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Abstract: Relative radiometric normalization (RRN) is a critical pre-processing step that enables
accurate comparisons of multitemporal remote-sensing (RS) images through unsupervised change
detection. Although existing RRN methods generally have promising results in most cases, their
effectiveness depends on specific conditions, especially in scenarios with land cover/land use (LULC)
in image pairs in different locations. These methods often overlook these complexities, potentially
introducing biases to RRN results, mainly because of the use of spatially aligned pseudo-invariant
features (PIFs) for modeling. To address this, we introduce a location-independent RRN (LIRRN)
method in this study that can automatically identify non-spatially matched PIFs based on brightness
characteristics. Additionally, as a fast and coregistration-free model, LIRRN complements keypoint-
based RRN for more accurate results in applications where coregistration is crucial. The LIRRN
process starts with segmenting reference and subject images into dark, gray, and bright zones using
the multi-Otsu threshold technique. PIFs are then efficiently extracted from each zone using nearest-
distance-based image content matching without any spatial constraints. These PIFs construct a
linear model during subject–image calibration on a band-by-band basis. The performance evaluation
involved tests on five registered/unregistered bitemporal satellite images, comparing results from
three conventional methods: histogram matching (HM), blockwise KAZE, and keypoint-based
RRN algorithms. Experimental results consistently demonstrated LIRRN’s superior performance,
particularly in handling unregistered datasets. LIRRN also exhibited faster execution times than
blockwise KAZE and keypoint-based approaches while yielding results comparable to those of HM in
estimating normalization coefficients. Combining LIRRN and keypoint-based RRN models resulted
in even more accurate and reliable results, albeit with a slight lengthening of the computational time.
To investigate and further develop LIRRN, its code, and some sample datasets are available at link in
Data Availability Statement.

Keywords: relative radiometric normalization (RRN); location-independent RRN; remote sensing
(RS); pseudo-invariant features (PIFs); bitemporal multispectral images; change detection

1. Introduction

Relative radiometric normalization (RRN) is the key step for justifying radiometric
distortions between bi/multitemporal remote-sensing (RS) images caused by diverse
atmospheric interferences, fluctuations in the sun–target–sensor geometry, and sensor
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characteristics [1–4]. The RRN technique’s aim is to find pixel pairs between reference
and subject images and radiometrically align them through a linear/nonlinear mapping
function (MF) [5]. Based on the selection criteria for these pairs, RRN methods are broadly
categorized into two groups: dense RRN (DRRN) and sparse RRN (SRRN) [6].

In the DRRN process, the mapping function (MF) between the subject and reference
images can be established either linearly or nonlinearly using all the pixels from both
images [7]. Histogram matching (HM) [8] is a widely employed DRRN method that
effectively addresses radiometric inconsistencies between reference and subject images
utilizing their respective histograms. Other frequently used DRRN methods, such as
minimum–maximum (MM) [1] and mean–standard deviation (MS) [1], adopt global statis-
tical parameters to establish a linear MF between the input images. DRRN methods are
mostly used in image-mosaicking tasks because of their advantageous features, including
time efficiency and the capability to handle large-sized image pairs [9]. However, when
dealing with image pairs that include significant land cover/land use (LULC) changes,
these methods may introduce noise structures and artifacts to the final results because of
their equal treatment of all the pixels. SRRN methods, however, are specifically designed to
handle radiometric distortions in such image pairs by extracting pseudo-invariant features
(PIFs) and using them to establish a more precise MF [6,7,10,11].

In recent years, several SRRN methods [6,12–17] have been developed, each adopting
a distinct approach for selecting PIFs from image pairs. The controlled-regression SRRN
technique introduced by Elvidge et al. in 1995 [3], has appeared as a widely adopted and
refined method for radiometric adjustment in the analysis of multitemporal images. In this
method, PIFs/no-change pixels are identified using the scattergrams obtained from near-
infrared bands through a controlled linear model. Another particularly powerful SRRN
method is iteratively reweighted multivariate alteration detection (IRMAD), introduced by
Canty and Nielsen [13], which has led to the development of many similar SRRN methods
based on its principles. For example, Syariz et al. (2019) [18] presented a spectral-consistent
RRN method for multitemporal Landsat 8 images, where PIFs were selected using the
IRMAD method. In this method, a common radiometric level situated between image
pairs was selected to reduce potential spectral distortions. Despite promising results, these
methods primarily rely on iteratively identifying PIFs to re-estimate parameters for aligning
images. A more advanced SRRN method was recently proposed by Chen et al. [10], in
which PIFs in the shape of polygons were used to form an RRN model and generate reliable
normalized images. Although these methods have shown promising results in RRN, they
are limited to working with geo/coregistered image pairs and are therefore incompatible
when unregistered input images need to be normalized [19].

To overcome the aforementioned limitation, keypoint-based RRN methods [19,20] have
been developed that are robust to variations in scale, illumination, and viewpoints between
subject and reference images. These methods typically operate in two steps. First, PIFs or
true matches are extracted from image pairs through a feature detector/descriptor-matching
process. Subsequently, an MF is created using these PIFs to generate a normalized image.

