ﬁ Sensors

Article

Apple Fruit Edge Detection Model Using a Rough Set and
Convolutional Neural Network

Junqing Li !, Ruiyi Han 2, Fangyi Li 3, Guoao Dong !, Yu Ma !, Wei Yang *(*, Guanghui Qi 1'* and Liang Zhang *

check for
updates

Citation: Li, J.; Han, R.; Li, F; Dong,
G.;Ma, Y,; Yang, W.; Qi, G.; Zhang, L.
Apple Fruit Edge Detection Model
Using a Rough Set and Convolutional
Neural Network. Sensors 2024, 24,
2283. https://doi.org/10.3390/
524072283

Academic Editor: Yongwha Chung

Received: 28 January 2024
Revised: 31 March 2024
Accepted: 1 April 2024
Published: 3 April 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

College of Information Science and Engineering, Shandong Agricultural University, Tai’an 271018, China;
junging.li@sdau.edu.cn (J.L.)

College of Computer Science and Technology, China University of Petroleum (East China),

Changjiang Road No.66, Qingdao 266580, China

College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
National Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University,
Tai’an 271018, China

*  Correspondence: qghui@sdau.edu.cn (G.Q.); zliang@sdau.edu.cn (L.Z.)

Abstract: Accurately and effectively detecting the growth position and contour size of apple fruits is
crucial for achieving intelligent picking and yield predictions. Thus, an effective fruit edge detection
algorithm is necessary. In this study, a fusion edge detection model (RED) based on a convolutional
neural network and rough sets was proposed. The Faster-RCNN was used to segment multiple apple
images into a single apple image for edge detection, greatly reducing the surrounding noise of the
target. Moreover, the K-means clustering algorithm was used to segment the target of a single apple
image for further noise reduction. Considering the influence of illumination, complex backgrounds
and dense occlusions, rough set was applied to obtain the edge image of the target for the upper and
lower approximation images, and the results were compared with those of relevant algorithms in
this field. The experimental results showed that the RED model in this paper had high accuracy and
robustness, and its detection accuracy and stability were significantly improved compared to those of
traditional operators, especially under the influence of illumination and complex backgrounds. The
RED model is expected to provide a promising basis for intelligent fruit picking and yield prediction.

Keywords: rough set; Faster-RCNN; edge detection; target detection; apple fruit

1. Introduction

The apple is one of the most economically important perennial crops cultivated
worldwide. China is the largest apple growing and consuming country, accounting for
41.36% and 46.85% of world’s apple planting area and production, respectively [1]. The
development of the apple planting industry constantly proposed higher requirements
for apple fruit growth detection and intelligent picking, and accurate identification and
detection of apple fruits are among the key technologies urgently needed.

Improving the target location and edge detection accuracy of apple fruit in images
is one of the key and most difficult points in the current research. Thus, a number of
researchers have performed a lot of work on this topic. In this section, we summarized the
application of traditional morphological edge detection methods and artificial intelligence
methods in apple edge detection, as well as the efforts made in apple fruit target detection
and segmentation tasks.

In terms of traditional morphological edge detection methods, Versaci et al. proposed a
new edge detection algorithm based on fuzzy divergence and fuzzy entropy minimization,
which can effectively solve the problem of edge detection in fuzzy images [2]. Han et al.
proposed an improved edge detection algorithm based on Sobel operator, which can
effectively solve the problems of low image edge localization accuracy and rough edge
extraction in traditional Sobel edge detection algorithms [3]. Lu et al. proposed an edge
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detection algorithm based on the Canny operator, which introduced a local maximum inter
class variance algorithm to achieve efficient edge detection of infrared images of building
exterior walls [4]. Sekehravani et al. proposed an edge detection algorithm combining
median filtering and Canny operator, which can improve the accuracy of edge detection
in noisy images [5]. Septiarini et al. proposed a contour-based segmentation method for
oil palm fruits that removes noise through multiple operations by combining the Canny
algorithm, morphology, and reconstruction. However, in images containing multicolored
oil palm fruits, complex backgrounds, and uneven lighting conditions, there is a problem
of incorrectly detecting fruit regions as backgrounds [6]. Jiao et al. conducted research on
issues related to apple growth poses in natural scenes, such as overlapping, target shadow
occlusion, and leaf occlusion. They proposed an overlapped circle positioning method
based on local maxima for fruit localization and edge delineation. However, errors in the
center positioning process can lead to deviations in the final edge delineation, especially in
cases of fruit occlusion and influence from surrounding non-target factors, exacerbating
the deviation [7].

In terms of fruit edge detection with artificial intelligence methods, Su et al. proposed
a simple and lightweight network structure called the Pixel Differential Network (PiDiNet)
by integrating traditional edge detection operators into popular convolutional operations in
modern CNNs, which can quickly and accurately perform edge detection while minimizing
the number of parameters as much as possible [8]. Wang et al. used a natural statistical
visual attention model to remove the background and combined the information with the
global probability of the Otsu algorithm to detect saliency contours, which addressed the
problems of uneven and mutual occlusion of apple images in orchard environments [9].
Ganesan et al. proposed a method that combines mountain climbing and the MFCM to
segment fruits in RGB and CLELuv color spaces; this method solves the problem of the
mountain climbing method falling into local optima [10]. Xavier Soria et al. proposed
an edge detector based on deep learning, which can be used for any edge detection task
by combining holistically nested edge detection (HED) and Xception networks without
pre-training or fine-tuning processes [11].

