figure 1. All
classification models in this paper are based on ResNet18 with mentioned modification.

Finally, from the application perspective, after the classification process, the system
has to make a decision whether classification results are satisfactory or not, and for this
we need to evaluate a probability distribution over all possible classes. This approach was
presented in [21] where the feedback algorithm for an energy-efficient GBSAR system is
given. The proposed algorithm consists of two object classifications: initial and final, where
the initial one is based on GBSAR recordings conducted using a smaller number of steps.
The classification process results in the mentioned probability distribution, and the class
with the highest probability is taken as the predicted one. If that probability is higher than
the set limit, the observed example is considered classified. Otherwise, if the probability is
lower than the limit, the recording of that object is conducted from additional positions in
the second GBSAR measurement, after which the final classification is run. This way, the



Sensors 2024, 24, 2305 4 of 17

system initially reduces energy consumption by classifying simpler examples using fewer
steps. In deep learning applications, this probability distribution is often calculated using
softmax function [22],

fs(zk) =
ezk

∑K
j=1 zj

(1)

where zk represents the logit output of the model for one class. In that approach, the
question of whether softmax function can determine the model’s certainty arises. In order
to answer it, we analyze the results of our classification models trained with GBSAR data
recorded using horizontal and vertical polarization.

Figure 1. ResNet18 modification for raw GBSAR data [16]. In (a), the matrix dimensions reduce
after each conv group, while in (b) (with modification), the horizontal dimension remains the same
throughout the process.

3. Data Acquisition
3.1. Experiment Setup

The measurements are conducted using the GBSAR-Pi system described in [16].
GBSAR-Pi is implemented around Raspberry Pi, operates in a stop-and-go mode, and
utilizes the FMCW module Innosent IVS-362 [23] to capture the resulting signal from
each position. It is implemented around microcomputer Raspberry Pi. The radar in the
real-world setup is shown in Figure 2, while its schematic display is given in Figure 3. The
platform housing the microcomputer, the AD/DA converter, and the FMCW module is
moved along a 1 m long track by a 5 V stepper motor. With a central frequency of 24 GHz
and a frequency bandwidth (B) of 1.3 GHz, the sensor’s antennas are integrated into the
module, resulting in their polarization being determined by the module’s orientation. The
polarization change in this study is manually executed by rotating the module before
recordings, enabling the acquisition using single polarization (HH or VV); however, in
practical applications, two modules with orthogonal polarizations are used in parallel.
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Figure 2. Developed GBSAR-Pi [16].

The scenes are observed from 60 positions spaced 1 cm apart, meaning that the original
matrix has dimensions of 1024 × 60. In each of the observed scenes, three objects are set
at an approximately 30 cm distance from the radar. The matrices are later split into three
segments, each of which covers one object where the dimensions of each segment are
1024 × 20. The reason behind the splitting is the potential utilization of the aforementioned
feedback algorithm which enhances the energy efficiency of the system and primarily
focuses on the impact of additional polarization data when using such low-resolution
data. All scenes are first recorded using horizontal polarization and then using vertical
polarization, resulting in a total of 50 pairs of measurements per polarization.

Figure 3. Scheme of GBSAR-Pi [24]. GBSAR-Pi is based on microcomputer Raspberry Pi and FMCW
module. The module can emit horizontally or vertically polarized EM waves.

3.2. Original Datasets

Since in all 100 conducted recordings, the scenes contained three objects, the datasets
consist of 300 data points. Hence, there are 150 data points recorded with horizontal
polarization in the ‘HH’ (horizontal) dataset and 150 data points recorded with vertical
polarization in the ‘VV’ (vertical) dataset. Data points are matrices of dimensions 1024 × 20.

The observed objects were approximately of same size but made of different materials
(metal, glass, plastic) and had different shapes (cylinder and cuboid). Also, the width
and height of these objects were comparable so that the response to neither polarization
could be potentially dominant. The orientation of the cuboids was perpendicular to the
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direction of the emitted EM waves. Each of the six combinations of materials and shapes
are represented by one object and each object stands for one class. The six classes and their
marks are as follows:

• Po—plastic cylinder;
• Pc—plastic cuboid;
• Go—glass cylinder;
• Gc—glass cuboid;
• Mo—metal cylinder;
• Mc—metal cuboid.

