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Abstract: As multiprocessor systems continue to grow in processor scale, the incidence of faults
also increases. As a result, fault diagnosis is becoming a key mechanism for maintaining the normal
operation of multiprocessor systems. To explore more effective diagnostic methods, Somani et al.
introduced a generalized pessimistic diagnostic strategy, named t/k-diagnosis, in which all faulty
nodes are isolated in a set of nodes and at most k fault-free nodes are misdiagnosed, provided
that the quantity of faults is limited by t. By imposing certain conditions or restrictions, the t/k-
diagnosability of some regular networks under the Preparata, Metze, and Chien (PMC) model has
been determined. However, the t/k-diagnosability of many networks under the comparison model
remains unidentified. In this paper, we provide new insights into the study of t/k-diagnosability
under the comparison model. After introducing some new notions, such as the 0-test unit, 0-test set
and 0-test subgraph, under the comparison model, we study the relationship in a system G between
the 0-test subgraphs and the components of G− F, where F is the set of faulty nodes, and we obtain
some important correlation properties. Based on these results, we study t/k-diagnosability under the
comparison model. As a result, the t/k-diagnosability of some regular interconnection networks can
be efficiently determined.

Keywords: t/k-diagnosability; t/k-diagnosis algorithm; interconnection networks; comparison
model

1. Introduction

With the rapid advancement of information technology, the precision of very large-
scale integration (VLSI) is becoming increasingly sophisticated. Today’s supercomputers
may have thousands of processors. Take the US supercomputer Summit, which was
crowned the world’s fastest super computer in 2018 and 2019, for example; it has 9216 pro-
cessors. The large scale of its processor numbers may cause many unreliability problems.
Therefore, reliability is an important issue to consider in the design, operation, and main-
tenance of such a large-scale multiprocessor system. To maintain system reliability, it is
necessary to quickly identify all faults. The procedure of recognizing faults is known as
fault diagnosis. System-level diagnosis is considered an ideal fault diagnostic method [1].

Many important diagnostic strategies have been proposed in the course of the devel-
opment of system-level fault diagnosis theory. Among them, the diagnostic capability of
the original diagnostic strategy introduced by Preparata et al. [1], named t-diagnosis, is
relatively weak. To improve the diagnostic capability, another important diagnostic strategy,
called t/k-diagnosis [2], which requires all faulty nodes to be isolated in a set of nodes, was
proposed by Somani et al. In this approach, at most k nodes can be misdiagnosed if the fault
node number does not exceed t. For the system G, its t/k-diagnosability is the maximum
value of t satisfying the condition that G is t/k-diagnosable. For example, the hypercube is
an important network topology, which has been applied to many parallel and distributed
systems such as iWarp [3] and Cray T3D [4]. For n ⩾ 4 and n ⩾ k ⩾ 1, it is proved by
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Somani et al. [2] that the hypercube Qn is [(k + 1)n− (k+1)(k+2)
2 + 1]/k-diagnosable. The

t/k-diagnosability of several networks under the PMC model has been determined, includ-
ing hypercubes [2], star graphs [2,5], mesh-based systems [2], and bijective connection (BC)
networks [6,7]. Recently, by utilizing the properties of the 0-test subgraph under the PMC
model, Lin et al. [8] studied the t/k-diagnosability of regular graphs under the PMC model.

It is well known that there are three system-level diagnosis models: the BGM model [9],
the comparison model [10], and the PMC model. The BGM model is not often used in
the existing literature as a fault diagnosis model due to its flaws. It is worth mentioning
as Sengupta and Dahbura state[10], the comparison diagnosis model can be obtained
by generalizing the PMC model. In other words, in terms of diagnosis model, the com-
parison model is often more suitable than the PMC model for studying the system fault
diagnosis. However, to the best of our knowledge, to date, few studies have investigated
t/k-diagnosability under the comparison model. In this paper, we study the problem of
t/k-diagnosability for regular networks under the comparison model.

The main contributions of this paper are described below.

• To study t/k-diagnosability based on the comparison model, the paper introduces
some important definitions, such as the 0-test unit and 0-test subgraph, and present
their related properties;

• We present the description of the t/k-diagnosability of regular networks under the
comparison model. At the same time, we propose a t/k-diagnosis algorithm for regular
networks under the comparison model, which is, to the best of our knowledge, the
first such t/k-diagnosis algorithm for regular networks under the comparison model;

• We give the t/k-diagnosabilities for some famous network systems such as hypercube
networks, star networks, complete cubic networks, and so on.

The rest of the paper is organized as follows. In the following section, some necessary
terminologies and notations are presented. We introduce the definition and properties
of the 0-test subgraph in Section 3. Section 4 presents the main results of this paper. We
discuss some applications in Section 5. Section 6 concludes the paper.

2. Preliminaries

A multiprocessor system can be modeled as a graph G(V, E), with V(G) being the
node set and E(G) being the edge set. For x ∈ V(G), N(x) is the set of all the neighbors of x,
and degG(x) is the degree of x in G. Let ∆(G) = max

x∈V(G)
deg(x) and δ(G) = min

x∈V(G)
deg(x).

Then, N(A) =
⋃

x∈A
N(x)− A and NB(A) = N(A) ∩ B, where A ⊂ V(G) and B ⊂ V(G).

