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Abstract: In mobile robotics, LASER scanners have a wide spectrum of indoor and outdoor appli-
cations, both in structured and unstructured environments, due to their accuracy and precision.
Most works that use this sensor have their own data representation and their own case-specific
modeling strategies, and no common formalism is adopted. To address this issue, this manuscript
presents an analytical approach for the identification and localization of objects using 2D LiDARs.
Our main contribution lies in formally defining LASER sensor measurements and their representation,
the identification of objects, their main properties, and their location in a scene. We validate our pro-
posal with experiments in generic semi-structured environments common in autonomous navigation,
and we demonstrate its feasibility in multiple object detection and identification, strictly following
its analytical representation. Finally, our proposal further encourages and facilitates the design,
modeling, and implementation of other applications that use LASER scanners as a distance sensor.

Keywords: LASER scanner; LiDAR; object detection; object localization; mobile robotics

1. Introduction

LiDAR, short for Light Detection and Ranging, is a crucial tool in instrumentation
and robotic navigation. Its primary advantage lies in its ability to accurately calculate the
depth, shape, and dimensions of objects based on captured data [1]. Nowadays, these
devices play a key role in assisting robots in performing autonomous navigation tasks in
indoor environments, such as factory corridors and warehouses [2]. Also known as LASER
sensors, LiDARs are particularly suitable for capturing time series data [3], generating
point clouds [4,5], and acquiring regular angular depth data [6].

LiDARs can be 1D, 2D or 3D: 1D LiDAR, commonly known as a laser range finder
(LRF), is the core of the LiDAR scanner system, while a 2D LiDAR employs a LASER
beam to gauge distances from the sensor to objects within a plane surrounding it. A 3D
LiDAR operates in a similar way, but measures distances from the sensor to objects within
a surrounding sphere around the sensor [7]. Figure 1 illustrates the use of a 2D LiDAR and
its measurements. The robot depicted in Figure 1a is equipped with an omnidirectional
2D LiDAR sensor mounted on its top. Figure 1b shows the robot inside a rectangular
area sorrounded by walls, with a static object (a box) in front of it. Corresponding LiDAR
measurements are depicted in Figure 1c, where the edges of the box are highlighted by
red dots.
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(a) (b)

(c)

Figure 1. (a) Robot with a 2D LiDAR sensor mounted on its top (on the white frame). (b) View of the robot
in its environment with one static object in front of it. (c) Resulting 2D LiDAR measurements—the edges of
the static object are highlighted by red squares.

A notable example of a widely applied technique that uses LASER scanners is Simul-
taneous Localization and Mapping (SLAM), the procedure of autonomously building a
map while a robot is localizing itself in the environment [8]. Research related to this topic
within the field of mobile robotics has remained popular for a long time, and more recently,
additional efforts have been made to contribute to the development of intelligent and
autonomous vehicles [9,10], a field in which many works focus on object detection methods
using 3D LiDAR [11–13]. On the other hand, 2D LiDARs are preferred in many mobile
robotics applications due to their low cost and high degree of accuracy, since it is well
suited for flat, indoor spaces [14]. The application also plays a role in the choice of sensor.
For example, in places such as electrical substations, optical sensors are preferred to obtain
distance information because they do not suffer interference from large electromagnetic
fields [15].

Besides the approaches mentioned above, there are many others that motivate and
drive the purpose of this work, in particular the use of LASER scanners for object detection
and tracking (including cases in which both the agent and objects are mobile) [16–19], object
identification and segmentation from the local environment [20–22], and object feature
extraction [23]. These implementations have a deep impact on autonomous robotics and
decision making, using little or no prior knowledge about the environment and objects yet
accurately inferring information and executing tasks based on such data.

In yet another similar sense, SLAM implementations frequently focus on building and
self-correcting a map or a CAD (Computer-aided design) model map based on LASER
scanner data. Generally, many such techniques apply triangulation, environment land-
marks [5], and object feature detection [24] for systematic odometry error compensation in
both indoor [25–27] and outdoor [28,29] data. In cases where a map is already available,
the use of 2D LiDAR is also attractive. For instance, a fast obstacle detection technique for
mobile robot navigation using a 2D-LiDAR scan and a 2D map is proposed in [30].
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Nonetheless, other fields also benefit from the use of LASER scanners. In the agricul-
tural automation industry, for example, there are various research efforts in the evaluation
of canopy volume [31], poplar biomass [32], trunks [33], and crop and weed distinction [34],
among other uses. From a different perspective, the robotics competition RoboCup and
its educational counterpart RoboCupJunior, specifically in the Rescue [35] and Rescue
B [36] categories, respectively, have also benefited from using LASER range data for robot
navigation in unstructured environments to perform rescue operations.