It is expected to receive signals with the highest intensity from metal objects and
signals with the lowest intensity from plastic ones. The shape of the objects should impact
the adjacent signals around the center of the object. The heatmaps of one pair of the same
object (metal cuboid) in HH and VV datasets are shown in Figure 4. The dataset including
HH and VV data points is publicly available.

Data point from HH dataset Data point from VV dataset
Figure 4. Examples of raw radar data recorded with horizontal (left) and vertical (right) polarization.
Observed scene contained a metal cuboid (Mc).

3.3. Additional Datasets

In this study, we analyze the results of the models trained on datasets obtained with
radar recordings using different polarizations. In two consecutive recordings, all scenes
were initially captured using horizontal polarization, followed by vertical polarization.
Besides unprocessed ‘HH’ and ‘VV’ matrices which represent data obtained with horizon-
tal and vertical polarization (respectively), we create additional datasets by combining
the following pairs:

• SUB: Dataset examples generated by subtracting the matrix recorded with vertical
polarization from the one recorded with horizontal polarization.

• AVG: Dataset examples generated by averaging matrices recorded with vertical and
horizontal polarizations.

• MIX_ROWS: Dataset examples generated by alternately mixing rows of matrices
recorded with horizontal and vertical polarizations.

• MIX_COL: Dataset examples generated by alternately mixing columns of matrices
recorded with horizontal and vertical polarizations.

• JOIN: Dataset examples generated by appending the matrix recorded with vertical
polarization to the end of the matrix recorded with horizontal polarization.

The combinations contain the same data elements of the two matrices (horizontal
and vertical) presented in different ways. In the first two combinations (SUB and AVG),
the matrix elements are calculated by subtracting or averaging the elements from the two
original matrices so the dimensions of the resulting matrix, for example, from these datasets,
are the same as the originals. The elements of the three remaining datasets are the same as
the elements from the original matrices but placed in different matrix positions. Therefore,
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their dimensions are doubled in either horizontal or vertical axes. The dimensions of all
matrices from the listed datasets are provided in Table 1. Figure 5 displays the heatmaps of
examples from each dataset. The idea of generating such datasets is to test which of them
is best suited for the classification task, i.e., a model trained on which dataset will achieve
the highest accuracy.

SUB AVG

MIX_ROWS MIX_COL

JOIN

Figure 5. Examples of the datasets: SUB, AVG, MIX_ROWS, and MIX_COL i JOIN. The examples are
the combinations of the matrices depicted in Figure 4, i.e., they represent a metal cuboid object.
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Table 1. The dimensions of the examples of the original and generated datasets. ‘HH’ represents
the dataset with matrices obtained using horizontal polarizations, ‘VV’ represents the one using
vertical polarizations.

HH VV SUB AVG MIX
ROWS

MIX
COL

JOIN

1024 × 20 1024 × 20 1024 × 20 1024 × 20 2048 × 20 1024 × 40 1024 × 40

4. Results

A distinct model was trained using each dataset, culminating in the creation of a total
of seven deep learning models that underwent testing over ten iterations. To ensure a fair
comparison of the approaches, during each iteration, the models were trained, validated,
and tested on the same examples. For instance, if a horizontal polarization model (HH)
was tested on the example ‘Mc_3_hh_48’, representing a cuboid metal object set in the third
position, captured with horizontal polarization in the measurement scene number 48, the
corresponding test examples for vertical polarization model (VV) included ‘Mc_3_vv_48’,
while test set of other models contained, for example, ‘Mc_3_48’, which is generated using
the aforementioned combinations of ‘Mc_3_hh_48’ and ‘Mc_3_vv_48’. We note that models
are named after the datasets they are trained with.

Table 2 (and Figure 6) presents the minimum, maximum, and average accuracies
over 10 iterations for each model. The results indicate that the models trained on the data
obtained with horizontal polarization were, on average, more accurate than those trained
on the data using vertical polarization (89.43% compared to 75.71%). Both models achieved
100% accuracy in the same iteration. However, in eight out of the nine remaining iterations,
the model trained on the HH dataset outperformed the VV model. A possible reason behind
this discrepancy can be the selection of test objects and their positions or orientations in the
scene. Hardware limitations of the utilized FMCW module (Innosent-362 [23]) may also
have contributed, as its radiation pattern, according to technical specifications, exhibits
different behaviors in the horizontal (45°) and vertical (38°) axes. The main point to note
is that HH and VV models yield different results, indicating they are trained on distinct
information. Thus, integrating both polarizations could potentially enhance accuracy.

