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Abstract: The growing popularity of social media has engendered the social problem of spam
proliferation through this medium. New spam types that evade existing spam detection systems are
being developed continually, necessitating corresponding countermeasures. This study proposes
an anomaly detection-based framework to detect new Twitter spam, which works by modeling the
characteristics of non-spam tweets and using anomaly detection to classify tweets deviating from
this model as anomalies. However, because modeling varied non-spam tweets is challenging, the
technique’s spam detection and false positive (FP) rates are low and high, respectively. To overcome
this shortcoming, anomaly detection is performed on known spam tweets pre-detected using a
trained decision tree while modeling normal tweets. A one-class support vector machine and an
autoencoder with high detection rates are used for anomaly detection. The proposed framework
exhibits superior detection rates for unknown spam compared to conventional techniques, while
maintaining equivalent or improved detection and FP rates for known spam. Furthermore, the
framework can be adapted to changes in spam conditions by adjusting the costs of detection errors.
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1. Introduction

Owing to recent advances in wired and wireless communication technologies and
the global popularity of smartphones, the number of wired and wireless online users has
reached five billion, i.e., 63% of the world’s population, as of April 2022. Consequently,
the number of social media users communicating online on platforms such as Facebook,
Twitter, Instagram, Snapchat, and WeChat has also increased substantially to 4.65 billion
people, comprising 93% of global Internet users [1]. Social media users communicate
via posts, chats, and comments and share their feelings through likes, dislikes, tags, and
follows. Furthermore, social media services are used for professional activities, such as
sharing professional links, exchanging opinions, increasing business reputation, running
promotions, online learning, sharing news, managing disasters, and operating expert
systems [2].

With the increase in the volume of daily and professional activities performed on
social media, cyberattacks targeting these activities have also been on the rise. Spammers
often publish simple illegal advertisements on social media [3], and automated bots have
emerged that create social problems by spreading fake news, aggravating political turmoil,
disrupting stock markets, and enabling cyberbullying [4,5]. Several accounts have been
reported for spreading political propaganda and disinformation during elections [6]. In
one incident, approximately 130 high-profile accounts, including those of Barack Obama,
Joe Biden, and Elon Musk, were hijacked and used to tempt victims to make fake Bitcoin
transactions [7]. Incorrect and unverified medical information was also spread quickly
through social media during the COVID-19 pandemic, creating confusion and unnecessary
fear [2].
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In the dynamic landscape of social media, spam distributors are adept at innovating
new types of spam to circumvent existing defense strategies. A notable manifestation of
this adaptability is the prompt exploitation of emerging online trends to fabricate novel
spam forms. For instance, amidst the COVID-19 pandemic, a proliferation of related spam
was observed, swiftly capitalizing on the global crisis [2]. Similarly, the ascendancy of
cryptocurrencies, such as Bitcoin, saw a corresponding increase in spam exploiting this
phenomenon [7]. More recently, the advent of generative artificial intelligence technologies,
including platforms like ChatGPT, has marked the emergence of a new vector for spam
creation [8]. This ongoing evolution presents a significant challenge for spam detection, as
newly developed spam, characterized by distinct and previously unseen features, evades
detection by traditional methodologies. This study proposes an effective method to detect
new and unknown types of spam on social media, with a particular focus on Twitter, where
the prevalence of spam is widespread. Notably, although Twitter was acquired by Elon
Musk and subsequently rebranded to X in July 2023, this study references data collected
from the platform prior to this change; thus, we refer to it as ‘Twitter’ throughout this
manuscript for consistency and clarity.

Various methods have been proposed to detect spam on social media sites such as
Twitter. Traditional methods include the blocklist method, which blocks malicious URLs
or internet protocol addresses. However, creating a blocklist is both time- and effort-
intensive, and with the widespread use of short/tiny URLs in recent years, attacks that
evade blocklists have become more frequent [2,9]. Alternatively, spam accounts may
be detected by installing a honeypot at an appropriate location on social media [10,11].
A honeypot is a system deliberately installed to lure attackers and is widely used for
attack and spam detection in networks. However, honeypot-based methods suffer from
several issues, such as poor adaptability and scaling, high volume of data processing,
and poor portability. Their implementation is also time-consuming as they require expert
intervention [2,12]. To overcome such drawbacks of traditional methods, recent studies
have employed and developed machine learning (ML) and deep learning (DL)-based
methods to detect spam and malicious behavior on social media.