In the related work of apple target detection and segmentation, Wang et al. proposed
an improved convolutional neural network (MS-ADS), based on masked scoring regions,
for precise apple detection and instance segmentation in natural environments. However,
the improvement in accuracy brought by this work also leads to an increase in the model’s
complexity, resulting in longer training and detection times. Moreover, it requires a larger
dataset to encompass real-world scenarios [12]. Tian et al. improved the YOLO-V3 model
to effectively perform apple fruit object detection tasks across different growth stages
in natural scenes. The experimental results indicated that the model exhibited improved
performance; however, there is still room for improvement in data augmentation techniques
and detection model accuracy [13]. Li et al. proposed an ensemble U-Net segmentation
model suitable for small-sample datasets. This model integrates residual blocks, gated
convolution for edge structure design, and employs atrous convolution to achieve superior
fruit segmentation results. However, overcoming branch and leaf occlusion, as well as
improving model speed, still require further enhancements [14]. Zhang et al. proposed
an apple fruit segmentation method based on machine learning techniques. Unlike deep
learning methods, this approach relies on color features and texture information such as the
gray-level co-occurrence matrix (GLCM). Through traditional machine learning methods
like random forest, it achieves a precision rate of 94%. This machine learning-based method
outperforms CNN methods in terms of training and time efficiency. However, it is slightly
inferior to CNN methods in terms of precision and overcoming environmental noise [15].

The rough set theory is a mathematical tool for addressing vague and uncertain
problems, and its characteristics are highly suitable for edge detection. However, there is
still much room for improvement in the application of rough set theory in edge detection.

The current fruit edge detection algorithms are not very effective at dealing with noise
caused by natural factors such as illumination and occlusion and have poor stability in
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processing complex background images. Therefore, a reasonable background removal
model was proposed in this paper that combined the characteristics of rough set to detect
apple fruit edges effectively.

In the natural environment, the target recognition process is strongly affected by the
interference background of illumination, sky, branches, and leaves, as well as the mutual
occlusion of apples themselves, which greatly increases the difficulty in locating targets
and directly affects fruit edge recognition and detection accuracy. In this paper, a fruit edge
detection model based on the fusion of a rough set and the Faster-RCNN was proposed.
The main contributions of this work are as follows:

(1) The object detection algorithm based on the Faster-RCNN was applied to denoise
complex environments around fruits, enhancing its robustness to noise such as sky
background and illumination.

(2) Clustering and morphological methods were used to supplement the voids and
incomplete information caused by branch and leaf obstructions in the images.

(3) Rough set was introduced to extract complete and continuous fruit edges by utilizing
the edge information contained in the upper and lower approximations of the image.

2. Materials and Methods
2.1. Data Acquisition and Preprocessing

The entire dataset included 1500 images obtained via natural environment photog-
raphy and online image collection. Part of the dataset is shown in Figure 1. In this study,
1200 images were selected as the training set, and 300 images were used as the testing set.
In the preprocessing stage, the label learning tool was used to annotate the dataset.

Figure 1. Partial images in the dataset.

We conducted further analysis on the content of the dataset. The statistical analysis
and distribution of image resolutions in the dataset is shown in Figure 2a. The distribution
of the number of targets contained within each image in the dataset is shown in Figure 2b.

In this study, the Faster R-CNN model was constructed based on Keras and TensorFlow,
as shown in Figure 3. We utilized Res2Net-50 as the backbone for training, and conducted
training for 100 epochs. During the training process, we employed the Adam optimizer
with a batch size of 16. The input image size was set to 800 x 1333, and we applied data
augmentation techniques such as random rotation (—15°~15°), random flipping, and jitter,
etc., during the training process. The computer processor was an Intel (R) core i7-H8750
(Intel, Santa Clara, CA, USA), with a memory of 16.00 G and a frequency of 2.20 GHz.
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Figure 2. Dataset description. (a) shows the resolution statistics and distribution of images in the
dataset. (b) shows the statistical analysis of the number of targets contained within each image in
the dataset.
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Figure 3. Faster-RCNN model architecture diagram.

In this study, a manually annotated apple image dataset was used to train the model,
and complex apple images obtained from natural environments were used as the test set
for accuracy testing. The results of the apple object detection are shown in Figure 4.
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Figure 4. Display diagram of apple target detection model recognition segmentation. (a) shows the
original input image and (b) shows multiple apple images for testing image segmentation.

2.2. Background Knowledge
2.2.1. Faster-RCNN

Faster-RCNN is a target detection algorithm presented by He Kaiming et al. [16], and
many researchers have improved it [17-19]. The algorithm is divided into four main parts:
a feature extraction network, a PNN, a pooling layer, and a classification layer.

The backbone feature extraction networks commonly used in the Faster-RCNN net-
work architecture include VGG [20] and ResNet [21]. ResNet has a larger network than
VGG, so it has a strong learning ability and significantly improved classification. ResNet 50
was used as the training backbone feature extraction network in this paper.

The region proposal network (RPN) [22] is an advantage of Faster-RCNN, which
greatly improves the generation speed of detection frames. The method includes three
steps: obtaining positive and negative classifications through SoftMax classification anchors;
obtaining accurate proposals by calculating the bounding box regression offset of anchors;
obtaining proposals by combining the first two steps, and removing proposals that are too
small or beyond the boundary.

The classification section is the classification layer of the Faster-RCNN, which can be
used to identify multiple targets and classify them. Given that this paper mainly focused
on apple localization and recognition, the training category was the apple class.