In a connected graph, nodes with degree 1 are known as pendant nodes. A pendant
edge is incident to at least one pendant node. Then, all the nodes and edges in G can
be classified into two types: pendant and non-pendant. Let V1(G) and V2(G) be the
sets of pendant nodes and non-pendant nodes, and let E1(G) and E2(G) be the sets of
pendant edges and non-pendant edges, respectively, (see Figure 1). Then, we have the
following properties.

Figure 1. Illustration of pendant nodes and pendant edges.

Lemma 1. If G is a connected graph with |V(G)| ≥ 3, then |E1(G)| = |V1(G)|.
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Proof of Lemma 1. Since G is connected with |V(G)| ≥ 3, there exist no edges whose
two endpoints are pendant nodes. That is, each pendant edge corresponds to a different
pendant node (see Figure 1). Therefore, |E1(G)| = |V1(G)|.

Lemma 2. G−V1(G) is connected.

Proof of Lemma 2. For any two nodes x, y ∈ V2(G), since G is connected, there exists a
path that connects x and y (see Figure 2). Since each node in V1(G) has degree 1, the path
will not pass through any node in V1(G). Thus, there is a path that connects x and y in
G−V1(G). Therefore, G−V1(G) is connected.

Figure 2. An illustration of Lemma 2.

Lemma 3. Let G = (V, E) be a connected graph satisfying |V| ≥ 3 and ∆(G) ≥ 2. Then,
|V2(G)| ≥ |V(G)|−2

∆(G)−1 .

Proof of Lemma 3. We have V1(G) = V(G)−V2(G). By Lemma 2, G−V1(G) is connected.
That is, all nodes in V2(G) are connected by edges in E2. Clearly, |E2| ≥ |V2| − 1. Assume
the average degree in V2 is a with 2 ≤ a ≤ ∆(G). By Lemma 1, |E1(G)| = |V1(G)|.
According to Euler’s handshaking lemma, we have

|V1(G)|+ a|V2(G)| = 2(|E1(G)|+ |E2(G)|)
⇒ |V1(G)|+ a|V2(G)| ≥ 2(|V1(G)|+ |V2(G)| − 1)
⇒ (a− 2)|V2(G)| ≥ |V1(G)| − 2
⇒ (a− 2)|V2(G)| ≥ |V(G)| − |V2(G)| − 2
⇒ |V2(G)| ≥ |V(G)|−2

a−1 ≥ |V(G)|−2
∆(G)−1 .

Therefore, |V2(G)| ≥ |V(G)|−2
∆(G)−1 .

In system-level diagnosis, the PMC model [1] and comparison model [10] are two
widely adopted diagnostic models. Under the comparison model, a comparator will
distribute a task to its two adjacent nodes and compare the responses they provide. The
comparison of nodes x and y performed by z is denoted by (x, y)z, where (z, x) and (z, y)
denote two test edges, respectively. The outcome of test (x, y)z is represented by σ(x, y)z.
In Table 1, the invalidation rules for the comparison model are summarized. By Table 1,
if σ(x, y)z = 0, all three nodes are fault-free or the tester z is faulty. Moreover, if x and z are
fault-free, we can identify y as fault-free by σ(x, y)z = 0 or as faulty by σ(x, y)z = 1.

Table 1. Invalidation rules for the comparison model.

Comparator z Tested Nodes x and y σ(x, y)z

Fault-free Fault-free 0

Fault-free At least one is faulty 1

Faulty Any case 0 or 1

A collection of all the test results is called a syndrome σ. For a given syndrome σ,
F is called an allowable faulty set if σ can be produced from F, i.e., if the following two
conditions hold:

(a) σ(x, y)z = 0 for x, y, z ∈ V − F;
(b) σ(x, y)z = 1 for z ∈ V − F and x ∈ F (or y ∈ F).

For a given syndrome σ, if there are several allowable faulty sets F1, F2, . . . , Fr, we
cannot accurately diagnose the set. As a result, the faulty nodes can only be isolated into a
set F, such that F = F1 ∪ F2 ∪ . . . ∪ Fr.
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3. 0-Test Subgraph under the Comparison Model

For a given a syndrome σ under the comparison model, test (u, w)v is a 0-test unit if
σ(u, w)v = 0, where (u, v) and (w, v) are two test edges. The two tests, (u, w)v and (v, x)w,
belong to the same 0-test set because they share at least one common test edge (see Figure 3).
The graph induced by a 0-test set is called a 0-test subgraph.

Figure 3. Illustration of a 0-test set.

For instance, we have V(G) = {a, b, c, d, e, f , g} (see Figure 4). The syndrome under the
comparison model is represented in Figure 4, where σ(b, c)a = 0, σ(a, c)b = 0, σ(a, b)c = 0,
σ(b, e)c = 0, σ(a, e)c = 0, σ(c, e)d = 0, σ(g, b) f = 0, σ(b, e) f = 0, and σ( f , a)g = 0, and the
outcomes of other tests are 1. Hence, there are nine 0-test units, (b, c)a, (a, c)b, (a, b)c, (b, e)c,
(a, e)c, (c, e)d, (g, b) f , (b, e) f , and ( f , a)g. Furthermore, there are three 0-test sets, A={( f , a)g,
(g, b) f , (b, e) f }, B={(b, c)a, (a, c)b, (a, b)c, (b, e)c, (a, e)c}, and C={(c, e)d} (see Figure 5). Then,
let IA, IB, and IC be the 0-test subgraphs induced by 0-test sets A, B, and C, respectively,
(see Figure 6). The set of all 0-test subgraphs of G is written as T0(G) = {IA, IB, IC}. For any
X ∈ T0(G), |V(X)| ≥ 3.

