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Abstract: This study examined the stability of the functional connectome (FC) over time using
fingerprint analysis in healthy subjects. Additionally, it investigated how a specific stressor, namely
sleep deprivation, affects individuals’ differentiation. To this aim, 23 healthy young adults underwent
magnetoencephalography (MEG) recording at three equally spaced time points within 24 h: 9 a.m.,
9 p.m., and 9 a.m. of the following day after a night of sleep deprivation. The findings indicate that the
differentiation was stable from morning to evening in all frequency bands, except in the delta band.
However, after a night of sleep deprivation, the stability of the FCs was reduced. Consistent with
this observation, the reduced differentiation following sleep deprivation was found to be negatively
correlated with the effort perceived by participants in completing the cognitive task during sleep
deprivation. This correlation suggests that individuals with less stable connectomes following sleep
deprivation experienced greater difficulty in performing cognitive tasks, reflecting increased effort.

Keywords: magnetoencephalography; brain fingerprint; sleep deprivation; functional connectome;
brain network

1. Introduction

In recent years, the so-called “functional connectome” (FC) has been widely employed
in studying brain functions both in health and disease [1]. The FC is represented as a matrix
in which each component quantifies the statistical interdependency between pairs of brain
regions disposed on the corresponding rows and columns. The patterns expressed by FC
have been mainly explored by comparing different populations or groups of individuals
in different conditions. More recently, the enhancement of tailored therapies has led to
interest in a deeper understanding of the potential information contained in a subject-
specific FC (i.e., the brain fingerprint). Within this framework, Amico and Goñi developed
the concept of the “identifiability matrix”, a mathematical approach able to differentiate
different subjects on the basis of the FC [2]. The identifiability matrix is defined as the
Pearson correlation between the test and retest FCs of individuals within a specific dataset,
allowing one to assess whether two FCs of the same individual are more similar than
two FCs of different individuals.
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This approach has demonstrated its effectiveness in the clinical field; in fact, the loss
of brain fingerprinting predicts clinical impairment in several neurological diseases, such
as Alzheimer’s disease [3]. However, it is worth noting that the fingerprint performance
is highly dependent on the specific experimental conditions [4]. The usual procedure for
fingerprint evaluation considers consecutive acquisitions spaced by a few seconds/minutes,
and thus, the quest for identifiability is fulfilled in a limited time interval, leading to a
paramount question regarding its stability across time [5]. Investigations dealing with the
relationship between brain fingerprints and time are still open, and several works have
explored this aspect, considering different time intervals spanning from a few weeks to
1–2 years [5–9]. In these works, it is possible to observe a stable pattern of the fingerprint
across time, with some exceptions in cases of neuropsychiatric disorders, such as in subjects
with schizophrenia spectrum disorders and in individuals with a high cumulative polygenic
risk for schizophrenia [8]. The aforementioned considerations arouse a debate on the
impact that some non-physiological conditions can have on the stability of the fingerprint
across time.

Another poorly investigated aspect concerns the stability of the fingerprint in relation
to stress conditions [4]. Among the possible stress conditions, sleep deprivation repre-
sents an interesting case study since it has been shown to alter the brain network [10,11]
in a temporary and non-pathological fashion, allowing one to observe possible individ-
ual variations. Even though the underlying neurophysiological mechanisms are poorly
understood, several studies have investigated dynamic changes in brain connectivity, in-
cluding electroencephalography (EEG) and functional magnetic resonance imaging (fMRI)
approaches [12–14], which underline severe alterations in the connectivity of several net-
works, including dorsal attention, default mode, and hippocampal networks.

In this framework, the scope of the present study is threefold. Firstly, we aimed to
investigate the stability of the FC fingerprint over time. Most of the works that deal with
the stability of the fingerprint compare recordings occurring at two different time instants
very close to each other (e.g., a few minutes). In this manuscript, we explored the stability
of the brain fingerprint by considering two recordings far from each other in time, i.e.,
measures collected at different times of day. Secondly, we aimed to verify whether stressful
conditions such as sleep deprivation can interfere with the stability of the connectome
fingerprint. Lastly, we aimed to explore the correlation between reduced stability in the
brain fingerprint and perceived stress in performing a cognitive task.