2.2.2. Image Color Space Conversion

The color space [23] is the theoretical basis for color information research. This space
quantifies color from people’s subjective feelings into specific expressions, providing a
strong basis for using computers to record and express color.

The conversion from the RGB color space to the LAB space usually starts with the
transition to the XYZ color space and then further converts to the LAB space. The conversion
formula is as follows [24].

RGB color space to the XYZ color space:

X = 0.412453R + 0.35780G + 0.180423B
Y = 0.212671R + 0.715160G + 0.072169B 1)
Z = 0.019334R + 0.119193G + 0.950227B

XYZ color space to LAB color space:
L= 116f(yln) —16
a=500(f (%) - F(¥ @
b=200(f(%) - f(%

where X, Yy, and Z,, are the CIE XYZ tristimulus from the white point reference, each of
which is X, = 0.950456, Y;, = 1.0, and Z, = 1.088754.
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2.2.3. K-Means Clustering

The K-means clustering algorithm is an iterative clustering analysis algorithm that is
suitable for unsupervised learning dataset analysis and has strong adaptability; thus, it is
widely used in image segmentation [25-27].

Assume that the target image I contains N pixels, each pixel in I is represented
as X; (1 < i < N), and the three channel L, a, and b values contained in each pixel
are the eigenvalues of X; respectively. The pixel set of the same image is denoted as
D={X;|X;e,1<i<N}

2.2.4. Dilation and Erosion of Images

Dilation and erosion are the most basic operations for determining morphology, and
a reasonable combination of these operations can reduce the noise around the apple and
minimize the loss of the target image.

Erosion is defined as A ® B = {x|(B), € A}. For binary image A of the target after
clustering, convolutional template B is used for erosion treatment. The convolutional
calculation is performed between templates B and A to obtain the minimum pixel value in
the coverage area of B in A, and this minimum value is used to replace the pixel value of
the reference point.

Dilation is defined as A ® B = {x|(B)x N A # @ }. For the target image C, a convolu-
tional template D is used for dilation processing. A convolution calculation is performed
between template D and image C. The AND operation is performed on each pixel in the
scanned image. Scan each pixel in the image and perform an AND operation. If the results
are all 0, the target pixel is 0. Finally, the maximum pixel value of the D coverage area in C is
obtained, and this maximum value is used to replace the pixel value of the reference point.

2.2.5. Rough Set

The rough set (RS) theory [28-30] is a mathematical tool for characterizing undefined
and uncertain information. This theory can be used to analyze and process various incom-
plete information such as imprecision, contradiction, and incompleteness effectively and
obtain implicit knowledge and rules [31]. RS theory was developed by the Polish scientist
Z Pawlak in 1982. The related concepts and definitions of RS are as follows.

Discourse domain U: given a finite nonempty set, the classification knowledge is
embedded in the set.

Knowledge: the ability to classify objects. The object here refers to any entity, namely,
the discourse domain, which is any subset family of U.

Knowledge base: the classification family on U is called the knowledge base.

Knowledge equivalence: ind(P) = ind(Q), indicating that P is equivalent to Q. P and Q
are two equivalence relation families defined on the set U.

Definition 1. For a given finite nonempty set U, R is an equivalent relationship in U, also known
as R’s knowledge about U.

For a rough set, whether an object x belongs to set X can be divided into the following
situations: (D) x definitely does not belong to X; @) x definitely belongs to X; (3 x may or
may not belong to X. Based on the above three situations, use [x] to represent the set of all
objects that are indistinguishable from x. Provide definitions for the upper approximation,
lower approximation, negative field, and boundary of set X.

LX) ={xeU:[X]g X}

UX)={xeU: [X|gNX # o} 3)
Bn(X) = U(X) — L(X)

Neg(X)={xeU:x ¢ U(X)}

The upper and lower approximation graphs of rough set are shown in Figure 5. The
curved section in Figure 1 represents the true boundary of the identified object. The internal
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area of this boundary is the lower approximation L (X) of the object, which represents the
smallest definable set (positive field) that may exist in the physical position of the object. The
green area that intersects with the true boundary is called the boundary domain BN (X) of the
object. The area outside the boundary domain is the negative domain Neg (X) of the object,
which means that the physical location of the object must not be within that area. Negating
the set Neg (X) yields the upper approximation U (X) of the object, which represents the
maximum definable set in which the physical position of the object may exist.

r —_— The actual boundary of a set
, Lower approximation of an object
7 | Upper approximation of an object

Figure 5. The upper and lower approximation graphs of rough set.

2.3. Overall Architecture of Our Edge Detection Model (RED)

This model focuses on accurate detection of the edges of apple fruit targets. Therefore,
in the process of image processing, attention should be given to removing as much noise as
possible and minimizing the loss of target features. The basic architecture diagram of RED
is shown in Figure 6.

Semantic Segmentation b

Object Detection a -
Convl convo Classification L]

( I Semantic
a8 aE

based on K-
means

\
. »
@

k Regression

Edge Detection and Image Stitching d Morphological Image Processing C
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Rough Set—based Operations

—
ImngalStitching iy e oo . ‘
[ -

Figure 6. The basic architecture diagram of RED. The overall algorithm consists of four modules:
(a) object detection module, (b) semantic segmentation module, the red circles marked in the seg-
mented image (right subplot of b) indicate the holes and noise that need to be addressed after
segmentation, which will be handled in module ¢, (c) morphological image processing module, and
(d) edge detection and image stitching module. The initial input comprises multiple images of apples
in natural environments, and the final output is the corresponding edge detection result image.