Figure 4. Syndrome σ of graph G with 7 nodes a, b, c, d, e, f , g.

Let H be a 0-test set under the comparison model. Let τ(H) represent the set consisting
all testers in H. Clearly, all the testers in H are connected in H or |τ(H)| = 1. In the previous
example, we have τ(A) = {g, f }, τ(B) = {a, b, c}, and τ(C) = {d}. Then, we have the
following properties.

Lemma 4. Let H be a 0-test set of G under the comparison model. Either all the nodes in H are
fault-free or each node in τ(H) is faulty.
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Figure 5. 0-test sets A, B and C of graph G with 7 nodes a, b, c, d, e, f , g.

Figure 6. T0(G) of graph G with 7 nodes a, b, c, d, e, f , g.

Proof of Lemma 4. For arbitrary (b, c)a ∈ H, σ(b, c)a = 0. By Table 1, all the nodes of a,
b, and c are fault-free or tester a is faulty. Let (a, e)c be another 0-test unit in H that has
a common test edge with (b, c)a. We have σ(a, e)c = 0. If a, b, and c are fault-free, e is
also fault-free because σ(a, e)c = 0. This process continues until all 0-test units in H have
been examined. Therefore, all the nodes in H are fault-free. Otherwise, a is faulty, since
σ(a, e)c = 0, c is also faulty by Table 1. As a result, all the nodes in τ(H) are faulty.

Lemma 5. Assume that F represents a fault set of G. For any component C of G− F, C is a 0-test
subgraph under the comparison model.

Proof of Lemma 5. Since C is a component of G− F, C is connected, and all the nodes in C
are fault-free with N(C) ⊆ F. Hence, under the comparison model, any test in C is a 0-test
unit. Therefore, C belongs to a 0-test subgraph S ∈ T0(G). For any x ∈ N(C), without loss
of generality, suppose that (x, z), (y, z) ∈ E(G) with y, z ∈ V(C) (see Figure 7). Then, we
have σ(x, y)z = 1. Hence, x /∈ V(S). That is, each node in N(C) does not belong to S.
Therefore, C = S.

Lemma 6. Let S represent a 0-test subgrapht corresponding a component C of G− F under the
comparison model. Then, τ(S) = V2(C).

Proof of Lemma 6. Since C is connected and all the nodes in C are fault-free, we have
V2(C) ⊆ τ(S). For an arbitrary 0-test unit (x, y)a in S, tester a has at least two neighbors x
and y in C. Thus, a ∈ V2(C). Then, we have V2(C) ⊇ τ(S). Therefore, V2(C) = τ(S).
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Figure 7. An illustration of Lemma 5.

Lemma 7. Let F be a fault set of G and let S ∈ T0(G) with |τ(S)| > |F|; then, S is a component
of G− F.

Proof of Lemma 7. Since |τ(S)| > |F|, by Lemma 4, all the nodes in S are fault-free. More-
over, since S is a connected subgraph, S belongs to component C of G − F, denoted by
S ⊆ C. Suppose that S ̸⊇ C. Since C is connected, ∃x ∈ V(C) satisfying x ∈ N(S) (see
Figure 8). We let y ∈ V(S) such that x ∈ N(y). Since S ∈ T0(G), |V(S)| ≥ 3. There exists
another node z ∈ N(y) with z ∈ V(S). Furthermore, since C is a component of G − F,
x, y, z ̸∈ F. Thus, σ(x, z)y = 0. By the definition of the 0-test subgraph, x ∈ V(S), which
contradicts x ∈ N(S). Therefore, S = C.

Figure 8. An illustration of Lemma 7.

4. t/kt/kt/k-Diagnosability and a t/kt/kt/k-Diagnosis Algorithm under the Comparison Model

In the section, we discuss the t/k-diagnosability for a given regular network G = (V, E).
The outline of the section is as follows. First, we prove that for a fault set S with |S| ≤
f (k) + 1 and k ≥ 0, G − S contains a large component H with |V(H)| ≥ |S| and the
number of nodes in G− S− H is no more than k + 1 nodes. Next, we discuss the sufficient
conditions for the result that G is f (k)/k-diagnosable under the comparison model. Finally,
based on the obtained sufficient conditions and depth-first search strategy, we design a
t/k-diagnosis algorithm for computing a fault set F with |F| ⩽ t for the regular network G
such that at most k free-fault nodes belong to F .

Suppose that f (k) is a function of integer k with k ≥ 1 and k ≤ f (k); the following
three conditions are used in the rest of this paper.

Condition 1. For any F ⊂ V(G) with |F| ≤ f (k), G− F contains a large component H such
that |V(H)| ≥ |V(G)| − |F| − k and |V(H)| ≥ |F|;



Sensors 2024, 24, 2303 7 of 17

Condition 2. |V(G)| ≥ ∆(G) f (k) + ∆(G) + k + 4;

Condition 3. f (k) + 1 ≤ f (k + 1).

Then, we can derive some theorems and corollaries as follows.

Corollary 1. Let S be a fault set of G with |S| ≤ f (k) + 1 and k ≥ 0. If Conditions 1 and 3 hold,
G− S has a large component H with |V(H)| ≥ |S|, and the union of the remaining components
M has a maximum k + 1 nodes.