For this purpose, we analyzed data from twenty-three young males in three different
MEG recording sessions performed at three different time points. MEG allows for data
acquisition with considerable temporal and spatial resolution [15]. Additionally, we co-
registered the MRI scans of individual participants to enable an accurate reconstruction of
signal sources. The first session was performed in the morning after a night of usual sleep,
the second in the evening after twelve hours, and, finally, the third the following morning,
after a night spent in the company of the other participants. During each session, two dis-
tinct recordings separated by a few minutes were carried out to obtain the FC fingerprints
of each participant and to compare them between the three different time points. After
filtering the source-reconstructed signals in the five canonical frequency bands, we used the
phase linearity measurement (PLM) to build the FCs of each participant [16]. Finally, in or-
der to verify whether the possible reduction in brain fingerprint identifiability would relate
to cognitive impairment or sleepiness, after each session, cognitive performance (selective
attention and switching ability) and the subjective level of sleepiness were assessed.

2. Materials and Methods
2.1. Participants

Thirty-two young male adults were enrolled (mean age ± standard deviation,
24.84 ± 2.85 years), but nine were excluded from the analysis, as further explained in
the Statistical Analysis section (i.e., new sample size = twenty-three participants). Female
participants were not included in the study design due to the hormonal variations in
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the menstrual cycle, which influence brain connectivity [17]. All the participants were
right-handed Italian speakers, and none of them had any history of medical, neurological,
or psychiatric illness nor medication or drug intake. The requirements for the involve-
ment in the experiment were normal sleep duration and no excessive daytime sleepiness.
The ingestion of coffee, beverages containing stimulating active ingredients, and intense
physical activity were prohibited starting 24 h before the experimental procedure, which
was performed during the working week to avoid changes related to weekend activities.
All the participants gave their written informed consent. The study was approved by
the Ethical Committee of Psychological Research of the Department of Humanities of the
University of Naples Federico II (prot. n. 11/2020) and was conducted in accordance with
the Declaration of Helsinki.

Concerning sleep quality, a proper qualitative and quantitative analysis on the par-
ticipants was performed via the Pittsburgh sleep quality index (PSQI) [18], the Epworth
sleepiness scale (ESS) [19], and the Karolinska sleep diary (KSD) [20]. The thresholds to
allow the subjects to take part in the study were fixed at 5 for the PSQI and 10 for the
ESS; thus, participants with scores lower than the previously mentioned thresholds were
allowed to take part in the study.

2.2. Sleep Deprivation Protocol (SDP)

The procedure involved groups of four participants per night of the SDP. The exper-
imental protocol included three sessions which took place at 9.00 a.m. on day 1 (M1),
9.00 p.m. on day 1 (E1 ), and 9.00 a.m. on day 2 (M2). In each session, the participants
underwent two consecutive MEG recordings at rest separated by 1 min. Immediately after,
the subjects performed a letter cancellation task (LCT) and task switching (TS) test (see in
the Cognitive Assessment section for more info on these tasks). During each experimental
session, the participants were seated on a comfortable chair in a soundproof room. After
the first session, the participants were free to return to their daily life activities and then
come back to the laboratory for the next session (E1) in the evening and start the SDP under
the experimenter’s supervision. Short walks outside the laboratory were allowed to pre-
vent the participants from falling asleep. In all the sessions, the perceived subjective state
of sleepiness was assessed through the administration of the Karolinska sleepiness scale
(KSS) [21] and the cognitive load by means of the NASA Task Load Index (NASA-TLX).
In more detail, the NASA-TLX is a multidimensional scale designed to obtain the cost
incurred by an individual to achieve a particular level of performance while performing
a task. It consists of six subscales that refer to mental (RM), physical (RF), and temporal
(RT) demands; effort (S); performance (P); and frustration (F) [22,23]. The NASA-TLX
test is considered the most cited and widely used test for workload assessment [24]. It is
widely applicable across various contexts and fields of research due to its versatility and
generalizability. Its items are easily adaptable, making it suitable for diverse scenarios and
allowing researchers to assess cognitive workload effectively [25].