First, the Faster-RCNN algorithm was used to detect the position of apples in natural
environment apple tree images. Then, the RGB image was converted into a LAB color



Sensors 2024, 24, 2283

8 of 22

space, and the features of the apples were extracted through K-means clustering. Next,
morphological methods such as corrosion, expansion, and void filling were used to process
the edges and internal noise, and the edge image of a single apple was extracted using a
rough set to obtain the upper and lower approximations of the edges. Finally, the edge
images of all the individual apples were merged to form a complete edge image that
includes all the apples.

2.4. Detection Module

Most of the images in the dataset contain multiple apples, as well as irrelevant features,
such as sky background, branches, and leaves. Direct edge detection resulted in a large
amount of noise in the results (as shown in Figure 7). In response to this issue, the Faster-
RCNN was used to perform individual apple detection and segmentation operations on
each image, removing irrelevant features and transforming the multi-apple edge detection
problem into a single apple edge detection problem.

Figure 7. Effect of edge detection with a large amount of noise. Both (a) and (b) are the results
of edge detection directly on the initial natural environment image, and the outcomes appear to
be unsatisfactory.

2.5. Refinement Module

The refinement module was the key part of this study. The output of Faster-RCNN
was used as the input of the edge detection model, and significant targets were obtained
through spatial transformation, clustering segmentation, and image morphology processing
after segmentation.

2.5.1. Apple Image Segmentation Based on K-Means Clustering

After being cut by the Faster-RCNN model, the image still contained irrelevant features
such as leaves and branches, resulting in noise and voids when directly performing edge
detection (as shown in Figure 8). For this problem, the K-means clustering method was
used to cluster and segment the image to be processed, extract the target part of the image,
and remove irrelevant features around the target. By conducting experiments, it was
determined that setting the value of k for K-means clustering to 2 resulted in the best
clustering performance.
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Figure 8. Effect of edge detection without clustering. (a) shows the raw images extracted from
the object detection module without further processing. (b) shows the result obtained by directly
applying edge detection to (a), displaying issues such as speckle noise, discontinuous edges, and lack
of clarity.

The original images were all in RGB format, as shown in Figure 8a. The RGB color
space is based on three basic colors, R (red: red), G (green: green), and B (blue: blue),
without separating brightness information from chromaticity information. Clustering and
segmenting images in RGB color space can result in a significant loss of target edge pixel
information, leading to a significant gap between the edge detection effect of the target and
the actual effect as shown in Figure 8b.

It was necessary to convert the image from the RGB space to the LAB space to minimize
the pixel information loss of the target. The LAB space effectively separated brightness
information and chromaticity information, where L represents brightness and a and b
represent color channels.

The input image examples of the edge detection model are shown in Figure 9. The
spatial transformation results for K-means clustering and cutting are shown in Figure 10.

Figure 9. Edge detection model input image examples.

“T1 Halste
= . e \

HEEEEE Oy ] 0
() (b)

Figure 10. K-means clustering for image segmentation. (a) shows the effect of converting single apple
images into a Lab color space. (b) shows the results after applying K-means clustering to (a). The
upper part of (b) contains voids due to the depression at the bottom of the fruit, while the lower part
(b) only contains a few small voids, resulting in a relatively complete overall clustering effect.



Sensors 2024, 24, 2283

10 of 22

2.5.2. Image Denoising

The clustering results in Figure 10 show that there were voids and edge noise effects
in the image. This study adopted the void-filling algorithm to address the problem of
voids. For edge noise, the erosion method was used to process the image edges, but simple
erosion processing lost the pixel information of the target edge. Therefore, the dilation
method was used to process the corroded image. The results are shown in Figure 11.

E“ ( N\ ‘BN ~ N TN
. ‘o4 = - les\ 4

achbbeliechd e

Figure 11. Example diagram image processing effect after clustering and segmentation. (a) shows the
effect of labeling defects such as voids after clustering. The red circle denotes the hole that exists after
the segmentation. (b) shows the effect of morphological processing such as dilation, erosion, and
filling in voids on the images, effectively removing most of the existing defects.

The images were filled with voids, eroded, and dilated, although after processing in
this stage, the voids in the image were filled, edge noise was eliminated, and there was
basically no loss of pixel information at the apple edge.

2.6. Edge Detection Module

The rough set method was the core method of this study. Currently, there are many tra-
ditional edge detection operators, such as Canny [32-34], Laplacian [35,36], Prewitt [37,38],
and Holistically-Nested(HED) [39-41]. Many research papers have shown that traditional
operators also have better edge detection effects.

In this paper, a structural operator for upper and lower approximation operations was
defined based on rough set theory. The process of traversing objects using the structural
operator convolution method to obtain the upper approximation of the image is as follows.

(1) Assume that the target object image X, the RS structure operator Y is defined, and the
initial U(X) is empty.

(2) First, the structural operator Y is placed in the region corresponding to the size in the
upper left corner of X, and the elements X [i, j] in object X are overlapped with those in
Y. The X [i, j] and Y [i, j] bitwise AND operations are computed. If the detection point
is inside the object, it is considered to belong to U (X), and there is a high possibility
of points belonging to the object around it. U (X) is added, and the sliding structural
operator Y continues until the traversal is completed and the process stops. Finally,
the maximum pixel value of the object coverage area can be obtained.

(3) The U (X) obtained after traversal is the upper approximation of the edge of the
target object.