Keypoint-based RRN methods effectively handle radiometric distortions in both regis-
tered and unregistered image pairs. Nevertheless, the efficacy of most SRRN methods and
these approaches may be compromised when applied to image pairs with identical LCLU
classes but located in different geographic areas because of factors such as seasonal fluctua-
tions, climate variations, or other influencing elements. This arises as these methods often
overlook these regions during their PIF selection, focusing primarily on spatially aligned
PIFs or unchanged pixels to establish meaningful MFs between image pairs. For instance,
Figure 1 highlights that both keypoint-based RRN and rule-based RRN methods [6] neglect
deep and shallow water classes as potential regions for PIF selection, introducing the possi-
bility of errors in the final results. This limitation becomes evident when these methods
are used in scenarios with significant spatial LULC differences, potentially impacting the
accuracy of the final RRN results.
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on the rule-based RRN [6]. 
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pendence characteristics of DRRN, particularly in handling radiometric calibration for un-
registered image pairs with varying LULCs in different locations. 

To address this research question, we introduce the location-independent RRN 
(LIRRN) method, a novel approach designed to reduce radiometric distortions in bitem-
poral RS images, regardless of their coregistration status. LIRRN efficiently identifies PIFs 
from diverse ground surface brightnesses in image pairs by employing the dual approach 
of multithreshold segmentation and image content matching conducted band by band. 
This process starts with the bandwise multilevel segmentation of subject and reference 
images, categorizing pixels into dark, gray, and bright classes based on their gray val-
ues/digital numbers (DNs). Subsequently, a unique image-content-based matching strat-
egy extracts PIFs from each class, considering the close similarity in DNs within the spec-
tral range of the input images. This band-by-band matching ensures spatial independence 
and accurately represents the underlying content. By automatically extracting representa-
tive PIFs, this method facilitates precise radiometric normalization modeling in the final 
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fused with those of the keypoint-based method to enhance overall outcomes, particularly 
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hensive analysis of the obtained results. Finally, Section 4 provides a summary of the pa-
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Figure 1. An example illustrating the limitations of keypoint-based and traditional SRRN methods
in selecting PIFs from LCLU classes with varying spatial positions in coregistered reference and
subject images. (a) Landsat 5 (TM) image acquired in September 2010 (subject image); (b) Landsat 7
(ETM+) image acquired in August 1999 (reference image); (c) LCLU map of the reference image;
(d) LCLU map of the subject image; (e) selected PIFs from the reference and subject images based on
the keypoint-based RRN method [21]; (f) selected PIFs from the reference and subject images based
on the rule-based RRN [6].

On the other hand, DRRN methods are not limited by spatial constraints and can
be considered to include all the LULCs in images during their normalization process.
However, as mentioned before, using all the image pixels in their DRRN process may lead
to suboptimal RRN results due to the existence of real change pixel pairs. This raises the
question of whether an efficient RRN method can be devised to attain accuracy comparable
to that of keypoint-based RRN methods while retaining the speed and spatial independence
characteristics of DRRN, particularly in handling radiometric calibration for unregistered
image pairs with varying LULCs in different locations.

To address this research question, we introduce the location-independent RRN (LIRRN)
method, a novel approach designed to reduce radiometric distortions in bitemporal RS
images, regardless of their coregistration status. LIRRN efficiently identifies PIFs from
diverse ground surface brightnesses in image pairs by employing the dual approach of
multithreshold segmentation and image content matching conducted band by band. This
process starts with the bandwise multilevel segmentation of subject and reference images,
categorizing pixels into dark, gray, and bright classes based on their gray values/digital
numbers (DNs). Subsequently, a unique image-content-based matching strategy extracts
PIFs from each class, considering the close similarity in DNs within the spectral range of
the input images. This band-by-band matching ensures spatial independence and accu-
rately represents the underlying content. By automatically extracting representative PIFs,
this method facilitates precise radiometric normalization modeling in the final step of the
normalization process. In the subsequent stage, the results of this method are fused with
those of the keypoint-based method to enhance overall outcomes, particularly in scenarios
requiring radiometric calibration for coregistered images.

This paper is organized as follows. Section 2 presents the proposed LIRRN method,
detailing its key components and workflow. Section 3 describes the datasets used for
evaluating the method, along with the evaluation metrics that were employed and a
comprehensive analysis of the obtained results. Finally, Section 4 provides a summary
of the paper’s findings and conclusions, as well as a discussion on potential avenues for
future research and development in this field.

2. Materials and Methods
2.1. Methodology

Given bitemporal unregistered/coregistered RS images MSS =
{

msS(i, j, k)
∣∣1 ≤ i ≤ R,

1 ≤ j ≤ C, 1 ≤ k ≤ b} and MSR =
{

msR(i, j, k)
∣∣1 ≤ i ≤ H, 1 ≤ j ≤W, 1 ≤ k ≤ b

}
, defined
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respectively over the domains Ωs = [1, R]× [1, C] and ΩR = [1, H]× [1, W], in b spectral
bands as subject and reference images, respectively, let us consider that these images
were captured by either inter- or intra-sensors, depicting the same scene but acquired at
different/same scales under varying illumination and atmospheric conditions.