Table 2. Minimum, maximum, and average accuracies over 10 iterations for each model trained on
the following datasets: HH, VV, SUB, AVG, MIX_ROWS, MIX_COL, and JOIN. The highest average
accuracy is marked bold.

HH VV SUB AVG MIX
ROWS

MIX
COL JOIN

Min. 82.86 57.14 45.71 62.86 74.29 71.43 82.86
Max. 100 100 74.29 85.71 94.29 97.14 100

Average 89.43 75.71 62.6 76.57 82.57 80.58 91.72

Regarding the combinations, the model trained on the SUB dataset, where matrices
are subtracted from each other, yielded the weakest performance. This outcome was
expected, as the subtraction process removes a part of the information. Similarly, the AVG
dataset, where information is lost through matrix averaging, also achieved lower accuracy
results. The second group of combinations (MIX_COL, MIX_ROWS, and JOIN) consists
of information from both original matrices (horizontal and vertical polarizations), hence
it was anticipated that they would perform better than the first two combinations. In all
three datasets, the same elements from the HH and VV matrices were used but arranged
differently. The results show that models trained on MIX_COL and MIX_ROWS datasets
produced similar results (with averages of 80.58% and 82.57%, respectively), while the JOIN
dataset, where the original matrices are placed side by side, yielded the highest results
compared to all trained models, averaging 91.72%.
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Figure 6. Minimum, maximum, and average classification accuracy of the HH, VV, SUB, AVG,
MIX_ROWS, MIX_COL, and JOIN models.

These results can be observed from a perspective beyond radar signal processing, con-
sidering the influence of the order of elements within the same matrix on the classification
outcome of the model based on the same architecture. In the JOIN dataset, the order of
elements remains the same as in the original matrices, preserving information about the
positions and arrangement of individual signals alongside their values. This is in contrast
to MIX_COL and MIX_ROWS datasets, where the original matrices are fragmented into
columns or rows, respectively. The potential drawback of the JOIN dataset is that signals
obtained at the same position with horizontal and vertical polarizations in the JOIN matrix
are separated by the width of one matrix (the number of GBSAR steps). Specifically, in our
case, the first column of the JOIN matrix is recorded from the same position as the 21st
column but with different polarizations. On the other hand, in the MIX_COL dataset, two
adjacent columns represent signals recorded from the same position, but the order within
the two original matrices is disrupted, leading to a degradation in classification accuracy,
as indicated by the results. In MIX_ROWS, both matrices are similarly fragmented by
rows, again reducing classification accuracy. Hence, the JOIN model, which provides the
best results, has the advantage of preserving the order of the elements within matrices.
However, it faces the challenge of treating two concatenated matrices as one, where the
distances between columns do not represent equal spatial distances. To address this draw-
back, several alternative approaches were analyzed in a second set of 10 iterations with
Ensemble and Siamese models.

4.1. Ensemble and Siamese Models

First, we combined the results of models with horizontal (HH) and vertical (VV)
matrices into an Ensemble model. In the Ensemble model, the softmax results of HH and
VV models are averaged to obtain the final softmax result (Equation (1)) for each class.
The accuracy of the Ensemble model, denoted as ‘ENS’ hereafter, directly depends on the
outcomes of HH and VV models. In cases where both models make errors on the same
examples, those examples are likely to be misclassified in the ENS model. However, there
have been cases in which the opposite occurred. In one such case, the horizontal model
misclassified an object of class ‘Go’ as ‘Mo’, while the vertically polarized model classified
it as ‘Gc’. Thus, the HH model erred in material but correctly recognized the shape, while
the VV model correctly identified the material but made a mistake in classifying the shape.
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On the other hand, as both models predicted ‘Go’ as the second most likely class with high
probabilities, the ENS model correctly classified the example. The results over the second
set of 10 iterations, depicted in Table 3 and in the form of a graph in Figure 7, once again
showed a higher accuracy of the HH model compared to the VV one. On average, the
horizontal model successfully classified 85.31% of the test set examples, while the vertical
model achieved this for 75.51% of examples. Interestingly, the ENS model, on average,
outperformed the results of both individual models. Out of 10 iterations, the ENS model
was more accurate in 6, tied with the horizontal model in 3, and was only worse once. In
that case, the vertical model decreased the accuracy of the ENS.