Proof of Corollary 1. Let F be a set with |F| ≤ f (k + 1). By Condition 1 , G− F contains a
large component L such that |V(L)| ≥ |V(G)| − |F| − (k + 1) and |V(L)| ≥ |F|.

By Condition 3, f (k) + 1 ≤ f (k + 1). According to the conclusion of the previous
paragraph, for any S ⊂ V(G) with |S| ≤ f (k) + 1 ≤ f (k + 1), G− S has a large component
H such that |V(H)| ≥ |V(G)| − |S| − (k + 1) and |V(H)| ≥ |S|.

Theorem 1. Let F be a fault set of G with |F| ≤ f (k) + 1. If Condition 2 holds and G− F contains
a large component L with |V(G)| − |F| − (k + 1) ⩽ |V(L)|, then L ∈ T0(G) with |τ(L)| > |F|.

Proof of Theorem 1. By Condition 2 and |F| ≤ f (k) + 1, we can obtain

|V(L)| ≥ |V(G)| − |F| − (k + 1)
≥ ∆(G) f (k) + ∆(G) + k + 4− ( f (k) + 1)− (k + 1)
= (∆(G)− 1) f (k) + ∆(G) + 2.

Therefore, we have |V(L)| ≥ 3, for ∆(G) ≥ 1.

Since |V(L)| ≥ 3 and L is a connected component, ∆(L) ≥ 2. By Lemma 3, we
have |V2(L)| ≥ |V(L)|−2

∆(L)−1 ≥
(∆(G)−1) f (k)+∆(G)

∆(G)−1 > f (k) + 1 ≥ |F|. By Lemma 5, L is a 0-test
subgraph under the comparison model, denoted by L ∈ T0(G). Moreover, by Lemma 6, we
have |τ(L)| = |V2(L)| > |F|.

Theorem 2. If Conditions 1 and 2 hold, G is f (k)/k-diagnosable under the comparison model.

Proof of Theorem 2. Let F be a fault set of G with |F| ≤ f (k). According to Condition
1, G − F contains a large component L with |V(L)| ≥ |V(G)| − |F| − k. By Theorem 1,
L ∈ T0(G) with |τ(L)| > |F|. That is, there exists a 0-test subgraph L such that |V(L)| ≥
|V(G)| − |F| − k and |τ(L)| > |F|. By Lemma 7, all the nodes in L can be identified as
fault-free. Since |V(L)| ≥ |V(G)| − |F| − k, there are fewer than |F| + k nodes that are
unidentified. Hence, all the faulty nodes can be isolated into a node set, in which the
number of fault-free nodes is no more than k . Therefore, under the comparison model, G
is f (k)/k-diagnosable.

Furthermore, we continue to search for a higher value of t such that the system is
t/k-diagnosable.

Theorem 3. If Conditions 1–3 hold, then, under the comparison model, G is f (k) + 1/k-diagnosable.

Proof of Theorem 3. Let F be a fault set of G with f (k) + 1 ≥ |F|. Now, we discuss the
situation by considering the following scenarios.

Case 1 . |F| ≤ f (k)
According to Condition 1, G − F contains a large component H with |V(H)| ≥

|V(G)| − |F| − k and |V(H)| ≥ |F|. By Theorem 1, H ∈ T0(G) with |τ(H)| > |F|. More-
over, by Lemma 7, all the nodes in H can be identified as fault-free. Since |V(H)| ≥
|V(G)| − |F| − k, there are fewer than |F|+ k unidentified nodes. Therefore, all the faulty
nodes can be isolated in a node set containing a maximum bound of k fault-free nodes.
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Case 2. |F| = f (k) + 1
By Corollary 1, G− F has a large component L with |V(L)| ≥ |F|, and the union of

the remaining components M has a maximum of k + 1 nodes (see Figure 9). We have
N(M) ⊆ F. By Theorem 1, L is a 0-test subgraph with |τ(L)| > |F|. Hence, by Lemma 7,
all the nodes in L can be identified as fault-free. There is a total of |F|+ |M| nodes that
remain unidentified.

Figure 9. An illustration of case 2.

Case 2.1. |M| ≤ k.
Since |M| ≤ k, all faulty nodes can be isolated within a node set that at most k fault-free

nodes are contained.
Case 2.2. |M| = k + 1.
Suppose that |N(M)| ≤ f (k). Let F′ = N(M); we have |F′| ≤ f (k). By Condition 1,

G− F′ has a large component L′ and a union of remaining components M′ with |M′| ≤ k
(see Figure 10a). Since N(M) ⊆ F and F′ = N(M), F′ ⊆ F. Therefore, L ⊆ L′ and M ⊆ M′.
Then, |M′| ≥ |M| = k + 1, which contradicts |M′| ≤ k. Therefore, |N(M)| ≥ f (k) + 1.
Since |F| = f (k) + 1 and N(M) ⊆ F, we have N(M) = F and |N(M)| = |F| = f (k) + 1.
That is, each node in F has a neighbor in M.

Figure 10. An illustration of case 2.2: (a) An illustration of F′ = N(M) and L′. (b) An illustration of
showing F ⊆ N(L) and identifying F to be fault set.

Suppose that x ∈ F and x /∈ N(L) (see Figure 10b). Let F′′ = F − {x}; we have
|F′′| = f (k). According to Condition 1, G− F′′ has a union of smaller components M′′ with
|M′′| ≤ k and a large component. Then, M′′ = M + {x}. Therefore, |M′′| = |M|+ 1 ≥
k + 2, which contradicts |M′′| ≤ k. Hence, each node in F is connected to at least one
neighbor in L. That is, F ⊆ N(L).