The main goal of the LIRRN method is to efficiently generate a normalized subject
image, MSNL =

{
msNL(i, j, k)

∣∣1 ≤ i ≤ R, 1 ≤ j ≤ C, 1 ≤ k ≤ b
}

, from MSS and MSR im-
ages regardless of their coregistration status. Figure 2 depicts the two primary steps of
the LIRRN method: PIF selection (Section 2.1) and RRN modeling (Section 2.2). In the
following scenario (Section 2.3), the image MSNL is registered using the transformation
matrix T} from the keypoint-based RRN method and fused with its normalized image,
MSNκκκ , to generate a more accurate coregistered normalized image, MSNF .
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Figure 2. The flowchart of the proposed LIRRN method and its combination with the keypoint-
based RRN for the radiometric calibration of unregistered/coregistered bitemporal multispectral
image pairs.

2.1.1. PIF Selection

This step aims to identify reliable and spatially independent PIFs from different gray
levels of input images in a band-by-band manner. In detail, each band of MSS and MSR

images is segmented into three classes (dark, gray, and bright) using the multilevel Otsu
method, an extension of the classic Otsu thresholding technique [22]. In this method, a
histogram,H = { f0, f1, . . . , fL−1}, is constructed for each band of input images, where L
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represents the number of gray levels. The occurrence probability (ρi) for each gray level
is determined by ρi =

fi
Nn

, where Nn denotes the total number of pixels in each image.
Using threshold combinations, (t1, t2), where 0 < t1 < t2 < L, which were automatically
detected, cumulative probabilities (wm) and mean gray levels (µm) for each class (Cmϵ {C0:
dark, C1: gray, and C2: bright}) are calculated as follows:

w0 = ρ0

w1 = ρ0 + ρ1

w2 = ρ0 + ρ1 + ρ2

(1)

µ0 = 1
w0

∑t1−1
i=0 i

µ1 = 1
w1−w0

∑t2−1
i=t1

i

µ2 = 1
w2−w1

∑L−1
i=t2

i

(2)

The algorithm then iterates through the threshold combinations, (t1, t2), to maximize
the between-class variance, σ2

between(t1, t2), computed by considering the probabilities and
mean gray levels for each class as follows:

σ2
between(t1, t2) = w0(t1)·(w1(t1)− w0(t1))·(µ1(t1)− µ0(t1))

2 + w1(t2)·(w2(t2)− w1(t2))·(µ2(t2)− µ1(t2))
2 (3)

The optimal threshold combination, (t1, t2), that maximizes the between-class vari-
ance is then selected.

Once each band of input images is segmented into the three aforementioned classes,
PIFs are selected using the proposed image-content-based matching strategy. In this way,
pixel values in the mth class of the kth band of MSS and MSR are first extracted and
represented as BS

m,k and BR
m,k, respectively. Class statistics, including the minimum (α),

mean (β), and maximum (γ) of these pixel values, are then estimated and denoted as
Ev

m,k = [αv
m,k, βv

m,k, γv
m,k], v : S, R. Afterward, the differences between the extracted pixel

values and estimated class statistics are obtained and sorted in ascending order, forming
δ

v,p
m,k as follows:

δ
v,p
m,k = sort

(∣∣∣Bv
m,k − Ev,p

m,k

∣∣∣), v : S, R and p : α, β, γ (4)

where sort(.) is a function ascendingly rearranging the elements of vectors.
Subsequently, an initial subset, P0

v,p
m,k, with N samples for each class in the kth band of

each input image is selected based on the samples’ proximities to the estimated statistics
as follows:

P0
v,p
m,k =

{
Bv

m,k

∣∣∣δv,p
m,k1
≤

∣∣∣Bv
m,k − Ev,p

m,k

∣∣∣ ≤ δ
v,p
m,kN

}
, v : S, R and p : α, β, γ (5)

where δ
v,p
m,k1

and δ
v,p
m,kN

are the first and Nth elements of δ
v,p
m,k, and N is also the number of

the selected samples, which can be considered as being in the range [500, 10,000].
Randomly, 10% of these samples are chosen to form subsets Pv,p

m,k; v : S, R and p : α, β, γ

for the mth class in the kth band of the MSS and MSR images.
To find corresponding DNs, a nearest-distance matching strategy is employed by

computing pairwise Euclidean distances between the subsets PS,p
m,k and PR,p

m,k , resulting in the
matrix of pairwise distances, Dp

m,k. Sample pairs with minimum distances are then selected
to create spectrally matched sets Mv,p

m,k; v : S, R and p : α, β, γ. Finally, concatenated
PIFs for the kth band in each of MSS and MSR are formed by gathering samples within
Mv,p

m,k across all the statistics, resulting in vectors Ov
m,k; v : S, R for each class. Subsequently,

vectors Ov
m,k across all the classes are combined to generate the final set of concatenated

PIFs, denoted as PIFv
k ; v : S, R, for the kth band in each of MSS and MSR.
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2.1.2. RRN Modeling

To establish the relationship between the MSS and MSR images and to generate the
normalized image, MSNL , a linear regression was performed in a band-by-band way
through the previously extracted PIFs in each band as follows:

MSNL = φ0,k + φ1,k

(
MSS

)
(6)

where φ0,k and φ1,k are, respectively, the intercept and slope of the model, which can be
obtained using the least-squares method as follows:

φ1,k =
σ2

SR,k

σ2
S,k

(7)

φ0,k = µR,k − φ1,kµS,k (8)

where σ2
S,k refers to the variance in PIFS

k , σ2
SR,k is the covariance between PIFS

k and PIFR
k ,

and µS,k and µR,k signify the averages of PIFS
k and PIFR

k , respectively.
For a clearer understanding, the step-by-step pseudocode of the proposed LIRRN

method is presented in Algorithm 1.