2.3. MRI Acquisition

All the participants were subjected to magnetic resonance imaging (MRI) after the SDP,
then after the MEG recording in order to minimize the noise derived from electromagnetic
fields. These data were fundamental for allowing an accurate source reconstruction with
regard to the MEG signal processing pipeline. The MRI images of thirty-two young
male adults were acquired on a 1.5 T Signa Explorer scanner equipped with an 8-channel
parallel head coil (General Electric Healthcare, Milwaukee, WI, USA). In particular, three-
dimensional T1-weighted images were acquired (details are reported in [26]).

2.4. MEG System

The data were acquired by using a MEG system equipped with SQUID magnetome-
ters developed by the Institute of Applied Sciences and Intelligent Systems at the Italian
National Research Council [27]. The MEG system consisted of an ultra-thermally insu-
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lated cylindrical container (dewar), inside which the SQUID sensors were placed on a
helmet-shaped support to adapt to the shape of the patient’s head (Figure 1a); the dewar
was filled with liquid helium (T = 4.2 K) to cool the sensors to its working temperature.
The distance between neighboring sensors was 3 cm, while the distance from outside the
dewar, where the patient’s head was housed, was just 2 cm thanks to the effectiveness of
thermal insulation, which ensured a normal room temperature on the external surface of
the dewar. The helmet included 154 SQUID magnetometers as measurement channels,
while another 9 SQUIDs were organized into three triplets and positioned further away
from the measurement surface to measure the environmental noise.
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Figure 1. Details of the MEG recording and data processing pipeline. The neuronal activity was
recorded via 154 SQUID sensors (a); then, the raw signal was filtered from the noise (e.g., cardiac
activity and blinking artifacts) (b,c). The cleaned signal was then co-registered with the MRI signal
of each subject to obtain the source activity reconstruction (d). Finally, the functional connectivity
among brain areas was estimated for each of the 90 brain areas, obtaining a functional connectome
(FC) for each frequency band. Two recordings (test and retest) were performed in three sessions (first
morning (M1), evening (E1), and second morning (M2)).

Such sensors consist of fully integrated SQUID magnetometers based on a Ketchen-
type design and include a superconducting flux transformer inductively coupled to the
SQUID loop in a washer shape [28]. Since the readout electronics require a negative feed-
back circuit to linearize the output extending the linear dynamic range, the magnetometer
also included a feedback coil in a bipolar shape to minimize the crosstalk between the
neighboring channels. All coils and a resistor network for the SQUID operation were inte-
grated on the same chip in order to avoid additional noise due to external circuit elements.
The SQUID sensitivity, usually reported as the spectral density of magnetic field noise,
measured at T = 4.2 K was less than 2.0 fT/

√
Hz down to 1–2 Hz.

In order to drastically reduce the environmental magnetic signals, which are much
more intense than the signals generated by the brain, the system and the patients were
housed in a magnetic shielded room made of a layer of aluminum and two layers of
µ-metal (high-permeability materials), showing a shielding factor of 35 dB at 10 mHz
that increases up to 100 dB starting from 20 Hz. The background residual magnetic noise
inside the shielded room was about 5 fT/

√
Hz, which represents the sensitivity of the MEG

system [27]. Note that the noise level does not depend on the signal amplitude, which
arises only from the brain activity. After the first system cooling, each sensor was set at the
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optimal working point and related values were stored in a configuration file. The sensors
always remained at T = 4.2 K, with the liquid helium refilled periodically (one time per
week). The configuration file was recalled if the sensors were turned off in order to reduce
the liquid helium consumption.