Thus, there is extensive literature on 2D LiDAR data applications in detecting, locating,
and matching objects, as well as in map construction, matching, and correction for self-
localization. However, to the best of our knowledge, there is no clear universal consensus
on strict mathematical notation and modeling for such instruments, although they have
lower computational cost than image recognition processes [18]. Wang et al. [37] also
state that there is a need for standardization of information extraction based on LiDAR
data. They propose a framework from semantic segmentation to geometric information
extraction and digital modeling, but their focus is on the extraction of geometric information
from roads.

In order to process LASER scan information, each paper in the literature suggests
its own notation, framework, and approach. This lack of standardization is sub-optimal
for scientific research, development, and education, where a unified approach would be
preferable. Considering all aforementioned applications, we contend that it is valuable and
significant to propose and evaluate a formal mathematical definition for object detection
and identification in tasks based on segmentation, tracking, and feature extraction.

Given the wide array of applications based on and benefiting from LiDAR data, there
is as of yet no rigid definition or analytical approach for the general problem of detecting
objects in semi-structured environments. In other words, despite the existence of similar
structures, there is a gap between different approaches.

1.1. Related Works

There is a multitude of applications and strategies already proposed and validated in
the literature for the use of LiDAR sensors in autonomous navigation, each with its own
specific advantages and disadvantages. The versatility and cost effectiveness of LiDAR-
based distance measurement instruments have spurred rapid advances in robotics. Their
ability to detect and identify objects, obstacles, other robots, and humans within a scene
significantly impacts the planning algorithms of autonomous robots. In this sub-section, we
list some relevant work that illustrates how LASER sensor data are used and represented in
different applications. In the following subsection, we explain how our proposal contributes
to the state of the art.

In the literature, it is common to find a correspondence between the representation of
Cartesian space measurements for various mapping and terrain reconstruction applications,
such as forest areas, highway structures, and power transmission lines [38–41]. In those
applications, the measurement point is associated with a reference, whether fixed or mobile.

In [1], sensor measurements can be regarded as a representation of points in space,
where each point corresponds to the reflection of the beam in the environment. In other
words, measurements are recorded as a point cloud [42], which can later be associated with
object detection and evasion strategies or for environment location.

Robot navigation relies on sensor influx and fusion to extract environmental features
and deliberate upon its surroundings to execute a task, whether simple or complex. In that
sense, LiDAR sensors are widely used in SLAM and often depend on feature mapping and
tracking to achieve precision and accuracy using deterministic and probabilistic models,
as seen in the literature [5,8,26,27]. Similar techniques are also used in the research of
autonomous driving [9,10].

A strategy for detecting circular objects based on their geometric properties and polar
curve fitting is presented in [43]. To enhance this technique, support vector machines
(SVMs) are employed for object detection, proving applicable to robot localization and
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navigation tasks. In line with this, to improve the SLAM process, the Polar Scan Matching
(PSM) strategy proposed in [44] demonstrates efficiency in associating points based on
bearing similarity, allowing faster processing compared to traditional iterative methods,
such as Iterative Closest Point (ICP). Furthermore, in [45], the representation of angular
measurements as a Gaussian process during the matching stage improves navigation map
representations compared to ICP and PSM.

LiDAR sensors are also used to detect and track objects from consecutive distance
measurements to predict cluster routes by particle filter algorithms [46] or by Kalman Filters
after a hierarchical object association [47]. Similarly, a tracking technique is employed in [48]
to follow objects in port terminals using autonomous guided vehicles (AGVs) without prior
information about shape or size. To avoid obstacles in unknown environments, LASER
sensors infer the location of possible collision points and maneuver to avoid them [49,50].
Furthermore, in relation to navigation, measurements can be used to detect and track
moving objects or to infer the width of the corridor, allowing or not allowing autonomous
agents to pass [51].