The process of traversing objects using the structural operator convolution method to
obtain the lower approximation of the image is as follows.

(1) Assuming the target object image X, define the rough set structure operator Y, and the
initial U (X) is empty.

(2) The structural operator is first placed in the area corresponding to the size in the
upper left corner, and the elements [i, j] in the objects in that area are aligned with the
elements in Y. Compute [i, j] and [i, j] bitwise OR operations. If the detection point is
inside the object, it is considered to belong to L(X’). If the detection point belongs to
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an edge point, then there are points with different pixel values around it. There is a
high possibility of edge points around it, so they are added to L(X/). The structural
operator Y’ is continuously slid until X’ has been traversed before stopping. Finally,
the minimum pixel value of the object coverage area is obtained.

(3) L(X’) obtained after traversal is the lower approximation of the edge of the target object.

In this study, rough set was used to obtain the upper and lower approximation edges
of the target. Referring to the method for computing Bn(X) as per Formula (3), we have
successfully obtained the salient contours of the target. The edge detection effect is shown
in Figure 12.

[ w‘ “\ .I F“ N E -,

aedDO e |

Figure 12. Obtaining apple edge saliency profile images using rough set. (a) shows the resulting

images after morphological processing. (b) shows the effect of edge detection based on the rough
set method.

2.7. Edge Consolidation

Considering the excessive noise caused by multiple apples, an object detection algo-
rithm based on the Faster-RCNN was adopted to segment the images. The segmented
multiple images were input into the edge detection model to obtain multiple single apple
edge result images, as shown in Figure 13a. The position information of each segmented
image obtained via the object detection algorithm in the original image was used to draw
multiple edge images of the same size to restore multiple edge images to a multi-apple
image, as shown in Figure 13b.

Figure 13. Effect of apple edge image merge. (a) shows the result images after edge detection.
(b) shows the merging of all edge images into the corresponding edge image of the original image
based on the recorded coordinates of each apple image.
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2.8. Evaluation Metrics

The results of this paper were evaluated via four indicators: precision (P), recall
rate (R), Dice (D), and Jaccard (J).

Accuracy was an important indicator in the performance evaluation of classifiers and
was used to measure the accuracy of classifiers for samples with positive predictions. It can
be expressed as the following formula:

TP

Precision = W

(4)
where TP represents the number of samples correctly predicted as positive examples, and
FP represents the number of samples incorrectly predicted as positive examples.

The recall rate was another core classifier performance evaluation indicator and was
used to measure the recall rate of the classifier for actual positive samples. It can be
expressed as the following formula:

TP

Recall = ———
= TPIEN

)
where TP represents the number of samples correctly predicted as positive examples, and
FN represents the number of samples incorrectly predicted as negative examples.

The Dice coefficient (Serensen-Dice Dice coefficient) and Jaccard index are two indica-
tors for measuring similarity, and the calculation formulas are as follows [42]:

2 x TP

Dice =

= X TP+ EP+EN ©)
TP

Jaccard = TPLEP+EN (7)

where TP represents the number of samples correctly predicted as positive examples, and
FP represents the number of samples incorrectly predicted as positive examples, and FN
represents the number of samples incorrectly predicted as negative examples.

The aforementioned metrics were all calculated using a confusion matrix and are
commonly used for object detection tasks. We constructed the confusion matrix for edge
detection results and actual edge results using the following method.

We employed two N x N filters (in the experiment, we used 3 x 3, the filter size can be
adjusted reasonably based on the actual error tolerance) to slide simultaneously over the result
image (filter B) and the ground truth edge image (filter A). There were four possible scenarios:

True Positive (TP): both filters detect an edge pixel.

False Positive (FP): only Filter B detects an edge pixel, but Filter A does not.

False Negative (FN): only Filter A detects an edge pixel, but Filter B does not.

True Negative (TN): neither filter detects an edge pixel.

Additionally, we evaluated the segmentation results of the images involved using
two metrics: mask_mAP and area relative error. The calculation method for area relative
error is as follows:

AE; = |Sl — 52| (8)
AE
s = S1S )

where, S1 is the number of pixels in the actual apple, S2 is the number of pixels in the
apple contour.

3. Results and Discussion

In this study, comparative experiments were conducted using Canny, Laplacian,
Pewitt, and Holistically-Nested object detection operators and the rough set edge detection
algorithm based on the object detection proposed in this paper. Comparative analyses were
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conducted for three aspects: illumination influence, complex background influence, and
dense occlusions influence.

3.1. Analysis of Detection Results Using the Segment Anything Model (SAM)

The segment anything model (SAM) aims to segment objects of interest in images
based on user-provided cues. Its strength lies in having learned the concept of objects,
enabling it to segment any object. Since our work involves object segmentation, it was
interesting and necessary to use SAM for the segmentation of our data in the experimental
section and to discuss the results.

We conducted experiments with different apple fruit images captured in natural en-
vironments using SAM. Figure 14a is a simple example image containing only three easily
recognizable apples. The original image and the segmentation results are shown in Figure 14.

S

(c) (d)

Figure 14. The original image and the segmentation results of the sparse fruit image using SAM.
(a) represents the original image, while (b-d) display the results after SAM segmentation.

As shown in Figure 14b,c, we can observe that the segmentation results for unob-
structed objects were nearly perfect, with minimal edge loss. However, for objects that
were occluded, such as occlusion between fruits or obscured by branches, as shown in
Figure 14d, the segmentation results were relatively poor, with obvious missing parts in
the occluded areas.