Since all the nodes belonging to L are fault-free, all the nodes in F can be identified
as faulty (see Figure 10b), where |F| = f (k) + 1. Note that f (k) + 1 ≥ |F|, all nodes in M
are identified as fault-free. Thus, all faulty nodes can be isolated within a node set, and no
fault-free node is misidentified as faulty. Therefore, under the comparison model, G is
f (k) + 1/k-diagnosable.

Inspired by Lin et al. [8], we introduce a t/k-diagnosis Algorithm 1 under the compar-
ison model.
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Algorithm 1: t/k-diagnosis algorithm under the comparison model

Require: Conditions 1–3.
Ensure: (H, Fi), where H is the set of nodes that are identified as fault-free and Fi
is the set of nodes that are isolated.

Step 1. H = ∅, Fi = ∅;
Step 2. Use a depth-first traversal algorithm to derive all the 0-test units under the
comparison model;

Step 3. Obtain the tester of each 0-test units and merge 0-test units to construct
T0(G), and set T0(G) = {S1, . . . , Sr};

Step 4. Compute |τ(Si)| for 1 ≤ i ≤ r, by merging testers in Si;
Step 5. For each 0-test subgraph Si, if |τ(Si)| > t, then H ← Si;
Step 6. Fi ← N(H);
Step 7. If |Fi| = t, then H ← V(G)− H − Fi; else, Fi ← V(G)− H − Fi;
Step 8. Return (H, Fi).

The correctness of the t/k-diagnosis algorithm under the comparison model follows
from Theorem 3. In this algorithm, steps 1 and 4–8 take O(1) time. In step 2, the main compu-
tational process is based on pairs of adjacent edges. There are ∑

x∈V(G)
deg(x)(deg(x)− 1)/2

pairs of adjacent edges. Step 3 is based on 0-test units. In the worst case, step 3 need
∑

x∈V(G)
deg(x)(deg(x)− 1)/2 iterations to compare each pair of 0-test units to see if they have

a common test edge. Take an n-dimensional hypercube network Qn as an example, Qn is
an n-regular graph with |V(Qn)| = 2n [11]. Let N = |V(Qn)|, we have n = log N. Then,

∑
x∈V(Qn)

deg(x)(deg(x)− 1)/2 = 2n ·n(n− 1)/2 = N log N(log N− 1)/2. Hence, steps 2 and

3 take O(N log2 N) time. As a result, the total time needed by this algorithm for n-dimensional
hypercube networks is O(N log2 N), where N = |V(Qn)|.

5. Applications
5.1. Applications to Hypercube-like Networks

Hypercube-like networks are a class of networks (also called BC networks), which are
defined recursively by a perfect matching operation [11] (see Figure 11). An n-dimensional
hypercube-like network is written as Hn, where |V(Hn)| = 2n [11]. Since Hn is n-regular [12],
we have ∆(Hn) = n. Note that both n > 0 and k > 0 are integers, let f (k) = n(k + 1)−
k2+3k+2

2 ; then, we have f (k) ≥ k for k ≤ n− 1. Then, Hn has the following properties.

Figure 11. Topology of Hn for n = 4.

Lemma 8. |V(Hn)| ≥ 2 f (k) + k + 1, where n ≥ 4 and k ≤ n− 1.



Sensors 2024, 24, 2303 10 of 17

Proof of Lemma 8. Since |V(Hn)| = 2n and k ≤ n− 1, we have

|V(Hn)| − (2 f (k) + k + 1)
= 2n − 2n(k + 1) + k2 + 3k + 2− k− 1
= (k + (1− n))2 + 2n − n2

≥ 0, for n ≥ 4.

Therefore, |V(Hn)| ≥ 2 f (k) + k + 1 for n ≥ 4.

Lemma 9 ([13,14]). Let g and n be two positive integers with g ≤ n − 3 and n ≥ 4, and let
F ⊂ V(Hn) with |F| ≤ ng − (g−1)(g+2)

2 − 1. If Hn − F is disconnected, there exists a large
component in Hn − F that includes a minimum of 2n − |F| − (g− 1) nodes.

Corollary 2. Let F ⊂ V(Hn) with |F| ≤ f (k), 0 ≤ k ≤ n − 4 and n ≥ 4. If Hn − F is
disconnected, Hn − F has a large component L and a union of smaller components of at most k
nodes, where |V(L)| ≥ |F|.

Proof of Corollary 2. Let k = g−1; we have |F| ≤ f (k) = f (g−1) = ng− (g−1)2+3(g−1)+2
2 =

ng− (g−1)(g+2)
2 − 1. By Lemma 9, Hn − F has a large component L and a union of smaller

components of at most k nodes. By Lemma 8, |V(Hn)| ≥ 2 f (k) + k + 1. Then, we have

|V(L)| ≥ |V(Hn)| − |F| − k
≥ 2 f (k) + k + 1− f (k)− k
= f (k) + 1
> |F|.

Lemma 10. |V(Hn)| ≥ ∆(Hn) f (k) + ∆(Hn) + k + 4, where n ≥ 10 and 0 ≤ k ≤ n− 4.