Algorithm 1 Location-independent Relative Radiometric Normalization (LIRRN)

Require: MSR (Reference image), MSS (Subject image), N (Number of initial points, default = 1000)
Ensure: MSNL (Normalized subject image)

1: for k = 1 to b do ▷ Loop on the number of bands, i.e., b
2: Cm ∈ {C0 dark, C1 gray, C2 bright} ← multilevelOtsu

(
MSv

k
)
, v : S, R

3: for m = 0 to 2 do ▷ Loop on the number of classes
4: Bv

m,k ← extract the samples of class m from MSv
k , v : S, R

5: Ev
m,k ←

[
αv

m,k, βv
m,k, γv

m,k

]
, where Ev

m,k is the minimum (α), mean (β), and

maximum(γ)of Bv
m,k

6: δ
ν,p
m,k ← sort

(∣∣∣Bv
m,k − Ev,p

m,k

∣∣∣) , v : S, R and p : α, β, γ ▷ Equation (4)

7: P0
v,p
m,k ←

{
Bv

m,k

∣∣∣δv,p
m,k1 ≤

∣∣∣Bv
m,k − Ev,p

m,k

∣∣∣ ≤ δ
v,p
m,kN

}
, v : S, R and p : α, β, γ ▷ Equation (5)

8: Pv,p
m,k ← select 0.1× N points randomly from Pm,k,v,p

0

9: Dp
m,k ← compute pairwise distances between PS,p

m,k and PR,p
m,k

10: for r = 1 to 0.1× N do � Loop on the number of randomly selected points
11: η

p
m,k ← compute the minimum value of Dp

m,k

12: extract the row
(

xp
m,k

)
and

(
yp

m,k

)
of η

p
m,k in Dp

m,k

13: MS,p
m,k[r, 1]← PS,p

m,k

(
xp

m,k

)
14: MR,p

m,k [r, 1]← PR,p
m,k

(
yp

m,k

)
15: remove the element Dp

m,k

[
xp

m,k, yp
m,k

]
from Dp

m,k
16: end for
17: PIFv

k ← UmUp Mv,p
m,k � Gather values from sets Mv,p

m,k
18: end for
19: estimate the normalization coefficients

{
ϕ0,k, ϕ1,k

}
using PIFS

k and PIFR
k in

Equations (7) and (8)
20: MSNL

k ← apply the constructed RRN model (Equation (6)) on MSS
k

21: end for
22: return MSNL

2.2. Fusion of LIRRN and Keypoint-Based RRN

In the context of the multitemporal image analysis, where the acquisition of a nor-
malized coregistered image is pivotal, our approach involves the integration of an LIRRN-
generated normalized image, MSNL , with the counterpart produced using a keypoint-based
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method, denoted as MSNκκκ . In this scenario, the scale-invariant feature transform (SIFT)
operates as the core for the keypoint-based RRN to generate the normalized image, MSNκκκ ,
and geometric transformation matrix, T} (i.e., generated herein using an affine transforma-
tion). The transformation matrix (T}) is then employed to coregister the LIRRN-generated
normalized image (MSNL ) with the normalized image, MSNκκκ . Finally, they are fused using
a weighted average to generate the fused normalized image (MSNF ) as follows:

MSNF =
ωNLMSNL + ωNκκκMSNκκκ

ωNL + ωNκκκ
(9)

where ωNL and ωNκκκ represent the weights assigned to each normalized image and are
determined based on the reference image, which can be obtained as follows:

ωNL =
1∣∣∣MSR −MSNL

∣∣∣ (10)

ωNκκκ =
1∣∣∣MSR −MSNκκκ

∣∣∣ (11)

2.3. Data

To conduct both quantitative and qualitative assessments, this study utilized five
groups of unregistered bitemporal multispectral images captured by either the same/cross/
different sensors under diverse imaging conditions (see Table 1 and Figure 3a,b). As can
be seen from Table 1, datasets 4 and 5 include image pairs taken from the IRS (LISS IV)
and Landsat 5/7 (TM/ETM+) sensors, exhibiting discrepancies in spatial resolutions and
viewpoints. Datasets 1 and 3 were captured with identical spatial resolutions using Landsat
cross sensors, whereas dataset 2 comprises subject and reference images taken by Landsat 7
(ETM+). It is essential to emphasize that the selected image pairs were not precisely
coregistered, where all the subject images lacked geoinformation and were rotated or
shifted to ensure a comprehensive evaluation of the effectiveness of the LIRRN method in
handling non-georeferenced RS images.