Figure 15a is a complex image example with densely packed apples and numerous
occlusion factors. The original image and segmentation results are shown in Figure 15.

(b)

(c) (d) (e) )

(h) (i) Q) (k)

2 N

(m) (n)

4

-

Figure 15. The original image and the segmentation results of the dense fruit image using SAM.
(a) represents the original image, while (b-n) display the results after SAM segmentation.

From Figure 15, it can be observed that Figure 15d,e,j are relatively complete, although
there was some loss of edge pixels. However, other objects experienced varying degrees
of pixel loss due to occlusion by leaves or mutual occlusion between fruits, especially in
segments Figure 15f-h,l-n.

Overall, SAM can achieve remarkable segmentation results without the need for spe-
cific scene data training. However, because SAM requires achieving high-quality segmenta-
tion for every object, it cannot focus on preserving complete apples in the groundwork for
edge detection. In other words, the underlying concept behind SAM is that branches, leaves,
and fruits were all segmentation targets. Because SAM achieves precise segmentation for
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each part, there was a loss of fruit obscured by branches and leaves, which deviated from
our goal of preserving the apples as completely as possible.

3.2. Analysis of the Detection Results on the Effect of Illumination

To compare the detection results of different algorithms under different illumina-
tion conditions, the Canny, Laplacian, Prewitt, and Holistically-Nested operators and the
method proposed in this paper were used for detection experiments; the results are shown
in Figure 16.

Figure 16. Comparison of the effects of each method under the influence of illumination. (a) shows
the original image before detection; (b) shows the apple edges detected by the Canny operator;
(c) shows the apple edges detected by the Laplacian operator; (d) shows the apple edges detected by
the Prewitt operator; (e) shows the apple edges detected via the Holistically-Nested operator; and
(f) shows the apple edges detected via the model in this study.

Figure 16a shows the original image for detection, and the upper end of the apple in the
legend has a reflective problem due to the influence of illumination. The results in Figure 16
show that the edges detected via the Laplacian and Prewitt operators retained more noise,
and the edge shape was thicker. The edge continuity of the apple image detected via the
Canny operator was not strong, and the edge information of the illumination part was
lost, which was greatly affected by noise. The edge detection results obtained via the
Holistically-Nested method surpassed those of the previous operators; however, it still
faced challenges in handling interferences such as branches and leaves. Under the influence
of illumination, the edge detection model that we improved resulted in relatively complete
edge information detected within the apple image. Compared with the Canny operator,
Laplacian operator, Prewitt operator, and Holistically-Nested operator methods in the
comparative experiments, it can be observed from Figure 16 that the apple edge detection
information obtained using our method performed better in terms of completeness and
conciseness. However, there exists a problem of discontinuous edges due to occlusion
leading to covered edge locations.

3.3. Analysis of Detection Results on the Effect of Complex Background

Considering the noise caused by the complex background of the apple in actual envi-
ronmental images, edge detection experiments were conducted using the above algorithm
sequentially on the apple in a complex background. The results are shown in Figure 17.
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Figure 17. Comparison of the effects of each method under the influence of a complex background.
(a) shows the original image before detection; (b) shows the apple edges detected via the Canny
operator; (c) shows the apple edges detected via the Laplacian operator; (d) shows the apple edges
detected via the Prewitt operator; (e) shows the apple edges detected via the Holistically-Nested
operator; and (f) shows the apple edges detected via the algorithm in this paper.

The results in Figure 17 show that operators such as Canny, Laplacian, and Prewitt
did not eliminate edge information from backgrounds such as leaves and branches. The
Holistically-Nested method provided a clear depiction of the edges of fruits, but it similarly
did not remove the influence of branches or leaves, as shown in Figure 17e.

Using our method, as shown in Figure 17f, we effectively removed irrelevant objects
such as branches and leaves. In the detection results, there was no point-like noise in-
terference within the fruit. It is worth noting that the fruits on the right did not exhibit
edge loss or discontinuity due to branch occlusion. This was attributed to the previous
morphological processing of images and rough set, which mitigated interference and filled
in defects.

3.4. Analysis of Results on the Effect of Dense Occlusions

For the situation where apples were densely distributed in the images, comparative
detection experiments were conducted based on the above algorithms, and the results are
shown in Figure 18.

According to Figure 18b, under a dense apple distribution, the Canny operator cannot
effectively distinguish noise and detect targets, resulting in excessive noise and discontinu-
ous edges being detected due to the dense apple distribution. Figure 18c shows that the
Laplacian operator was highly coherent for edge detection between dense apples, but it
did not have good noise resistance and was too sensitive to spots on apples, resulting in
considerable point-like noise inside the target. Figure 18d shows that the Prewitt operator
did not have good noise resistance and that there were many points, such as noise inside
the target. Figure 18d indicates that the Prewitt operator did not have good noise resistance
and that there was a lot of point noise inside the target. Figure 18e shows the detection
results obtained using the Holistically-Nested method, which outperformed previous op-
erators in terms of the clarity of edge delineation and the degree of internal speckle noise
removal. However, it tended to capture extraneous edges influenced by tree branches and
leaves. Figure 18f shows that our proposed model had significant noise resistance and had
a significant effect on edge detection of dense apples. It also effectively eliminated speckle
noise inside apples. However, the issue of discontinuous coverage in the detected regions
due to fruit occlusion is also an aspect that requires improvement.
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Figure 18. Comparison of the effects of the algorithms under the influence of dense occlusions.
(a) shows the original image before detection. There were multiple closely connected apples in the
legend, and the apples interacted with each other. (b) shows the apple edges detected via the Canny
operator. (c) shows the apple edges detected via the Laplacian operator. (d) shows the apple edges
detected via the Prewitt operator. (e) shows the apple edges detected via the Holistically-Nested
operator. (f) shows the apple edges detected via the algorithm in this paper.