The detection and identification of objects and their properties is imperative for nav-
igation and task completion in mobile robotics. A standard mathematical framework to
interpret LASER data can be fruitful to describe as well as improve models and implemen-
tations, e.g., in the field of forest and agriculture robotics applications [31–34]. Thus, formal
investigations and modeling of the physical world for autonomous interpretation by robots
is impactful.

In contrast with the works cited above, the present proposal considers LASER scanning
as a function that relates distance information given the measurement angle. To translate the
result of this discrete function into a point cloud, the temporal history of the measurements
must be obtained. Thus, the proposed representation can become equivalent to those
presented in other works in the literature.

1.2. Contributions and Organization of the Article

A precise mathematical formulation for object detection and identification, particularly
in tasks involving segmentation, tracking, and feature extraction, holds significant value
across various applications in both research and industry. In light of this, our primary con-
tribution is the formal definition of LASER sensor measurements and their representation.
This encompasses not only the identification of objects but also the delineation of their key
properties and spatial locations within a scene. We achieve this by uniquely representing
each object through mathematical notations, explicitly situating them within the set of
objects that collectively constitutes the entire universe set. Here, the universe set denotes
the comprehensive environment enveloping an agent.

In essence, this paper tackles the formalization of distance measurement and ob-
ject detection using LASER sweep sensors, specifically 2D LiDARs. The application of
this framework is then discussed, encompassing aspects of object detection, localization,
and matching within a broader context. The paper begins by presenting an overview of
the problem, discussing related formalization efforts, and highlighting works that stand to
gain from a standardized modeling framework. Subsequently, our contribution unfolds
across three main sections of theoretical modeling, followed by experimental validation
with a real robot. Initially, the scope is defined, outlining how LiDAR scan measurements
can be mathematically represented. Following this, the framework is employed to deduce
properties from objects within a scene. Finally, a comprehensive guideline for object de-
tection and localization is established through practical application, shedding light on the
advantages of our proposed modeling approach in a realistic semi-structured environment.
The ultimate objective is to facilitate accessible and universally applicable research, explor-
ing the merits and potential limitations of LiDAR sensors across diverse realms of robotics,
be it educational, theoretical, or applied.

The subsequent sections of the article are structured as follows. Section 2 introduces
the primary contribution of this work, which revolves around the proposed formalism
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for object identification and localization based on the sweep readings of a 2D LiDAR.
The section commences by elucidating the measurements obtained from each laser beam,
followed by the representation of the entire set as a discrete function that correlates the
measurement angle with the recorded distance. A detailed presentation of the formalism
for deducing the detection and location of objects through an analytical depiction of this
function ensues. Moving forward, Section 3 encompasses the experimental and numerical
validation results of our proposal, conducted in didactic scenarios with straightforward
configurations. Finally, Section 4 outlines the key conclusions drawn from the study and
suggests potential directions for implementing the proposed formalism in autonomous
navigation tasks.

2. Proposed Formalism for Object Identification and Localization

In the realm of robotics applications, the characterization of a navigation environment
hinges on the quantity and arrangement of objects within the scene, coupled with the degree
of freedom afforded to the agents. Within this framework, an environment earns the label
“structured” when the agent undertaking tasks possesses prior knowledge of the spatial
arrangement of objects, and these objects either remain static or undergo changes that are
entirely anticipated during task execution. Conversely, if objects exhibit unpredictable
movement while the agent is in the process of executing tasks, the environment is deemed
“unstructured.” Lastly, environments where a certain level of object mobility is acceptable,
prevalent in settings like offices, laboratories, residences, storage facilities, and workshops,
fall under the classification of “semi-structured environments”.

In the context of semi-structured environments, the navigation scene’s entities can be
effectively mapped by an agent utilizing a distance sensor, which, in the scope of this study,
is specifically addressed as a 2D LiDAR LASER scanner. These entities encompass both
fixed objects such as walls, shelves, and wardrobes, as well as dynamic objects like boxes
or other mobile agents.