Furthermore, it should be noted that unlike electric fields, magnetic fields recorded by
SQUIDs are less prone to distortion by the scalp and skull [29].

2.5. MEG Acquisition and Processing

MEG data were acquired and processed like in [30]. In particular, two closed-eye
resting-state segments were recorded, each lasting 3.5 min, with a minute interval between
the two consecutive acquisitions. During the acquisitions, the volunteers were seated inside
a magnetically shielded room. Moreover, before the measurements, the position of four
anatomical landmarks (nasion, right and left pre-auricular points, and vertex of the head)
and the position of four reference coils (attached to the head of the subject) were digitalized
by using Fastrak (Polhemus®, FTGui v1.0.0.1, Colchester, VT, USA) to define the position
of the head under the helmet. Before each segment of the registration, the position of
the head was checked, and during the acquisition, cardiac activity and eye blinking were
recorded by using an electrocardiogram and electro-oculogram, respectively, to remove
physiological artifacts. After that, an anti-aliasing filter was applied, and the data were
sampled at 1024 Hz. A detailed description of the processing pipeline is available in the
Supplementary Materials.

Consequently, the MEG data were filtered in the frequency band of interest (0.5–48 Hz)
using a 4th-order Butterworth IIR band-pass filter implemented using Matlab scripts in
the Fieldtrip toolbox [31]. As reported in [26], the data were then processed via principal
component analysis (PCA) for environmental noise reduction, and noise channels and bad
segments of the acquisition were successively identified and removed via visual inspection
by an experienced rater, like in [32]. Then, the signal was processed via independent
component analysis (ICA) and visual inspection for physiological-artifact reduction (e.g.,
eye blinking and heart activity).

A linearly constrained minimum variance (LCMV) beamformer [33] was adopted to
reconstruct the time series signals related to the centroids of 116 brain regions of interest
(ROIs), according to the Automated Anatomical Labelling atlas. To this aim, the geometrical
information derived from the MRI acquisition and the volume conduction model proposed
by Nolte [34] were exploited. Lastly, the reconstructed time series were filtered into five
standard frequency bands: delta (0.5–4.0 Hz), theta (4.0–8.0 Hz), alpha (8.0–13.0 Hz),
beta (13.0–30.0 Hz), and gamma (30.0–48.0 Hz). Figure 1 illustrates the whole MEG data
processing pipeline.

To provide an estimate of the connectivity among each pair of brain areas, a phase
linearity measurement (PLM) was performed [16]. In particular, the 26 cerebellar regions
were excluded from the analysis due to the low reliability of the signal, and thus, 90 regions
encompassing the cerebral cortex and the basal ganglia were considered. The result of this
operation was the generation of a 90 × 90 matrix describing the connectivity between brain
areas for a specific subject (also known as the “functional connectome” (FC)). To perform
the analysis, we constructed a matrix for each of the two recording trials in each session.
Thus, we obtained one FC test and one FC retest for each of the three sessions for each
subject [2,4,35].

2.6. Fingerprint Analysis

As mentioned in the previous subsection, fingerprint analysis based on FCs is a
methodology able to define subject-specific characteristics. Briefly, it starts from the defini-
tion of a matrix known as an “identifiability” or “differentiation” matrix [2]. In this context,
the similarity is defined as the Pearson correlation between the FCs at hand. Thus, the
identifiability matrix “A”, i.e., the matrix of correlations (square and non-symmetric) be-
tween the subjects’ FCs’ test and retest, has subjects both as rows and columns and encodes
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information regarding the similarity of each subject with themself (the main diagonal of
the matrix—Iself metric in Formula (1)), as well as the similarity of each subject to the others
(off-diagonal elements—Iothers metric in Formula (2)). Thus, starting from the identifiability
matrix “A”, the following metrics can be defined [2]:

Ii
sel f= aii (1)

Ii
others =

1
2N ∑N

j=1
j ̸=i

(
aij + aji

)
(2)

Ii
di f f = Ii

sel f − Ii
others (3)

i = 1, 2, ..., N (4)

in which “aij” refers to the element of the identifiability matrix at the i-th row and j-th
column, and “N” is the number of subjects. It is worth noting that the metric Idiff quantifies
the difference between the average within-subject-FC similarity and the between-subject-FC
similarity. The higher this value, the higher the individual fingerprint overall across the
population.