We further conducted experiments on images with more complex content, and the
results are shown in Figure 19.

Figure 19. The edge detection experiments on images with more complex content. (a) shows the
original image before detection. (b) shows the processed edge detection results.

Figure 19a shows the original image for detection, which contains a significant number
of apple targets. The increased content resulted in lower resolution of the apple targets
and more complex depth relationships among them. From Figure 19b, it can be observed
that the targets located at the surface of the image are depicted with relatively clear edges.
The edge detection results for the apple targets located deeper within the image exhibited
varying degrees of incompleteness. Overall, the presence of multiple layers of occlusion and
resolution issues both affect the effectiveness of edge detection. In real complex large-scale
scenes, the performance of this method for edge detection was not ideal.
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3.5. Ablation Study
3.5.1. Validation of the Effectiveness of the Key Modules

We carried out an ablation experiment to verify the effectiveness of each key module.
The purpose of the object detection module was to locate and identify objects of interest in
the image.

Table 1 shows that when this module worked independently, background noise,
illumination changes, or other factors may have interfered. We further refined the task
when we introduced the clustering segmentation module so that the system could better
distinguish between target and nontarget regions. The purpose of clustering was to group
pixels or features based on certain similarity indicators, such as color, texture, or shape, to
provide clearer target boundaries. Finally, the morphological processing module provided
a way to process images to further enhance or refine the shape and structure of the target.
The introduction of morphological operations such as corrosion and expansion significantly
improved the elimination of noise, filled in blank areas in the target, and highlighted the
main features of the target. From Table 1, it can be concluded that both the recall rate and
F1-score increased by 7.3%, and the precision value increased by 7.2% after introducing
the cluster segmentation module. After introducing the erosion and dilation module,
the precision value increased by 7.7%, the recall rate increased by 4.0%, and the F1-score
increased by 5.7%.

Table 1. Module ablation experiment. The v indicates that this module was added to the ablation
experiment.

Object Cluster Erosion and
Detection Segmenta- Dilation P/% R/% F/%
Module tion Module Module
v 73.4 82.3 77.6
v v 80.6 89.6 84.9
v v v 88.3 93.6 90.8

3.5.2. Clustering Segmentation K-Value Experiment

Table 2 shows that too many categories can lead to segmenting fruit regions, resulting
in errors. However, if there are too few cluster centers, the fruits cannot be completely
separated from the background. This was because the elements in the image were roughly
divided into three categories: fruit, background, and noise. In our experiment, the algorithm
achieved the best performance when the number of cluster centers was fixed at 3 as it
achieved 88.3% accuracy, 93.6% recall, and 90.9% F1-score.

Table 2. Comparison data of cluster values of clustering modules.

K P/% R/% F/%
2 81.3 83.6 82.4
3 88.3 93.6 90.9
4 79.2 86.5 82.7

3.5.3. Erosion and Dilation Experiments

To fully verify the influence of the number of iterations of erosion and dilation, we
further compared the models with different numbers of iterations. Table 3 shows that
the Fl-score will decrease when the number of iterations is too large or too small. In
particular, having too many control points will seriously degrade the performance. When
the number of control iterations is too large, the integrity of the image will greatly decrease.
The best performance was achieved when the number of iterations was approximately
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three. Therefore, in our experiment, the number of iterations for corrosion expansion was
fixed at three.

Table 3. Comparison data of erosion and dilation iterations.

Iterations P/% R/% F/%
1 86.2 914 88.7
2 87.9 92.3 90
3 88.3 93.6 90.9
5 78.1 82.8 80.4
10 63.1 66.2 64.6

4. Overall Analysis of the Experimental Results

Using our method, we conducted experiments in three scenarios: illumination, com-
plex backgrounds, and dense occlusions. In the illumination scenario, the images contained
the least number of apples, while in the dense occlusions scenario, the images contained
the highest number of apples. An illustration of the segmentation module is shown in

Figure 20.
r .
b
(b)

(d)

()

Figure 20. Illustration of the segmentation module. (a) shows the original image affected by illu-
mination before segmentation. (b) shows the image affected by illumination after segmentation
using our method. (c) shows the original image affected by complex backgrounds before segmenta-
tion. (d) shows the image affected by complex backgrounds after segmentation using our method.
(e) shows the original image affected by dense occlusions before segmentation. (f) shows the image
affected by dense occlusions after segmentation using our method.

We evaluated the image segmentation performance in the three experimental scenarios,
as shown in Table 4. From Table 4, it can be observed that as the number of targets increases,
the Mask_mAP value gradually decreases. This indicated that with the increase in the
number of apples, the segmentation performance was affected to some extent, but remained
within a relatively ideal range.
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Table 4. Image segmentation metrics under different scenarios.
Condition Mask_mAP/% Area Relative Error/%
MNumination 94.1 4.67
Complex Backgrounds 92.7 5.99
Dense Occlusions 90.6 6.14

The area relative error values exhibited a small range of variation and small numerical
values, indicating that regardless of changes in influencing factors or an increase in the
number of apples, the final edge detection results were essentially unaffected and remained
close to the original position.