2.1. Representation of 2D LiDAR Sweeps

The 2D LiDAR employs a LASER beam to gauge distances from the sensor to objects
within a plane surrounding it. Typically in mobile robotics applications, the LASER beam
rotates parallel to the ground, providing the robot with crucial information about its
proximity to obstacles in its vicinity. It is essential to consider the varying ranges and
resolutions of different sensors.

To better understand the forthcoming definitions, we consider the pipeline depicted
by Figure 2, in which a robot with a 2D LiDAR mounted on its top is placed on a specific
scenario (to facilitate understanding, the scenario is the same one illustrated in Figure 1).
In Figure 2, the leftmost image represents the scenario under consideration. The subse-
quent image delineates the LiDAR measurements corresponding to the aforementioned
scenario. Subsequently, the LiDAR scan undergoes processing to derive the sweep function,
calculate the difference between consecutive distance measurements, and identify potential
candidates for detected objects.

Figure 2. Pipeline for the proposed formalism. From left to right: the scenario under consideration,
the corresponding LiDAR measurements, the sweep function corresponding to the LiDAR scan
(distance versus measurement angle), the difference between consecutive distance measurements,
and the identification of candidates for potential objects. The latter three figures are explained in
greater detail in the following sections.
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In the definitions given in the sequence, the subscript k designates a discrete set of
elements (number of measurements per revolution of the LASER), and n denotes an element
within such a set, both inherently discrete in nature.

Definition 1. We let r be a discrete function representing a LiDAR sensor, denoted by

r : Θk → Dk

θn 7→ Dn = r(θn),

where domain Θk indicates a set containing each discrete angle within the angular scan range, and
co-domain Dk denotes the set of measurements assigned to each angle θk. Such a discrete function is
shown in Figure 3a.

(a)

(b)

(c)

Figure 3. Polar stem plots representing one sweep of a 2D LiDAR scan corresponding to the
scenario depicted in Figure 1: (a) Discrete distance measurements per sample; (b) Distance difference
between subsequent samples; (c) Contour given by the distance measurements. In all cases, the angle
represents the orientation of the LASER beam with respect to the base of the sensor, which has a
range of 360◦.
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Definition 2. We let s be a difference function given by

s : Θk → dk

θn 7→ dn = r(θn)− r(θn−1) = s(θn),

where θn is an element in the set Θk of all angles within the angular range of the instrument,
and dk is a set of differences between two neighboring consecutive measurements, as shown
in Figure 3b.

Definition 3. We let f be a function coinciding with r(θn) ∀θn ∈ Θk, i.e.,

f : R → R
θ 7→ D = r(θn),

such that f is also continuous and monotonic in intervals (θn−1, θn) for every n = 1, · · ·, N (see
Figure 3c), whose one-sided limits are

lim
θ→θ−n

f (θ) = f (θn−1),

lim
θ→θ+n

f (θ) = f (θn+1),

whenever |s(θn)| > dth. Here, N = card(Θk) denotes the set cardinality of Θk (representing
the sensor’s resolution) and dth is a case-specific threshold value, serving as a free parameter that
represents the minimal difference in distance measurements for object detection. To automate the
object detection and identification process, a metric for dth can be computed as the mean absolute
difference value

dth =
N

∑
n=1

|dn(θn)|
N

,

to separate noise from actual meaningful data, as discussed further. An illustrative example is
presented in a figure in Section 3.

Proposition 1. For a properly functioning 2D LiDAR sensor, ∀θn ∈ Θk, ∃r(θn) | Dn = r(θn).

Proof. The LiDAR sensor assigns a distance measurement reading for each angle within its
operational range, assuming the sensor functions correctly and is free from manufacturing
errors. Any malfunctions or manufacturing errors should be identified and rectified through
appropriate assessment and correction procedures.

Corollary 1. If Proposition 1 is fulfilled, the mapping r : θn → Dk is, by definition, surjective.

Corollary 2. Proposition 1 and Corollary 1 imply that f is surjective by definition, as r aligns
with f .

In the preceding text, Definition 1 delineates how the agent perceives its navigation
surroundings. It is noteworthy that, as inferred from Corollary 2 and Definition 3, f is
differentiable across a significant portion of its domain. Points where f lacks differentiability
hold crucial significance, especially in the context of defining objects within a LASER’s
scan data. It is essential to highlight that for all θ in [θmin, θmax] and all D in [0, Dmax],
their extreme values are contingent upon the model and manufacturer specifications of the
sensor device.
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2.2. Definition of Objects

Initially, we establish U as a set of points symbolizing the entire environment from the
robot’s perspective, consisting of distinct sets: objects, agents (comprising both humans
and robots within the environment), and additional task-unrelated data, regarded as noise.
It is evident that these three constituent sets forming U are disjoint among each other.