Table 1. Characteristics of datasets.

Data Ref./Sub Satellite
(Sensor) Band Type

Resolution
Image Size

(Pixels) Date Study AreaSpatial
(m)

Radiometric
(Bits)

# 1
MSR Landsat 7 (ETM+)

Blue; Green; Red; NIR *;
SWIR * 1; SWIR 2 30 8

534 × 960 August 1999 West
Azerbaijan,

IranMSS Landsat 5 (TM) 534 × 960 September
2010

# 2
MSS

Landsat 7 (ETM+) Blue; Green; Red; NIR;
SWIR 1; SWIR 2 30 8

582 × 574 May 2003
Cagliari,

ItalyMSR 1131 × 1130 September
2002

# 3
MSS Landsat 8 (OLI)

Coastal; Blue; Green; Red;
NIR; SWIR 1; SWIR 2 30 12

3130 × 2405 June 2021
Qeshm

Island, IranMSR Landsat 9 (OLI-2) 2278 × 2292 November
2022

# 4
MSR Landsat 7 (ETM+)

Green; Red; NIR;
mSWIR 1

30
8

7871 × 7151 March 2002 San
Francisco,
CA, USAMSS IRS (LISS IV) 23.5 7883 × 7490 February

2022

# 5
MSR Landsat 5 (TM)

Green; Red; NIR; SWIR 1
30

8
1000 × 1000 July 2009 Daggett

County, UT,
USAMSS IRS (LISS IV) 24 1000 × 1000 June 2020

* NIR: near infrared; SWIR: shortwave infrared.
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and (NIR/Red/Green) were employed respectively to show dataset 1 and datasets 4 and 5 and their
results, whereas the normal color composite (Red/Green/Blue) was used to display datasets 2 and 3.

2.4. Evaluation Criteria

The performance of the RRN methods was assessed by calculating the root-mean-
square error (RMSE) for the overlapped area of the image pairs as follows:

RMSE =

√√√√ 1
No

N0

∑
ι=1

(
MSR

ι −MSN
ι

)2
(12)

where No is the total number of pixels in the overlapped area. A low RMSE describes
acceptable RRN results, while a high RMSE denotes worse results. It is worth noting that to
calculate the RMSE, the reference and subject images were first co-registered with subpixel
accuracy. Moreover, to evaluate the changes in the detection results, we used common
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metrics, like the false-alarm rate (PFA), the missed-alarm rate (PMA), total error (TE) rate,
overall accuracy (OA), and F-score (FS), which can be respectively obtained as follows:

PMA =

(
FN

FN + TP

)
× 100% (13)

PFA =

(
FP

FP + TN

)
× 100% (14)

OA =

(
TP + TN

TP + TN + FP + FN

)
× 100% (15)

TE = 100%−OA (16)

FS =
2×

(
TP

TP+FP

)
×

(
TP

TP+FN

)
(

TP
TP+FP

)
+

(
TP

TP+FN

) × 100% (17)

where true positive (TP) is the changed pixels that are accurately classified as changed
regions, false positive (FP) is the background that is classified incorrectly as changed
regions, true negative (TN) is the changed regions that are accurately classified as changed
regions, and false negative (FN) is the changed regions that are incorrectly classified as
the background.

3. Experimental Results
3.1. Experimental Setup

The LIRRN method was implemented using MATLAB (version 2018b) on a PC running
Windows 10, with an Intel® Core™ i5-6585R CPU (Intel, Santa Clara, CA, USA), clocked at
3.40 GHz, and 32.00 GB of RAM.

In our investigation, we examined the impact of the parameter N on the performance
of the LIRRN method. To do so, we plotted the average RMSE and computational time
against different values of N, ranging from 100 to 10,000 at intervals of 500, across all five
datasets. These results are presented graphically in Figure 4.

Upon analyzing the plots presented in Figure 4, it became apparent that the average
RMSE of the LIRRN method decreased with an increase in the number of samples for
datasets 1 and 3. However, in the cases of datasets 2 and 4, it was observed that the average
RMSE actually increased as the number of samples increased. Therefore, it shows that
the effectiveness of the LIRRN algorithm is influenced by the choice of the parameter “N”
across different datasets. These variations in the performance, whether they involve an
increase or decrease, were relatively modest compared to the corresponding changes in the
execution time. Across all the plots, it was evident that as the number of samples within
the LIRRN process increased, there was a significant lengthening of the computational
time, which makes LIRRN infeasible when dealing with large datasets, such as dataset 4.
To address this concern, and according to our findings, we preferred to determine a value
of N = 1000 in the LIRRN process to achieve a reasonable balance between accuracy and
computational efficiency.
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3.2. Comparative Results of the SRRN Methods

To assess the effectiveness of the LIRRN method, we conducted a comparative analysis
against other relevant methods, including HM [8] and the blockwise KAZE method [19].
Additionally, the results for fusing the LIRRN with the keypoint-based approach were
also included in our evaluation to further assess the efficacy of our fusion strategy. For
this experiment, we compared both the accuracies and execution times, as seen in Table 2.
Moreover, the normalized images produced using the considered techniques are presented
in Figure 5 for a visual comparison.