More specifically, we considered four different combinations to perform the analysis
and verify the stability of fingerprint analysis as a function of time and stress (i.e., one night
of sleep deprivation):

• Combination M1M1: this refers to the test and retest collected on the same day at
very close time instants during the morning (one-minute time distance)—no sleep
deprivation.

• Combination M1E1: this refers to the comparison between the morning acquisitions
and the evening acquisitions—no sleep deprivation.

• Combination E1M2: this refers to the comparison between the evening acquisitions
and the next-morning acquisitions—including sleep deprivation.

• Combination M1M2: this refers to the comparison between the two different morning
acquisitions—including sleep deprivation.

In each case where different sessions were compared, the fingerprint was calculated
by averaging the comparison between the test of session 1 and the retest of session 2, and
vice versa.

2.7. Cognitive Assessment

After each MEG registration, the participants performed the cognitive assessment tests
via LCT and TS. For each test, the experimenter provided the instructions and left the room
immediately, making sure that the tests ran without any distraction in the soundproof room.

2.7.1. Letter Cancellation Task

The letter cancellation task [36] required participants to sequentially search and mark
(from left to right and from top to bottom), as fast and accurate as possible, three target
letters within a 36 × 50 matrix of capital letters (font: New York Times, “12”) printed on
an A4 paper sheet. The total time allowed for the completion was 5 min, and every target
appeared 100 times in a random sequence. The number of hits, assumed as a measure
of accuracy, and the number of completed rows, assumed as a measure of speed, were
considered dependent variables.

2.7.2. Task Switching

In task switching, two different tasks were considered in rapid succession according
to the presentation of a random sequence of tasks. Thus, two consecutive tasks might
represent the same one, i.e., a “repetition” trial, or different ones, i.e., a “switch” trial. In
this specific experiment, the two tasks consisted of the following: (i) task A: the digit is odd
or even; (ii) task B: the digit is greater or smaller than 5.
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The difference in terms of accuracy and time for the two trials was referred to as
“switch cost”, which can be considered an operational measure of executive control [37].
All the participants were individually tested in a comfortable, soundproof room and sat
in front of a 15-inch monitor illustrating the tasks. The instructions were both displayed
on the screen and explained verbally by the experimenter at the beginning of each session,
underlining the need for both accuracy and speed in performing the TS test. Further details
on how the TS test was performed can be found in [26].

2.8. Subjective Evaluations

Two subjective sleepiness evaluations were used in the protocol: the Karolinska sleepi-
ness scale (KSS) and the NASA Task Load Index (NASA-TLX) [23]. The former scale
measures the subjective level of sleepiness at a particular time during the day. The KSS is a
measure of situational sleepiness, and it is sensitive to fluctuations. It is a 10-point scale
and self-report measure which takes 5 min to be completed. The latter, the NASA-TLX, is a
subjective assessment tool used to measure the perceived workload and mental demands
experienced by individuals while performing tasks. This test assesses the workload across
six dimensions: (i) mental demand (RM): the cognitive effort and complexity required to
perform the task.; (ii) physical demand (RF): the physical effort and exertion required to
complete the task, (iii) temporal demand (RT): the time pressure or urgency associated with
the task; (iv) performance (P): the perceived level of success or accomplishment in perform-
ing the task, (v) effort (S): the level of effort or exertion invested in completing the task; (vi)
frustration (F): the extent to which the task was frustrating, stressful, or challenging.

For each dimension, participants rated their perceived workload on a scale rang-
ing from low to high. The ratings were then combined using a weighting and aver-
aging procedure to calculate an overall workload score, which indicates the perceived
workload intensity.