Table 3. Minimum, maximum, and average classification accuracy of the HH, VV, JOIN, Ensemble,
Siamese, and Siamese 2 models. The highest average accuracy is marked bold.

HH VV JOIN ENS Siamese Siamese 2

MIN 82.86 68.57 85.71 77.14 82.86 88.57
MAX 91.43 88.57 97.14 91.43 88.57 94.29
AVG 85.31 75.51 93.06 87.34 86.12 91.43

Figure 7. Minimum, maximum, and average accuracy of HH, VV, JOIN, Ensemble, Siamese and
Siamese 2 models.

Since we established in the first analysis that in our case, scenario HH model out-
performs the VV model, an alternative version of the Ensemble model was tested. In
this version, due to the superiority of the HH model, the influence of this model on the
averaging of results was increased by multiplying its class probabilities by a factor greater
than one when calculating the probabilities for the new Ensemble model. However, this
approach improved the Ensemble model’s result in only one iteration, while in the others,
it achieved the same accuracy.

On the other hand, the results once again imply that the combination of the HH and
VV matrices can be utilized to improve classification results. Therefore, we tested another
approach in which two classification branches (one for each polarization) were trained in
parallel. Each branch had an architecture similar to the ModResNet model, receiving a
matrix of one polarization as input. Before the fully connected (FC) layer of the ModResNet
models, the branches connected their feature vectors (each of size 512) in one feature vector
(of size 1024) of the entire model, which was then fed into a fully connected (FC) layer.
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Subsequently, similar to the original model, probabilities for each class were calculated,
and predictions were made. This model is hereafter referred to as the ’Siamese’ model, and
its architecture is illustrated in Figure 8.

Figure 8. Architecture of the Siamese model with two separate branches for HH and VV matrices.
Each branch functions as a distinct HH or VV model. The branches connect their feature vectors to
form a Siamese feature vector, which is then fed into a fully connected layer.

That way, the Siamese model can train two parts of the network (one for each po-
larization) and eventually connect the feature vectors to determine the class by learning
from both matrices separately. Although this approach, on average, yielded slightly better
classification results than models trained on a single polarization, there was no significant
improvement. Such an outcome was not expected since Siamese is a more complex network
trained with more data compared to HH and VV models. However, it is worth noting that
the dataset used in all these models is still relatively small, which, especially in the case of
complex networks, can negatively impact classification results due to insufficient training
samples to set the weights properly.

To address this, we tested the same approach with initialized weights for both sub-
models (branches). The weights for the part of the network trained on matrices for hori-
zontal polarization were set using the weights of the pre-trained horizontal model, and
the part trained on matrices for vertical polarization used the weights of the pre-trained
vertical model. The weights were reset in each iteration to correspond to the examples
used to train the horizontal and vertical models. This model is hereafter referred to as
‘Siamese 2’. Such approach increased the average accuracy when compared to regular
Siamese from 86.12% to 91.43%, but it required training of HH and VV models in order to
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initialize weights. Interestingly, even that model, on average, did not outperform the JOIN
model. The reason for this could be the aforementioned limited dataset, which is better
suited to simpler models, and the fact that the shared vector before the fully connected
layer is created by combining two vectors of the same size which may be considered to
have an equal influence of both polarizations on the final accuracy, which, as shown earlier,
is not the case, as horizontal polarization consistently provided more accurate results in all
iterations. In the second set of 10 iterations, the Siamese 2 model was better than the JOIN
model in three, equally accurate in one, and worse in six cases. Figure 7 displays the results
of all models in the second set of 10 iterations, where, in addition to HH, VV, and JOIN, the
tested models include the Ensemble model ENS, as well as Siamese and Siamese 2.

An additional argument for employing the JOIN approach is the network’s simplicity.
Single ResNet18 models, including variants like HH, VV, and JOIN, are computationally
simpler compared to Siamese models due to their streamlined processing of a single in-
put. In single ResNet18 models, all computations are performed within a single branch,
which simplifies both the model’s architecture and the training process. The Siamese
models require the processing of two inputs through two separate branches, which dou-
bles the number of network parameters, resulting in higher computational load. When
comparing it to other deep learning architectures used in SAR data-based models, it is
worth mentioning that LSTM (Long Short-Term Memory) and GCNs (Graph Convolutional
Networks) introduce additional layers of complexity. LSTMs are often used in SAR au-
tomatic target recognition [25,26]. However, their recurrent nature and ability to capture
temporal dependencies contribute to this added complexity. GCNs, on the other hand,
are utilized for graph-structured data like SAR images [27,28], leveraging graph convo-
lution operations to capture spatial relationships among data points which can also be
computationally expensive.