Table 2. Comparison of the RMSEs and computational times of the proposed LIRRN and fusion
models and considered RRN methods for the datasets from 1 to 5.

Dataset # Method
RMSE Comp. Time

(s)C/A Blue Green Red NIR SWIR 1 SWIR 2 Avg.

# 1

Raw N/D 44.28 71.17 84.13 62.39 83.88 73.10 69.83 N/D
HM N/D 48.72 43.01 69.89 64.19 85.22 70.61 63.61 1.08
Blockwise KAZE N/D 37.74 44.22 66.39 59.08 77.35 65.86 58.44 37.1
Keypoint-based RRN N/D 43.70 48.41 69.90 59.78 78.04 67.23 61.18 24.82
LIRRN N/D 37.34 41.85 59.41 61.09 77.22 66.50 57.24 1.84
Fusion N/D 39.36 43.69 61.20 60.34 77.26 66.43 58.05 26.91
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Table 2. Cont.

Dataset # Method
RMSE Comp. Time

(s)C/A Blue Green Red NIR SWIR 1 SWIR 2 Avg.

# 2

Raw N/D 108.2 101.51 100.41 126.95 139.10 130.00 117.72 N/D
HM N/D 32.12 34.17 37.06 37.77 22.41 24.82 31.39 1.02
Blockwise KAZE N/D 30.02 31.63 34.49 32.51 14.61 19.61 27.14 31.74
Keypoint-based RRN N/D 28.71 33.63 36.04 32.52 13.62 18.95 27.25 20.33
LIRRN N/D 27.53 31.24 33.71 32.86 13.53 18.70 26.26 2.35
Fusion N/D 27.43 31.72 34.45 32.65 13.51 18.54 26.38 23.09

# 3

Raw 9151.3 10,031.94 11,779.02 12,232.78 13,582.19 14,545.61 13,249.57 12,081.77 N/D
HM 2019.93 2034.29 2613.71 4011.93 5274.75 5195.34 4475.87 3660.83 2.877
Blockwise KAZE 1191.36 1069.10 1107.65 1423.71 1854.64 2002.92 1788.16 1491.08 1210.21
Keypoint-based RRN 1206.01 1103.10 1171.84 1506.03 1957.89 2128.69 1873.97 1563.93 890.64
LIRRN 1223.28 1171.67 1536.92 1497.34 1578.61 1792.30 1578.01 1482.59 35.65
Fusion 1181.23 982.33 922.05 1204.12 1662.05 1726.35 1540.91 1317 927.44

# 4

Raw N/D N/D 17.54 18.29 85.79 41.41 N/D 40.76 N/D
HM N/D N/D 17.83 25.41 44.2 43.35 N/D 32.7 6.03
Blockwise KAZE N/D N/D 11.86 17.36 18.24 19.18 N/D 16.66 5725.39
Keypoint-based RRN N/D N/D 10.66 17.01 18.12 19.46 N/D 16.31 5558.84
LIRRN N/D N/D 13.67 17.78 18.55 20.68 N/D 17.67 39.73
Fusion N/D N/D 11.36 17.31 18.09 17.95 N/D 16.18 5590.61

# 5

Raw N/D N/D 98.15 89.59 89.25 90.43 N/D 91.86 N/D
HM N/D N/D 56.70 49.27 75.18 63.33 N/D 61.12 1.76
Blockwise KAZE N/D N/D 18.28 21.23 25.74 28.45 N/D 23.43 61.84
Keypoint-based RRN N/D N/D 17.04 20.27 27.74 27.48 N/D 23.13 53.12
LIRRN N/D N/D 24.06 26.19 27.53 33.18 N/D 27.74 3.67
Fusion N/D N/D 17.66 20.49 25.92 27.30 N/D 22.84 58.11

Bold numbers: the best performance; N/D: no data; C/A: coastal aerosol.

The comparative results presented in Table 2 indicated that all the models effec-
tively reduced radiometric distortions between image pairs, thus contributing to improved
subject–image quality. However, it was noteworthy that the HM model, in certain datasets,
yielded poor results, exhibiting an even worse performance than those of the raw subject
images. Specifically, the proposed LIRRN method demonstrated superior performance
over the HM, blockwise KAZE, and keypoint-based approaches in datasets 1–3, while
the blockwise KAZE and keypoint-based methods showed better results for datasets 4
and 5, respectively. For example, the raw average RMSE was reduced by 12.59, 91.46,
10,517.84, 23.09, and 64.12 after employing the LIRRN method for the RRN of datasets 1–5,
respectively. This indicates its potential to reduce radiometric distortion in unregistered
cases or scenarios where the same LULC is observed in different locations of subject and
reference images.