Common deep learning segmentation methods such as U-Net [43], SegNet [44], and
Mask-RCNN [45] require the creation of training data for model training. Our segmentation
method exclusively utilizes K-Means for pixel-level segmentation, representing an unsuper-
vised approach. This method provides a feasible solution for effectively describing apples
in situations where annotated data is scarce. This is particularly important in practical
applications because in many real-world scenarios, acquiring a large amount of accurately
annotated data is both time-consuming and costly. Of course, for more complex scenarios
and when abundant accurately annotated data is available, choosing deep learning-based
methods is more effective.

We compared the edge detection results of the proposed model with those of the
Canny operator, Laplacian operator, Prewitt operator, and Holistically-Nested operator in
terms of three aspects: illumination effect, complex background effect, and dense occlusion
effect, as shown in Table 5.

Table 5. Comparison data of various methods.

N Complex Dense
Illumination .
) Effect Backgrounds Occlusions

Algorithm Effect Effect
P/% R/% D/% J/% P/% R/% D/% J/% P/% R/% D/% J/%
Canny 84.6 87.2 85.8 75.3 63.7 92.6 75.5 60.6 87.9 79.9 83.7 72.0
Laplacian 74.3 86.2 79.7 66.4 40.1 88.5 55.2 38.1 82.2 95.1 88.1 78.8
Prewitt 80.1 90.8 85.1 74.1 78.8 88.3 83.2 71.3 72.5 90.4 80.4 67.3
Hed 84.8 91.1 87.8 78.3 87.7 924 89.9 81.8 86.3 90.5 88.3 79.1
Ours 82.6 94.4 88.1 78.7 88.3 93.6 90.9 83.3 83.8 97.6 90.2 82.1

Table 5 shows that the model proposed in this paper exhibited better adaptability
in various aspects, such as the effects of illumination, complex backgrounds, and dense
occlusions. In terms of illumination effect experiments, the precision value, recall rate,
dice, and Jaccard of our algorithm were 82.6%, 94.4%, 88.1%, and 78.7%, except that the
precision value was slightly lower than the Holistically-Nested operator. Other evaluation
indexes were better than the Canny operator, Laplacian operator, Prewitt operator, and
Holistically-Nested operator of the contrast experiments. In terms of complex background
effect experiments, the precision value, recall rate, dice, and Jaccard of our algorithm
were 88.3%, 93.6%, 90.9%, and 83.3%, and the detection effect was superior to the Canny
operator, Laplacian operator, Prewitt operator, and Holistically-Nested operator. In terms
of dense occlusions effect experiments, the precision value, recall rate, dice, and Jaccard of
our algorithm were 83.8%, 97.6%, 90.2%, and 82.1%, except that the precision value was
slightly lower than Canny operator and Holistically-Nested operator. The detection effect
was superior to the Canny operator, Laplacian operator, Prewitt operator, and Holistically-
Nested operator.
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The analysis of the experimental results revealed that the model in this paper achieved
noise reduction by gradually removing the environmental noise around the target fruit.
Our proposed rough set edge detection method can better utilize pixel information with
fuzzy fruit edges and unclear classification, more effectively extract the salient contours of
fruits, and overall demonstrate stronger robustness.

5. Conclusions

Based on the application background of target edge detection, a detection method
combining rough set and convolutional neural network was proposed in this paper. This
method obtains the target edge image by gradually extracting the target features of the
original image and minimizing the loss of target features through graphics-related methods.

In response to the problems of multiple apples in the original image, which contain
too many irrelevant features and severe mutual influence between apples, a Faster-RCNN
model was constructed using convolutional neural network knowledge in deep learning to
segment multiple apples one by one and simplify the multi-apple edge detection problem
into a single apple edge detection problem.

For edge detection of a single segmented apple image, the branches and leaves around
the target still have a serious impact. According to various related studies, the K-means
clustering method was used to segment the target from the background and achieved
further noise reduction. In the processed results, the target image still suffered from feature
loss and a small amount of edge noise. To address this, we used cavity filling and graphic
erosion and dilation methods to minimize the loss of target features while maximizing
noise removal.

In terms of the core algorithm of edge detection, the rough set method was introduced
to better characterize the edge image of the target in response to the uncertainty and
imprecision of image edges. The experimental results showed that, considering the effects
of illumination, complex backgrounds, and dense occlusions, the values of dice were
88.1%, 90.9%, and 90.2%, respectively, which were significantly higher than those of the
Canny operator, Laplacian operator, Prewitt operator, and Holistically-Nested operator
participating in the contrast experiment. Meanwhile, the values of Jaccard were 78.7%,
83.3%, and 82.1%, respectively, which were higher than those of the Canny operator,
Laplacian operator, Prewitt operator, and Holistically-Nested operator participating in the
contrast experiment.

This paper studied the positioning and edge detection of apples. The research objects of
this paper were apple target location and edge detection in the natural environment, and the
accuracy of apple detection was effectively improved, which provides a valuable reference
for intelligent harvesting, growth analysis, and yield prediction. However, there are still
some areas that require improvement. We have designed a series of processes to overcome
issues such as branch occlusion, fruit occlusion, and shadow interference. Although these
processes largely remove non-target pixels, the final edge detection results revealed that
occlusion between fruits can lead to discontinuous edge delineation. Continuous edge
delineation is crucial for capturing depth information between targets. In future work, we
need to improve the issue of discontinuous edges, such as by introducing depth information
to fill in the final discontinuous edges.
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