4.2. Softmax Function Evaluation

Since the Softmax function in the implementation of the feedback algorithm described
in [21] is used to determine the confidence of the model, we evaluated it over all 20 iterations
performed in this paper. The output probabilities of all 4200 examples were grouped into
percentage bins: 0–50%, 50–60%, 60–70%, 70–80%, 80–90%, and 90–100%. The number
of correct predictions was then compared with the total number of predictions in each
bin. The results, presented in Table 4 show that the accuracy of each bin falls within that
percentage range, thereby confirming the previously stated thesis regarding the use of the
softmax function as a measure of model confidence.

Table 4. Correctly classified examples for each percentage bin.

Bin Correctly Classified Total in Bin Percentage

0–50 137 293 46.76%
50–60 202 361 55.96%
60–70 245 371 66.04%
70–80 371 467 79.44%
80–90 593 678 87.46%

90–100 1906 2027 94.03%

4.3. Polarization Impact on the Classification of the Specific Object

As we have shown before, models based on horizontal polarization matrices achieved
better classification results compared to those based on vertical polarization. Specifically,
in the first 10 iterations, the difference in the average accuracy of these two models was
around 14 percentage points (75% versus 89%), while in the second set of iterations, a
slightly lower difference of 10 percentage points was observed (75% versus 85%). In only
one iteration out of 20, the VV model achieved a higher accuracy than the HH model.

To examine the impact of polarization on specific test objects in recordings, we ana-
lyzed all 20 iterations of both horizontal and vertical models, along with the JOIN model,
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given its superior performance among the assessed approaches. For each test object, we
compared the number of test examples that were correctly classified and, when they were
not, we determined the object they were most frequently mistaken for. It is noteworthy that
the observed scenes featured objects composed of three different materials (metal, glass,
and plastic) and two distinct shapes (cylinder and cuboid).

In the case of horizontal polarization, all objects except the plastic cylinder (64.17%)
were classified with an accuracy above 85%. The plastic cylinder was misclassified as a
plastic cuboid in 33% of cases, with negligible misclassifications with other classes. The
plastic cuboid was correctly classified in 89.17% of cases, with no standout misclassification
compared to others. On the other hand, although 86.67% and 89.17% of glass and metal
cuboids, respectively, were correctly classified, when they were not, the glass cuboid was
most often mistaken for the metal cuboid, and vice versa. As for the remaining two objects
(glass and metal cylinder), they were correctly classified in more than 97% of cases when
recorded with horizontal polarization. The confusion matrix of the HH model is shown in
Table 5.

Table 5. Confusion matrix of the HH model. Classes are marked as Po—plastic cylinder, Pc—plastic
cuboid, Go—glass cylinder, Gc—glass cuboid, Mo—metal cylinder, Mc—metal cuboid.

Predicted Class

Po Pc Go Gc Mo Mc Total Accuracy

Tr
ue

cl
as

s

Po 77 40 0 1 2 0 120 64.17%
Pc 1 107 1 4 3 4 120 89.17%
Go 0 0 117 2 1 0 120 97.50%
Gc 0 2 0 104 0 14 120 86.67%
Mo 0 0 3 0 97 0 100 97.00%
Mc 0 0 0 13 0 107 120 89.17%

Total 1 42 4 20 6 18 700

In the case of vertical polarization, only the metal cuboid was correctly classified in
more than 85% of cases, while the lowest accuracy, similar to the HH model, was achieved
for the plastic cylinder (48.33%). In 45% of cases, class was misclassified for the plastic
cuboid, and the plastic cuboid was most often misclassified for the glass cylinder. On the
other hand, when metal and glass objects were misclassified, it was mostly due to the
material rather than the shape. The correct and predicted classes over 20 iterations for
vertical polarization are given in Table 6.

Table 6. Confusion matrix of the VV model. Classes are marked as Po—plastic cylinder, Pc—plastic
cuboid, Go—glass cylinder, Gc—glass cuboid, Mo—metal cylinder, Mc—metal cuboid.