The integration of LIRRN with the keypoint-based approach yielded the most promis-
ing results across all the datasets, particularly emphasizing its effectiveness in datasets 3–5.
For instance, after fusing LIRRN with the keypoint-based method, the average RMSE of the
LIRRN method decreased by 11%, 8.5%, and 17.5% for datasets 3–5, respectively. Moreover,
implementing the proposed fusion strategy led to a reduction in the average RMSE of
the keypoint-based method by 5%, 3%, 15%, 0.1%, and 1% for datasets 1–5, respectively.
This indicates that by employing a fusion strategy, we can achieve reasonable results that
benefit from both methods, thereby ensuring the accuracy of the RRN when the radiometric
calibration of registered cases is required.

The visual results also validate that all the considered methods, except for HM, suc-
cessfully produced normalized subject images with exceptional color and brightness harmo-
nization when compared to their corresponding reference images, as depicted in Figure 5.
In further detail, there were no significant visual differences observed among the results of
the blockwise KAZE, keypoint-based, proposed LIRRN, and fusion methods. However,
the HM method exhibited artifacts and noise in the generated subject images, as evident in
Figure 5b.
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Additionally, the tone and contrast of the normalized images generated using HM
were consistently higher than those of their corresponding reference images across all the
cases. These characteristics can be attributed to the nature of the HM technique, which uses
all the image pixels indiscriminately without considering time-invariant regions during
processing. This approach leads to a bias toward changed region values, resulting in
distortion within the RRN. However, despite its drawbacks, HM was found to be the most
efficient RRN method in terms of its execution time, as it relies solely on the histograms of
the image pairs as the core of its process.

On the other hand, the computational time of LIRRN was comparable to that of HM
and, therefore, shorter than those of the keypoint-based method and the blockwise KAZE
method. This makes LIRRN an efficient RRN method for handling large unregistered
images. Moreover, the fusion of LIRRN with the keypoint-based method adds the computa-
tional time of the keypoint-based method to the execution time of the fusion approach. This
is expected from the keypoint-based method, as it employs a matching process to extract
PIFs and employs them for the simultaneous radiometry and coregistration of image pairs.
Therefore, using the keypoint-based method and its fusion with the LIRRN method proves
to be efficient when coregistered normalized images are required, despite the slightly longer
computational time compared to those of the individual methods.

Table 2 also demonstrates that the performance of LIRRN is significantly superior to
those of the other methods in datasets where image pairs have the same spatial resolution
(datasets 1 and 2). This suggests that the performance of the LIRRN model is more affected
when faced with datasets that include image pairs with different spatial resolutions. This
issue is further discussed in Section 3.4.

3.3. The Impact of the Proposed Fusion-Based Strategy on Unsupervised Change Detection

To enable visual comparisons between the reference images and normalized subject
images generated using the proposed fusion strategy method, we employed spectrum-
based compressed change vector analysis (C2VA) [23]. Similar to the normalized images
generated using the LIRRN method, the subject images were also coregistered with the
reference images using the transformation matrix, T}. Subsequently, C2VA was utilized to
depict changes between the subject and reference images, as well as between the normalized
and fusion images and the reference images, in the 2D polar domain using magnitudes
and orientations, as defined by Liu et al. in 2017 [23]. Finally, Otsu’s thresholding [22]
was applied to the magnitudes of the C2VA to generate binary change maps from the
inputs. To evaluate the change detection results, we have generated reliable ground-truth
maps utilizing post-classification change detection techniques [24], followed by manual
rectification to assign classes as changed or unchanged. In this experiment, the raw subject
and reference images were regarded as the uncalibrated cases, whereas the normalized
subject image and reference image were treated as the calibrated cases for the purposes of
clarity and ease of explanation.

Figure 6a–e illustrates the resulting normalized subject images generated using the
fusion approach, along with the subject and reference images, C2VA magnitudes, and binary
change maps superimposed on the ground-truth maps for a section of datasets 1 and 2.

The visual comparison presented in Figure 6 clearly indicated the significant impact
of radiometric calibration on the accuracy of unsupervised change detection based on
medium-resolution satellite images. Upon calibrating the datasets, the accuracy of the
change detection significantly improved across all the datasets. Conversely, when utilizing
uncalibrated datasets, a considerable number of missed alarms (depicted in green) and
false detections (depicted in magenta) were observed in the generated change maps (see
Figure 6e).
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Figure 6. Comparison of C2VA-based change detection results before and after applying the proposed
LIRRN method on a subset of datasets 1 and 2. (a) Reference images, (b) subject images (top row), and
normalized subject images (bottom row); (c,d) C2VA and its 2D polar change representation domain,
respectively, resulting from reference and subject images (top row) and reference and normalized
subject images (bottom row); (e) change maps before (top row) and after (bottom row) applying
LIRRN and overlaid with ground-truth data (black: changed; white: unchanged; magenta: false
alarm; green: missed alarm).

Moreover, the C2VA magnitudes derived from the calibrated images enable a clearer
identification of the changed regions, thereby facilitating more straightforward thresholding
for the generation of accurate change detection results. In contrast, magnitudes derived
from uncalibrated images were significantly influenced by noise and anomalies. When
derived from calibrated images, the 2D polar change representation domain exhibited a
uniform distribution of unchanged regions characterized by low-magnitude values close
to zero. This uniform distribution simplified the differentiation between changed and
unchanged regions during the thresholding process, resulting in more precise change
maps. Conversely, the non-uniform distribution of unchanged regions over zero in the 2D
polar change representation domain, derived from uncalibrated images, posed a challenge
in accurately distinguishing between changed and unchanged regions. These findings
highlight the critical importance for using RNN in unsupervised change detection and
confirm the fusion strategy’s superiority in this regard.