Definition 4. We let U represent a universe set, populated by LiDAR measurements and exclusively
composed of a set of objects O, a set of agents A, and a set of noise S. Consequently,

U = {A ∪ S ∪ O : O ∩ A = O ∩ S = A ∩ S = O ∩ A ∩ S = ∅}.

Given that f is a continuous function, its differentiability may vary. However, if f is
differentiable at point a, then f is not only continuous at a but also laterally continuous:
f ′−(a) = f ′+(a). In simpler terms, the left-hand and right-hand derivatives at a must exist
and possess identical values. Leveraging the concept of differentiability allows for the
discernment of objects, walls, and free space in a LiDAR scanner reading. Specifically,
it follows that if there exists a point where f (θ) is not differentiable and that point falls
outside the interval of an object, it must be the edge of a wall (a corner); otherwise, the point
belongs to the edge of an object. This concept is illustrated in Figure 3c: the discontinuities
in θ = 26◦ and θ = 35◦ represent edges of the box in front of the robot (as shown in
Figure 1).

Definition 5. We consider any prismatic object O within a semi-structured environment. Then, O
can be described as a set of points in polar coordinates:

O =
{(

θ, r(θ)
)
∈ R2 / θi ≤ θ ≤ θf

}
,

∀θi, f / f ′−(θi, f ) = f ′+(θi, f ),

where θi < θ f , with Pi =
(
θi, r(θi)

)
representing a point of discontinuity and Pf =

(
θ f , r(θ f )

)
being the immediately succeeding point of discontinuity to the right of Pi. These points collectively
define the starting and ending measurements of an object’s body. Consequently, f (θ) maintains
continuity within open interval (θi, θ f ).

It is important to note that O is defined as prismatic to facilitate the definition of faces
and vertices. We consider a generic prismatic object along with its corresponding polar
coordinates contained within O. It is noteworthy that within any such set O, a discon-
tinuity in the derivative of f (θ) signifies an edge, denoted by red triangles in Figure 3c.
Consequently, it becomes possible to define both the faces and vertices that pertain to O.

Definition 6. We let V be a set of points representing any edge of any prismatic object such that

Vk =
{
(θ, r(θ)) ∈ R2 / f ′(θ) = 0, θ ∈ O

}
, with k = 0, 1, 2, · · ·, n.

Definition 7. We consider O as any prismatic object, and we let Fk denote a set of points represent-
ing the kth face of this object. In polar coordinates, this can be defined as

Fk =
{
(θ, r(θ)) ∈ R2 / θk ≤ θ ≤ θk+1

}
, with k = 0, 1, 2, · · ·, k,

where θ0 = θi, θn = θ f and all Vk are in (θk, f (θk)).

In simpler terms, in accordance with Definition 7, the edges of the object are situated at
a local minimum or maximum between two faces based on LASER’s readings. Furthermore,
all faces are located within interval (θi, θ f ), leading to inclusion relation O ⊆ Vk ∪ Fk.
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Hence, referring to Figure 3c, function f (θ) exhibits discontinuities at θ1 and θ2.
Consequently, it becomes plausible to assert that every element θ ∈ [θ1, θ2] corresponds to
a measurement from the surface of an object, thereby establishing all essential conditions
to infer the existence of an object. It is important to note that O is defined as prismatic
to facilitate the definition of faces and vertices. However, the same discontinuity-based
definition can be applied to identify other, perhaps more irregularly shaped objects.

The presented methodology could be applied in many works, serving as a guide for
LASER sweep representation, highlighting regions of interest in data, and establishing
standardized notation. To further illustrate and validate the reliability of this strategy,
generic representative cases are presented in the following section.