2.9. Statistical Analysis

To identify potential significance among the different experimental conditions, a
PERMANOVA test (with 10,000 permutations) was run on the four different combinations
(i.e., M1M1, M1E1, M1M2, E1M2) for each metric described in the Fingerprint Analysis
section and for each frequency band (i.e., delta, theta, alpha, beta, and gamma). After that, a
post hoc analysis via a permutation test was performed to identify the pairs that significantly
differed. Specifically, the labels of the two given cases were shuffled 10,000 times to obtain
two surrogate groups of values, and each time, the absolute difference of the mean values
of the two surrogate groups was computed. Finally, the absolute difference of the actual
cases was compared to the 10,000 surrogate differences to obtain a statistical significance.
Lastly, the results were corrected by adopting the Benjamini–Hochberg procedure (BH
step-up procedure) [38] to control the false discovery rate (FDR) at a level of 0.05.

Subsequently, Pearson’s correlation was used to find possible correlations between
fingerprint metrics and behavioral performance. A correlation analysis was carried out
between the fingerprint metrics and the difference between the tests’ scores (∆) correspond-
ing to sessions used to estimate the fingerprint metrics. For instance, the Iself related to the
M1E2 case was correlated with the difference between the cognitive scores obtained during
the first morning and the second morning. These tests were conducted on a population
of 23 subjects, since 9 subjects were excluded from the analysis as it was not possible to
obtain both test and retest connectomes for each recording session, following the signal
cleaning procedure.

3. Results

We found a statistically significant difference in all frequency bands for both Iself
and Idiff when the basal combination (i.e., M1M1) was compared with the other three
combinations (i.e., M1E1, E1M2, and M1M2). In particular, the values of Iself and Idiff
obtained from the fingerprinting of the first morning session were higher than (1) the
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fingerprint between the evening and the second morning, and (2) the fingerprint between
the first and the second mornings. It should be noted that both comparisons included
a night of sleep deprivation and only differed in the time passing between the sessions.
Interestingly, the Iself and Idiff values of the basal condition (i.e., first-morning recordings)
were not significantly different from the Iself and Idiff values of the combination without
sleep deprivation (i.e., the M1E1), except for the delta band. Figure 2 shows the comparison
for the Iself metric as well as the Idiff metric.
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Figure 2. Iself and Idiff for each frequency band. Violin plot of the fingerprint scores representing the
similarity between two functional connectomes (FCs) of the same individual obtained at different
time points (Iself), and the extent to which an individual is differentiable within the dataset considering
each case (Idiff). Colored dots represent the individuals, horizontal lines represent the average value,
and white dots represent the median value. M1M1 compares the two recordings performed during
the first morning (9:00 a.m. on day 1)—1 min distance; M1E1 compares the FC of the first morning and
the FC of the evening (9:00 p.m. on day one)—12 h distance; E1M2 compares the FC of the evening
and the FC of the second morning (9:00 a.m. on day two)—12 h distance including sleep deprivation;
M1M2 compares the FC of the first morning and FC of the second morning—24 h distance including
sleep deprivation. * = pfdr < 0.05, ** = pfdr < 0.01.

After the identification of the significant differences between the four combinations,
a correlation analysis (Pearson’s correlation) was carried out. In detail, we performed
a correlation test between the Iself and Idiff fingerprint metrics of the groups M1M2 and
E1M2 (the ones presenting significant differences across all frequency bands) and the
differences in scores within the respective time points on the cognitive tests (LCT, TS),
subjective sleepiness evaluations (KSS), and stress perceived in performing the cognitive
tests (NASA-TLX). Specifically, the notation “∆X” refers to the difference between the
specific “X” subscore of the NASA-TLX test between two sessions. For instance, if the
subscore “S” (effort) is considered between the times M1 and M2, then the adopted notation
will be ∆S = SM1 − SM2 . Following FDR correction, we found that the Iself between the two
morning recordings was inversely correlated with the ∆S in all frequency bands. Hence,
the higher the similarity of the recordings after 24 h including sleep deprivation, the lower
the perceived effort in performing cognitive tasks. The Idiff presented the same significant
inverse correlations, suggesting that the more an individual was differentiable within the
dataset, the lower the effort was in completing the cognitive tasks. None of the remaining
tests reported significant correlations. Statistical data are reported in Table 1, while the
scatter plots of the correlations are reported in Figure 3.
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Table 1. Pearson’s correlations (corr) and p-values before (p-value) and after (p-value (FDR)) correction
(Benjamini–Hochberg) between the fingerprint metrics Isel f and Idi f f and the differences in the S
subscore (effort) of the NASA-TLX test for the M1M2 case for each frequency band.