Proof of Lemma 10. Since 0 ≤ k ≤ n− 4 and ∆(Hn) = n, we have

|V(Hn)| − (∆(Hn) f (k) + ∆(Hn) + k + 4)

= 2n − n2(k + 1) + n(k2+3k+2)
2 − (n + k + 4)

≥ 2n − n2(k + 1) + n− (n + k + 4)
= 2n − n2(k + 1)− (k + 4)
≥ 2n − n2(n− 3)− n
= 2n − n3 + 3n2 − n
> 0 for n ≥ 10.

Hence, when n ≥ 10 and 0 ≤ k ≤ n − 4, it holds that |V(Hn)| ≥ ∆(Hn) f (k) + ∆(Hn)
+ k + 4.

Lemma 11. f (k) + 1 ≤ f (k + 1) for k ≤ n− 3.

Proof of Lemma 11. Since f (k) = n(k + 1)− k2+3k+2
2 for k ≤ n− 1, we have

f (k) + 1− f (k + 1)

= n(k + 1)− k2+3k+2
2 + 1− (n(k + 2)− (k+1)2+3(k+1)+2

2 )
= k + 3− n ≤ 0, for k ≤ n− 3.

Therefore, f (k) + 1 ≤ f (k + 1) for k ≤ n− 2.

Then, the following result can be derived.

Theorem 4. Hn is f (k) + 1/k-diagnosable under the comparison model for 0 ≤ k ≤ n− 4 and
n ≥ 10.
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Proof of Theorem 4. By Corollary 2 and Lemmas 10 and 11, Hn satisfies Conditions 1–3
for 0 ≤ k ≤ n− 4 and n ≥ 10. By Theorem 3, it is true that under the comparison model
Hn is f (k) + 1/k-diagnosable.

5.2. Applications to Folded Hypercubes

An n-dimensional folded hypercube FQn is constructed by augmenting a hypercube Qn
with 2n− 1 extra edges (see Figure 12), where |V(FQn)| = 2n and ∆(FQn) = n + 1 [15]. Let
f (k) = (n+ 1)(k+ 1)− k2+3k+2

2 for k ≤ n− 1; then, the following properties can be derived.

Figure 12. Topology of FHn for n = 4.

Lemma 12. |V(FQn)| ≥ 2 f (k) + k + 1 , where 6 ⩽ n and k ≤ n− 1.

Proof of Lemma 12. Since |V(FQn)| = 2n and k ≤ n− 1, we have

|V(FQn)| − (2 f (k) + k + 1)
= 2n − 2(n + 1)(k + 1) + k2 + 3k + 2− k− 1
= (k− n)2 + 2n − (n + 1)2

≥ 0, for n ≥ 6.

Therefore, |V(Hn)| ≥ 2 f (k) + k + 1 for n ≥ 6.

Lemma 13 ([16]). Given two positive integers n and g with n ≥ 6 and 1 ≤ g ≤ n−1
2 , let

F ⊂ V(FQn) with |F| ≤ (n + 1)g− 1
2 (g2 + g). If FQn − F is disconnected, FQn − F has a large

component and a union of smaller components of at most g− 1 nodes.

Corollary 3. Suppose that n ≥ 6 and 0 ≤ k ≤ n−3
2 are integers, let F ⊂ V(FQn) with |F| ≤ f (k).

If FQn − F is disconnected, FQn − F has a large component L and a union of smaller components
of at most k nodes such that |V(L)| ≥ |F|.

Proof of Corollary 3. Let k = g− 1, f (k) = f (g− 1) = (n + 1)g− (g−1)2+3(g−1)+2
2 = (n +

1)g− 1
2 (g2 + g). By Lemma 13, if FQn − F is disconnected, FQn − F has a large component

and a union of smaller components of at most k nodes. By Lemma 12, |V(FQn)| ≥
2 f (k) + k + 1. Then, we have

|V(L)| ≥ |V(FQn)| − |F| − k
≥ 2 f (k) + k + 1− f (k)− k
= f (k) + 1
> |F|.

Lemma 14. |V(FQn)| ≥ ∆(FQn) f (k) + ∆(FQn) + k + 4, where 10 ⩽ n and 0 ≤ k ≤ n− 3.
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Proof of Lemma 14. Since 0 ≤ k ≤ n− 3 and ∆(FQn) = n + 1, we have

|V(FQn)| − (∆(FQn) f (k) + ∆(FQn) + k + 4)

= 2n − (n + 1)2(k + 1) + (n+1)(k2+3k+2)
2 − (n + k + 5)

≥ 2n − (n2 + 2n + 1)(k + 1)− (k + 4)
≥ 2n − (n2 + 2n + 1)(n− 2)− (n + 1)
= 2n − n3 + 2n− 1
> 0, for n ≥ 10.

Hence, when 10 ⩽ n and 0 ≤ k ≤ n− 3, |V(FQn)| ≥ ∆(FQn) f (k) + ∆(FQn) + k + 4.

Lemma 15. f (k) + 1 ≤ f (k + 1) for k ≤ n− 2.

Proof of Lemma 15. Since f (k) = (n + 1)(k + 1)− k2+3k+2
2 for k ≤ n− 1, we have

f (k) + 1− f (k + 1)

= (n + 1)(k + 1)− k2+3k+2
2 + 1− [(n + 1)(k + 2)− (k+1)2+3(k+1)+2

2 ]
= k + 2− n ≤ 0, for k ≤ n− 2.