3. Detection and Localization Experiments

This section elucidates the behavior of the 2D LiDAR sensor in a real-world environ-
ment and delineates how the formalism proposed in this article is applied to represent the
scene and identify potential objects of interest. The robot employed in the experiments is
depicted in Figure 1a. It is a Pioneer 3-DX controlled by a Raspberry Pi running RosAria,
equipped with an omnidirectional 2D LiDAR sensor mounted on its top.

To demonstrate the efficacy of our proposal, we present a scenario featuring objects
with diverse configurations, sizes, and shapes, aiming to construct an environment that
accurately emulates a real-world use case. In this scenario, a mobile robot navigates
along a super-ellipse trajectory around objects positioned in the center of the environment.
Measurements from the 2D LiDAR sensor are utilized to construct views of the scene
as the robot navigates. The LiDAR sensor is configured with a depth range of 0.1 to
12 meters, a resolution of 361 measurements per revolution, and a sampling rate of one
revolution per 100 ms. Following our notation, the LASER’s domain is Θk = [−180◦, 180◦],
where N = card(Θk) = 361 (for k = 1, 2, . . . , 361), and the codomain is D ∈ [0.1, 12] m,
in accordance with Definition 3. For guiding the navigation of Pioneer 3-DX, a previously
validated controller is employed [52].

Figure 4 provides a visual representation of the experimental environment employed
for validating the mathematical representation of the sensor data. In the depicted views,
one can observe rectangular boxes, chairs with legs and wheels, a four-legged ladder,
a second mobile robot, and the surrounding walls that define the scenario. This configu-
ration facilitates the identification of objects based on the discontinuities observed in the
measurements, as conceptualized in Section 2.

To confirm the validity of the proposed approach, utilizing Definition 3, dth establishes,
computes, and distinguishes the objects in the scene. Figure 5 illustrates that all red lines
signify a set of measurements of interest, suggesting a potential object. It is noteworthy to
emphasize that the vertices of the objects, specifically their starting and ending boundaries,
are derived from the difference function s(θn).

(a) (b)

Figure 4. Cont.
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(c) (d)

Figure 4. Experimental environment employed for validating the sensory mathematical representa-
tion. (a,b) are views of the same scenario in different conditions and angles. (c,d) are the 2D LiDAR
readings corresponding to scenes (a,b), respectively.

Figure 5. Resulting selection from Figure 4 based on dth, according to Definition 3.

To exemplify the identification of objects during the robot’s navigation, the first row
of Figure 6 showcases three snapshots of the robot’s path. The second row of Figure 6
displays the corresponding 2D LiDAR scans, while the third row presents the 2D recon-
struction of the world from the mobile robot’s perspective, with the blue bounding boxes
representing the identified objects. Video https://youtu.be/X57udApLx1w (accessed on
30 March 2024) demonstrates the execution of this experiment. Moreover, to further aug-
ment our understanding of the environment, additional visualizations are provided in
Figure 7. Figure 7a shows the point cloud of measurements accumulated throughout the
entire experiment, offering a comprehensive overview of the captured data. Conversely,
Figure 7b presents an occupancy grid derived from laser measurements, providing a struc-
tured representation of the environment’s occupancy status. Together, these visualizations
enhance our comprehension of the robot’s navigation process and its interaction with the
surrounding environment.

https://youtu.be/X57udApLx1w
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. Snapshots of the validation experiment (a–c) with their corresponding 2D LiDAR readings
from the robot’s perspective (d–f), along with the 2D representations in the world featuring bounding
boxes of identified objects according to the proposed formalism (g–i).

(a) (b)

Figure 7. Mapping of the surroundings based on LiDAR measurements during robot displacement.
(a) Point cloud stored during the experiment. (b) Occupancy grid based on laser measurements.