M1M2
∆S−Iself ∆S−Idiff

δ Θ α β γ δ θ α β γ

p-value 0.024 0.005 0.008 0.011 0.019 0.017 0.010 0.010 0.017 0.026
p-value (FDR) 0.024 0.018 0.018 0.018 0.024 0.022 0.022 0.022 0.022 0.026

corr −0.47 −0.56 −0.54 −0.52 −0.48 −0.49 −0.52 −0.53 −0.49 −0.46
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Figure 3. Pearson’s correlation analysis of Iself and Idiff with ∆S of the NASA-TLX in the five
frequency bands for the M1M2 case (24 h with sleep deprivation). The difference in perceived effort is
negatively correlated in each frequency band, hence, the higher the effort, the lower the differentiation
of the subject.

4. Discussion

In this work, we explored the stability of the FC over a 24 h period, assessing the
ability to differentiate each individual from all the others. Moreover, we also evaluated
the effect of a particular stress condition, i.e., sleep deprivation, on the stability of the
brain fingerprint. Finally, we investigated the possible correlation between the brain
fingerprinting characteristics, cognitive condition, and subjective sleepiness evaluations
assessed before and after sleep deprivation. To this aim, a population of 23 healthy young
adults was tested. Based on the source-reconstructed MEG signals, test and retest FCs
were generated for each recording session carried out 12 h apart, with the second and third
recording sessions interspersed with a night of sleep deprivation. The first result concerns
the stability of the connectomes at a 12 h time distance. The comparison between Iself values
in all frequency bands, except the delta band, obtained from the test and retest recordings
performed at 9 a.m. on the first day and 9 p.m. on the same day was not statistically
different from the comparison of recordings that occurred only in the early morning. This
also applies to the differential score (Idiff), which, besides reaffirming the similarity between
the recordings performed at different times, also confirms fair discrimination among the
different participants included in the dataset. These results demonstrate the stability of the
FC fingerprint over time (at least limited to 12 h of daytime).

Such an aspect has been investigated by several articles using different technologies
(e.g., fMRI, EEG, intra-cranial electrodes, etc.), but almost no work has explored this aspect
using MEG, which represents one of the main novel aspects of the proposed analysis.
One study, by adopting the fMRI dataset from the Human Connectome Project (www.

www.humanconnectome.org
www.humanconnectome.org
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humanconnectome.org, accessed on 1 April 2024), found that the best identification of
brain fingerprints occurs at longer time scales, but short bursts of identifiability associated
with neuronal activity persist even at shorter time scales [39]. Additionally, Ousdal et al.,
investigating the stability of the connectome by means of fMRI, reported that it remains
stable over a 2–3-year period in middle and older age [40]. These findings suggest that
the brain functional connectome can be stable over time, and our results align with this
outcome. It is important to note that in the delta band, a significant decrease in stability
after 12 h was observed. The high amplitude of the signals in this frequency band is often
associated with deep sleep [41], but numerous studies report that this band also plays a
role in the wakeful state, such as in the case of neocortical background activity, memory
consolidations, and plasticity modulations [42,43]. Activity in the delta band has also been
found to be altered due to sleep inertia effects [44,45] that may also last hours [46]. This
may explain why we found such instability in the delta band, even though specific study
designs are needed to fully confirm this statement.