Therefore, f (k) + 1 ≤ f (k + 1) for k ≤ n− 2.

Then, we can obtain the following theorem.

Theorem 5. FQn is f (k) + 1/k-diagnosable under the comparison model for n ≥ 10 and 0 ≤ k ≤
n− 3.

Proof of Theorem 5. By Corollaries 3 and Lemmas 14–15, Conditions 1–3 hold for and
0 ≤ k ≤ n− 3. Therefore, by Theorem 3, Hn is f (k) + 1/k-diagnosable under the compari-
son model for n ≥ 10 and 0 ≤ k ≤ n− 3.

5.3. Applications to Star Graphs

The star graph Sn is a sparsely connected graph with |V(Sn)| = n! and ∆(Sn) = n− 1 [17].
Figure 13 shows Sn for n = 4. Let f (k) = n(k + 1)− 3k− 2, where k ∈ {1, 2, 3}; then, Sn
has the following lemmas.

Figure 13. Topology of Sn for n = 4.



Sensors 2024, 24, 2303 13 of 17

Lemma 16. |V(Sn)| ≥ 2 f (k) + k + 1 for n ≥ 4 and 1 ≤ k ≤ 3.

Proof of Lemma 16. Since |V(Sn)| = n! and n ≥ 4, we have

|V(Sn)| − (2 f (k) + k + 1)
= n!− 2[n(k + 1)− 3k− 2]− k− 1
= n!− 2nk− 2n + 6k + 4− k− 1
= n!− 2nk− 2n + 5k + 3
= n!− 2n(k + 1) + 5k + 3
≥ 0, f or 1 ≤ k ≤ 3.

Therefore, |V(Sn)| ≥ 2 f (k) + k + 1 for n ≥ 4 and 1 ≤ k ≤ 3.

Lemma 17 ([18,19]). Suppose that n ≥ 4 and F is a subset of Sn such that |F| ≤ 2n− 5. Sn − F
has a large component and at most one singleton.

Lemma 18 ([18,19]). Let F be a subset of Sn with |F| ≤ 3n− 8 and n ≥ 4. Sn − F consists of a
large component and a collection of smaller components containing no more than two nodes.

Lemma 19 ([17]). Let F be a subset of Sn with |F| ≤ 4n− 11 and n ≥ 4. If Sn− F is disconnected,
Sn − F has a large component and a union of smaller components of at most three nodes.

Motivated by Lemmas 16–19, we have the following lemmas.

Lemma 20. Let F be a subset of Sn with |F| ≤ f (k), n ≥ 4 and 1 ≤ k ≤ 3. If Sn − F is
disconnected, Sn − F consists of a large component L and a collection of smaller components
containing no more than k nodes such that |V(L)| ≥ |F|.

Proof of Lemma 20. By Lemmas 17–19, Sn − F consists of a large component L and a
collection of smaller components containing no more than k nodes for 1 ≤ k ≤ 3. Then,
by Lemma 16, we have

|V(L)| ≥ |V(Sn)| − |F| − k
≥ 2 f (k) + k + 1− |F| − k
≥ 2 f (k) + k + 1− f (k)− k
= f (k) + 1
> |F|.

Hence, |V(L)| ≥ |F|.

Lemma 21. Suppose that 5 ⩽ n and 1 ≤ k ≤ 3. Then, |V(Sn)| ≥ ∆(Sn) f (k) + ∆(Sn) + k + 4.

Proof of Lemma 21. We have ∆(Sn) = n− 1 and |V(Sn)| = n! [17]. Since 1 ≤ k ≤ 3 and
n ≥ 5,

|V(Sn)| − (∆(Sn) f (k) + ∆(Sn) + k + 4)
= n!− n(n− 1)(k + 1) + (n− 1)(3k + 2)− (n + k + 3)
= n!− (k + 1)n2 + (3k + 1)n− (3k + 4)
> n!− (k + 1)n2

≥ n!− 4n2

> 0.

Hence, when 5 ⩽ n and 1 ≤ k ≤ 3, it is true that |V(Sn)| ≥ ∆(Sn) f (k) + ∆(Sn) + k + 4.

Lemma 22. f (k) + 1 ≤ f (k + 1) for 1 ≤ k ≤ 3 and n ≥ 4.
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Proof of Lemma 22. Note that f (k) = n(k + 1)− 3k− 2, where 1 ≤ k ≤ 3 , we have

f (k) + 1− f (k + 1)
= n(k + 1)− 3k− 2 + 1− [n(k + 2)− 3(k + 1)− 2]
= −n + 4
≤ 0, f or n ≥ 4.

Therefore, f (k) + 1 ≤ f (k + 1) for 1 ≤ k ≤ 3 and n ≥ 4.

Therefore, for f (k) = n(k + 1)− 3k− 2, we obtain the following theorem.

Theorem 6. Sn is f (k) + 1/k-diagnosable under the comparison model for n ≥ 5 and 1 ≤ k ≤ 3.

Proof of Theorem 6. By Lemmas 20–22, Conditions 1–3 hold for n ≥ 5 and 1 ≤ k ≤ 3.
Therefore, by Theorem 3, Sn is f (k) + 1/k-diagnosable under the comparison model for
n ≥ 5 and 1 ≤ k ≤ 3.