Predicted Class

Po Pc Go Gc Mo Mc Total Accuracy

Tr
ue

cl
as

s

Po 58 54 0 8 0 0 120 48.33%
Pc 7 89 13 2 9 0 120 74.17%
Go 8 5 90 7 10 0 120 75.00%
Gc 2 6 2 98 1 0 120 81.67%
Mo 0 4 12 2 82 11 100 82.00%
Mc 0 0 0 14 2 104 120 86.67%

Total 17 69 27 33 22 18 700

In the analysis of the JOIN approach, all objects were classified with an accuracy over
90%, except for the plastic cylinder (84.17%), which was most often mistaken for the plastic
cuboid. The results of this model for all classes over 20 iterations is given in Table 7. A
comparison of all three approaches by classes is shown in Figure 9.
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Table 7. Confusion matrix of the JOIN model. Classes are marked as Po—plastic cylinder, Pc—plastic
cuboid, Go—glass cylinder, Gc—glass cuboid, Mo—metal cylinder, Mc—metal cuboid.

Predicted Class

Po Pc Go Gc Mo Mc Total Accuracy

Tr
ue

cl
as

s

Po 101 18 0 1 0 0 120 84.17%
Pc 0 115 0 0 2 3 120 95.83%
Go 3 1 112 0 4 0 120 93.33%
Gc 0 4 2 109 0 5 120 90.83%
Mo 2 5 0 0 93 0 100 93.00%
Mc 0 0 0 4 1 115 120 95.83%

Total 5 28 2 5 7 8 700

Figure 9. Comparison of the average accuracy per class of HH, VV, and JOIN models.

5. Conclusions

In this paper, we explored the potential of utilizing orthogonal polarization informa-
tion in the context of deep learning object classification based on ground-based synthetic
aperture radar (GBSAR) data. Our study focused on comparing the classification results
of models trained on (original) datasets in which data points (in form of a matrix) are
obtained using different polarizations in the GBSAR system. Furthermore, we employed
various merging methods to generate additional datasets using combinations of original
ones including subtraction, averaging, mixing rows and columns, and concatenation.

The results revealed that, in our case scenario, the models trained on data obtained
with horizontal polarization (HH) consistently outperformed those trained on data ob-
tained with vertical polarization (VV). Specifically, the HH model, on average, reached 13
percentage points greater classification accuracy than the VV model in the first set of test
iterations (89% compared to 76%), and 9 percentage points greater in the second one (85%
to 76%). Further analysis of the merging methods demonstrated that the concatenation of
matrices, as implemented in the JOIN dataset, yielded the highest classification accuracy in
both sets, averaging 92% and 93%. The results indicate that the JOIN dataset preserved the
order of elements within matrices, contributing to improved classification results. Such
outcome can also be observed from a perspective beyond classification in radar data, since
the idea of concatenating two matrices with different information as in the JOIN approach
may be utilized in other deep learning applications.
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We also explored Ensemble and Siamese architectures to incorporate the information
obtained using both polarizations in the same model. The Ensemble model, directly
combining the results of the horizontal (HH) and vertical (VV) models, showed improved
performance, surpassing the individual models in most iterations. The Siamese model,
which trained two branches (one for each polarization) separately before merging them
into one feature vector, which is forwarded to the fully connected layer, exhibited a similar
outcome to those of individual and Ensemble models, indicating potential benefits from
such an approach. To enhance the complexity, in the next approach, we introduced the
Siamese 2 model in which the weights were initialized using pre-trained HH and VV
models. While Siamese 2 achieved higher accuracy than the previous models (91% in
average), it did not consistently outperform the simpler JOIN model, emphasizing the
importance of dataset size.

To summarize, our findings suggest that the careful consideration of the antenna
polarization and merging strategies of data obtained with differently polarized EM waves
emitted by sensors in the data acquisition process can significantly impact the accuracy and
efficiency of deep learning models in radar applications. Specifically, the JOIN merging
method, with its simplicity and effectiveness, emerged as a promising approach, demon-
strating the potential for improved classification accuracy and energy efficiency of GBSAR
systems based on low-power microprocessors. The Siamese architecture also exhibited
notable potential; nevertheless, to fully realize its capabilities, a more extensive dataset
is essential.
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