Then, we investigated what happens to connectome stability when introducing a
stress factor. We observed that the stability of the FC fingerprint over time was reduced
following sleep deprivation. In particular, we found a reduction in both the Iself and the Idiff
when considering the recordings that occurred 12 (E1M2) and 24 (M1M2) hours apart. A
reduction in these parameters suggests that the differentiability of individuals decreases,
which could inferentially be translated as an alteration of the network occurring following
sleep deprivation. Specifically, for the Iself, a reduction in its value indicates less similarity
between the two recordings, while there are deeper considerations to be made regarding
Idiff, which refers to the differentiability of an individual compared to a group. Hence,
considering that differential scores higher than zero represent a positive differentiation of
a given subject compared to the group, we can assert that, despite a significant decrease,
most participants retained a positive value even after the sleep deprivation night. This
suggests that the alteration of the functional network, although capable of altering test–
retest repeatability following stressful factors (in this case, sleep deprivation), does not
damage the brain network to the extent of altering important subject-specific elements that
allow for differentiation. Furthermore, it must be noted that if no significant difference
is detected in the Iothers scores, the variation in Idiff largely depends upon the reduction
in Iself. Several studies have demonstrated the profound impact of sleep deprivation
on both structural and functional aspects of the brain. Wang L. et al., using electron
microscopic analyses of neurons, reported that sleep loss can alter the structures of various
organelles in the brain, which may disrupt fundamental cellular processes [47]. Wang C.
et al., using surface morphological analysis and graph theoretical analysis, showed that
sleep restriction decreases cortical thickness and enhances the topological properties of the
structural covariance network [43]. Additionally, total sleep deprivation affects functional
connectivity, as observed by EEG recordings [48] and event-related potential analysis [49].
However, the impairment induced by sleep deprivation appears to be temporary and
reversible with sufficient sleep, as demonstrated by resting-state functional MRI data [50].

Another interesting aspect concerns the correlation between reduced individual dif-
ferentiability (for both the Iself and Idiff parameters) due to sleep deprivation and cognitive
assessment. We observed an inverse correlation between Iself and Idiff related to the two
morning recordings (M1M2) and the subscore (effort) of the NASA-TLX test. In other words,
we showed that the increase in perceived effort during test performance following sleep
deprivation was correlated with reduced stability in the functional connectome. Hence, the
subjects who reported having to spend more effort to complete cognitive tasks after a night
of deprivation were also those whose connectome had varied the most. Sleep deprivation
has been shown to be associated with decreased cognitive performance [51], and changes
in functional connectivity following sleep deprivation have been found to correlate with
worsened executive functions [52]. Speculatively, we suppose that the augmented effort
may be caused by the increased attentional processing required to complete the tasks in
hindering conditions. Indeed, sleep deprivation has been found to have a negative impact

www.humanconnectome.org
www.humanconnectome.org
www.humanconnectome.org
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on attention [53,54]. However, further studies specifically designed to investigate this are
required in order to confirm this hypothesis [54].

The described study has several limitations. Firstly, the size of the sample was rel-
atively small and further investigation should focus on larger samples to confirm these
results. During the nocturnal period, the participants stayed in groups of four in a lit
environment and were allowed to converse with each other. An operator checked that they
did not fall asleep. The fact that the control was not performed using a video recording
system and that the participants were not alone could represent limitations of the work.

5. Conclusions

In conclusion, this study assessed the short-term (24 h) stability of the functional
connectome using brain fingerprinting. We observed that a stress-inducing physiological
condition can globally impair this temporal stability. Additionally, we found a correlation
between impaired fingerprint stability and the perceived effort of participants during
cognitive tasks under conditions of sleep deprivation. Furthermore, it is paramount to note
that the proposed work represents one of the first studies analyzing the stability of the FC
fingerprint over time with MEG data processing, which has been poorly investigated in
the scientific literature and which does represent an interesting alternative to conventional
technologies (e.g., fMRI, EEG, etc.) thanks to its excellent time resolution.
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