5.4. Applications to Complete Cubic Networks

An n-dimensional complete cubic network, written as CN(n), is a special class of
hierarchical cubic networks [20]. Figure 14 shows CN(n) for n = 2. According to the
definition of CN(n), we have |V(CN(n))| = 22n and ∆(CN(n)) = n + 1. Let f (k) =

n(k + 1)− k(k+1)
2 for 0 ≤ k ≤ n− 1; then, the following properties can be obtained.

Figure 14. The topology of CN(n) for n = 2.

Lemma 23. |V(CN(n))| ≥ 2 f (k) + k + 1 for n ≥ 2 and 0 ≤ k ≤ n− 1.

Proof of Lemma 23. Since |V(CN(n))| = 22n and 0 ≤ k ≤ n− 1, we have

|V(CN(n))| − (2 f (k) + k + 1)
= 22n − 2(n(k + 1)− k(k+1)

2 )− k− 1
= 22n − 2nk− 2n + k2 + k− k− 1
= 22n − 2nk− 2n + k2 − 1
= 22n − 2(k + 1)n + k2 − 1
= 22n − 2n2

≥ 0, f or n ≥ 2.

Therefore, |V(CN(n))| ≥ 2 f (k) + k + 1 for n ≥ 2 and 0 ≤ k ≤ n− 1.

Lemma 24 ([20]). Let n ≥ 2 and 1 ≤ g ≤ n. For any F ⊂ V(CN(n)) with |F| ≤ gn− g(g−1)
2 ,

there exists a large component and several smaller components containing a maximum of g− 1
nodes in CN(n)− F.
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By Lemma 24, we can deduce the following corollary.

Corollary 4. Let F ⊂ V(CN(n)) with n ≥ 2, 0 ≤ k ≤ n− 1 and |F| ≤ n(k + 1)− k(k+1)
2 .

In CN(n) − F, there exists a large component L and several smaller components containing a
maximum of k nodes, where |V(L)| ≥ |F|.

Proof of Corollary 4. By Lemma 24, let k = g − 1, we have |F| ≤ ng − g(g−1)
2 . Then,

there exists a large component L and several smaller components containing a maximum
of g nodes in CN(n) − F , where n ≥ 2 and 0 ≤ k ≤ n − 1. Then, we have |V(L)| ≥
|V(CN(n))| − |F| − k. By Lemma 23,

|V(L)| ≥ |V(CN(n))| − |F| − k
≥ 2 f (k) + k + 1− |F| − k
≥ 2 f (k) + k + 1− f (k)− k
= f (k) + 1
> |F|.

Hence, |V(L)| ≥ |F|.

Lemma 25. |V(CN(n))| ≥ ∆(CN(n)) f (k)
+∆(CN(n)) + k + 4 for 0 ≤ k ≤ n− 1 and n ≥ 3.

Proof of Lemma 25. We have |V(CN(n))| = 22n and ∆(CN(n)) = n + 1. Since 0 ≤ k ≤
n− 1 and n ≥ 3,

|V(CN(n))| − (∆(CN(n)) f (k) + ∆(CN(n)) + k + 4)

= 22n − n(n + 1)(k + 1) + (n+1)(k2+k)
2 − (n + k + 5)

≥ 22n − (n2 + n)(k + 1)− (n + k + 5)
≥ 22n − (n3 + n2 + 2n + 4)
> 0.

Hence, |V(CN(n))| ≥ ∆(CN(n)) f (k)+∆(CN(n))+ k+ 4 for 0 ≤ k ≤ n− 1 and n ≥ 3.

Lemma 26. f (k) + 1 ≤ f (k + 1) for 0 ≤ k ≤ n− 2.

Proof of Lemma 26. Since f (k) = n(k + 1)− k(k+1)
2 for 0 ≤ k ≤ n− 2, we have

f (k) + 1− f (k + 1)
= n(k + 1)− k(k+1)

2 + 1− [n(k + 2)− (k+1)(k+2)
2 ]

= −n + k + 2
≤ 0.

Therefore, f (k) + 1 ≤ f (k + 1) for 0 ≤ k ≤ n− 2.

Theorem 7. CN(n) is f (k) + 1/k-diagnosable under the comparison model for n ≥ 3 and
0 ≤ k ≤ n− 2.

Proof of Theorem 7. By Corollary 4 and Lemmas 25 and 26, Conditions 1–3 hold for
0 ≤ k ≤ n− 2 and n ≥ 3. Therefore, by Theorem 3, Hn is f (k) + 1/k-diagnosable for n ≥ 10
and 0 ≤ k ≤ n− 2.

6. Conclusions

t/k-diagnosability is an important diagnostic strategy that can improve the self-
diagnosing capability of multiprocessor systems. While significant progress has been made
in t/k-diagnosability under the PMC model in the last half century, t/k-diagnosability
and t/k-diagnosis algorithms for many regular networks under the comparison model
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have yet to be determined. In this paper, inspired by the 0-test subgraph under the PMC
model, we introduce some useful notions for the comparison model, such as the 0-test unit,
0-test set, and 0-test subgraph. Then, we study the properties of 0-test subgraphs under the
comparison model. Furthermore, we derive some key theorems about t/k-diagnosability
and the t/k-diagnosis algorithm under the comparison model. Finally, the applications of
our results to some regular networks are demonstrated.

In the article, we calculate the t/k-diagnosability for regular networks based on the
comparison model. Considering that N-ary M-cube networks are more general than
regular networks in terms of network topology, in the future, we will investigate the
t/k-diagnosability problem of N-ary M-cube networks under the comparison model.
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