These results are supported by quantitative findings presented in Table 3. They demon-
strate a significant decrease in PFA, PMA, and TE, while observing a considerable increase
in OA and FS scores following the utilization of calibrated datasets. This improvement is
particularly evident when comparing the FS score metrics, which exhibit an increase of
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over 40% after employing calibrated datasets with the LIRRN model. PMA is also notably
decreased by ~50% subsequent to the radiometric calibration of the datasets.

Table 3. Change detection results obtained before and after applying the proposed LIRRN method
on a subset of datasets 1 and 2.

Dataset # RRN
Status (× 1; ✓ 2)

PMA
(%)

PFA
(%)

TE
(%)

OA
(%) FS

# 1
× 64.98 7.33 29.72 70.28 47.78
✓ 1.06 5.66 3.87 96.13 95.20

# 2
× 70.83 17.56 20.48 79.52 13.53
✓ 14.21 1.43 2.14 97.86 81.52

1 Before applying LIRRN; 2 After applying LIRRN.

3.4. The Impacts of the Angle and Scale on the Performance of the LIRRN

To examine the influence of varying angles on the LIRRN’s performance, subject
images from datasets 1 and 2 were rotated in increments of π/4, ranging from 0 to π, and
subsequently processed with LIRRN. Furthermore, to assess LIRRN’s effectiveness across
different scales, subject images were subsampled at scales of 0.15, 0.25, 0.5, and 0.75 prior
to the LIRRN application. The results of these investigations are shown in Figure 7.

As depicted in Figure 7, the normalized images generated using LIRRN at different
angles and scales are well-aligned with the reference images, indicating the robustness
of the LIRRN model to these distortions. Specifically, the plots in Figure 7 clearly show
that the LIRRN method is more robust to angle variation compared to scale variation.
For instance, the average RMSE remains relatively constant, with slight differences when
the angle increases from 0 to π. In contrast, an increasing trend in the average RMSE is
observed in the results of the LIRRN when reducing the resolution scale from 1 to 0.15.
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4. Conclusions

In this paper, we proposed the LIRRN method, which can extract PIFs from both input
images without relying on their coregistration status. The LIRRN method successfully
extracted non-spatially aligned PIFs from various ground surfaces in image pairs by in-
tegrating the straightforward thresholding and proposed image content matching. This
capability enabled the LIRNN method to successfully perform radiometric adjustment
on unregistered image pairs and image pairs with LULC classes positioned differently.
Moreover, the ability of the proposed LIRRN to generate registered normalized images was
further boosted through fusion with the keypoint-based method.

To assess the effectiveness of the LIRRN method and its fusion, we tested them on five
different RS datasets acquired using inter/intra-sensors. Our experimental results showed
that LIRRN outperformed conventional techniques, such as the HM, keypoint-based RRN,
and blockwise KAZE methods, in the radiometric adjustment of most considered datasets
in terms of accuracy. Although the results of the LIRNN and keypoint-based and blockwise
KAZE methods were similar, LIRNN was significantly faster and comparable to HM
when the RNN of unregistered images was needed. This makes LIRNN an appropriate
choice for online and near-online RS applications, where speed is critical. However, the
performance of the LIRRN method has shown variability in some cases compared to the
keypoint-based method. This variability may be attributed to the LIRRN method’s high
focus on image content without considering spatial constraints during processing. This
observation was further supported by the results obtained from the fusion of LIRRN with
the keypoint-based method, where the proposed fusion method demonstrated more reliable
and accurate results than when considering spatial and spectral constraints separately in
the RRN process. However, the results of the fusion highly depend on the quality of the
matching process embedded in the keypoint-based model. The results also indicated that
the LIRRN method exhibited greater robustness against angle variations compared to
changes in the resolution.
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This study highlights the importance for integrating spatial constraints and image
content into the normalization process to potentially enhance results. This suggests that
incorporating the results from these factors within a suitable framework can lead to more
reliable results and reduce distortions in target images. This highlights the significance of a
holistic approach considering spatial and spectral constraints for improved performance in
radiometric registration processes. The findings of our change analysis indicated that the
proposed fusion approach successfully produced normalized images that can significantly
enhance the quality of input images and improve the performance of change detection
methods, like C2VA.

The limitations of the LIRRN model can be attributed to its dependency on parameters
(N) and Otsu thresholding results. Therefore, investigating the use of learning-based
models to automatically identify different parts of input images during the LIRRN process
could be a promising avenue for future research. Additionally, integrating more advanced
linear or non-linear machine-learning models into LIRRN has the potential to enhance its
efficacy and yield even better results. Furthermore, using shape or land use/land cover
(LULC) matching based on advanced deep-learning models could present an excellent
opportunity to enhance the LIRRN method.
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