It is essential to acknowledge that in real-world experiments, sensor noise and infor-
mation losses are common challenges, typically mitigated through signal filtering processes.
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However, given that addressing these issues falls outside the scope of this work, we opted
to demonstrate the step-by-step implementation of the object identification process in the
absence of sensor noise through simulation. Figure 8 illustrates a cluttered environment
created using the CoppeliaSim simulator. In other words, Figure 8a illustrates a simulated
scenario, and Figure 8b shows the corresponding 2D LiDAR data. The process described
earlier was applied to detect, identify, and categorize objects. Figure 8c presents a LiDAR
sweep (r(θn), as defined previously), allowing for an intuitive differentiation between the
highest values as walls and lower readings as objects, depending on their proximity to the
robot. Upon a detailed analysis and comparison of Figure 8d,e, as discussed and defined in
Section 2.2, various objects were identified by setting a similar threshold difference value
(as presented in Definition 3) in s(θn) and observing discontinuities in f (θn). Discontinu-
ities occurring for an angle measurement where the threshold is surpassed must represent
the starting point of an object. Furthermore, local minima in each set representing an
object must also represent the edge closest to the scanner, marked in Figure 8e with red
triangles. The objects’ readings are shown between two dark-blue filled circles, comprising
V1, V2, . . . , V11, thus exhibiting five fully identified objects O1, O2, O3, O4, and O5.

By comparing Figure 8a,b, one can identify the objects marked in Figure 8e in anti-
clockwise order: the first and second brown prismatic boxes, the wooden ladder, the potted
plant, and the smaller brown box, as seen in Figure 8a. They are, respectively, separated
with color-coded bounding boxes: red for the prismatic boxes, orange for the wooden
ladder, and green for the plant, according to the topology of the Fk faces that connect
each object’s edge (Vk represented as red circles). By observing the environment using the
2D LiDAR scan, the robot can identify objects of interest in the room and understand its
distance to them.

Assuming the agent has a known starting point (e.g., a recharging dock) or a map
linking each LASER sweep to a certain position, it is also possible to locate objects by storing
measurements of the semi-structured environment without any objects of interest to the
robot—no objects that should be handled by the agent, only uninteresting objects. Then, one
can highlight any new objects by taking the algebraic difference between readings before
and after objects were placed—where rw represents measurements with the new objects
and re represents the original readings of the environment. This is shown in Figure 8f,
where every new Vk and Fk are outlined, thus locating all Ok objects of interest in the
environment, while all other data are considered noise. Given these features, it is possible
to match and track specific objects throughout a scene. For instance, the three brown boxes
are highlighted as an example of objects of interest.

(a) (b)

Figure 8. Cont.
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Figure 8. Simulated environment with different objects (a) and corresponding identification of objects
according to our proposed framework (b). In addition, functions derived from LiDAR scans as
defined, representing measurements from simulated semi-structured environment in (c–f).

4. Concluding Remarks

Addressing a crucial aspect of autonomous robot decision making, the identification
and localization of objects, particularly those vital for achieving specific goals, play a
pivotal role in advancing robotics. The absence of a formal and standardized framework in
the existing literature has posed challenges for algorithm comparison, optimization, and
strategy development. This deficiency stems from the widespread use of ad hoc definitions
and modeling approaches, impeding the reproducibility and advancement of results.

Our work addresses this gap by introducing a rigorous mathematical formalization
applicable to a broad range of contexts involving LiDAR point-cloud data. The results
presented in Section 3 demonstrate that our method can efficiently identify and separate
objects in under 50 ms in semi-structured environments. Despite the necessity of setting a
threshold for object detection, which may not be automatically or dynamically determined,
our approach allows flexibility to tailor this parameter to the specific requirements of each
application. The simplicity of our mathematical framework ensures low computational
effort and efficiency, laying the foundation for creative solutions in diverse scenarios.

In conclusion, our manuscript establishes a comprehensive framework for the develop-
ment and optimization of algorithms focused on autonomous object detection, localization,
and matching using 2D LiDAR data. We provide essential insights into the properties of
LASER scanner data and offer guidelines for feature extraction, with potential applications
ranging from direct implementation for specific tasks to indirect applications in machine
learning processes. Overall, we anticipate that our analytical structure will inspire the
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development of coherent and effective methodologies for object detection, identification,
and localization in various applications.

Finally, it is noteworthy that machine learning techniques play a crucial role in object
detection. Nevertheless, interpreting or comprehending the reasons behind the success or
failure of a machine learning algorithm in detecting specific objects often proves challeng-
ing. In contrast, our proposed approach presents an analytical methodology for directly
extracting information from LiDAR data, facilitating user comprehension of the generated
output. We posit that the integration of our framework with machine learning techniques
for object identification and classification holds potential benefits. Consequently, we plan to
investigate the incorporation of machine learning techniques into our proposed framework
for the identification and classification of objects in future work.
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