ML and DL-based spam detection methods can be divided into spam content-based
and spammer account-based detection methods. Spam detection techniques based on
extracting information from both content and accounts have also been proposed [2,13].
These techniques employ various algorithms, ranging from traditional ML methods to the
latest DL methods based on extracted features, and most exhibit excellent performance.
Most studies utilizing ML and DL employ misuse detection, which identifies behaviors
matching those of known attacks. When misuse detection is used, excellent performance
is achieved in detecting known attacks because previously known data are learned and
subsequently used for spam detection. However, misuse detection methods are ineffective
against previously not learned spam attacks evolving in real time, and their major disad-
vantage is performance degradation due to class imbalance caused by imbalanced amounts
of spam and non-spam data [12,14]. In particular, spammers have collaborated and rapidly
shifted their attack strategies in response to recent defense strategies. To respond to rapidly
evolving spamming, there is a demand for anomaly detection utilizing ML and DL [2]. As
anomaly detection algorithms identify behaviors deviating from those corresponding to
normal data, they can detect unknown data that are different from normal data. However,
they exhibit poor performance when used in isolation because they only learn normal data
patterns [2].

This paper proposes a hybrid method that uses anomaly detection and misuse detec-
tion to respond to new spam attacks. Anomaly detection makes decisions after learning
unlabeled data. ML and DL-based anomaly detection is widely used in various tasks, such
as fraud, network anomaly, and intrusion detection [15]. We use a one-class support vector
machine (SVM) and an autoencoder, which are typical anomaly detection methods, to
detect new spam. In anomaly detection, normal data are learned, and data with different
properties are classified as abnormal. This approach can be leveraged to detect unknown
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spam types. However, its detection rate is low because it creates a single model using a
broad range of normal data. In this paper, the detection rate denotes the ratio of correctly
classified spam to the overall actual spam data. Furthermore, its false positive (FP) rate,
which is the probability of classifying a normal data point with abnormal properties as
abnormal, may be high. A high FP rate degrades a system’s usability from the user’s per-
spective. Thus, achieving a high detection rate while keeping the FP rate low is important
for efficiency and reliability. Besides improving user trust in the system, it also ensures that
valuable communication is not hindered. To balance these two metrics, this study first em-
ploys a decision tree (DT), an ML algorithm widely used for misuse detection, to improve
these poor performance metrics. A DT divides data into leaf nodes by splitting branches.
The training samples are mapped to leaf nodes until classification is complete, and the
validation data are transmitted to the leaf nodes according to the DT branch generation
criteria created during training to produce the classification results.

We classify the data into known and unknown spam using a DT trained on known
spam and normal data. Data not corresponding to known spam are subsequently classified
as unknown spam or normal tweets using anomaly detection trained on normal data. By
first detecting known attacks using DTs, we adequately compensate for the poor spam
detection rate of anomaly detection. Data different from known spam can be grouped
into decomposed subsets using DTs. Moreover, as anomaly detection is applied to each
subset, its detection rate for new attacks is increased while reducing its FP rate. During
the detection of known attacks primarily using DTs, the proposed framework can adjust
the attention of the DT by adjusting the costs based on the current spam situation. For
example, if new attacks do not occur frequently and detecting known attacks is essential,
the cost of incorrectly detecting known spam can be set to be high in the DT, enabling the
detection of as many known attacks as possible. Conversely, if new spam is being produced
continuously, the ambiguous data in the DT can be subsequently processed via anomaly
detection to detect new attacks. Using this adjustable hybrid method, we propose a system
that can respond appropriately to situations requiring both misuse and anomaly detection.

The main contributions of this article are as follows:

(1) We propose a spam detection framework based on an autoencoder and a one-class
SVM, which are typical anomaly detection methods, to respond to new types of spam
that pose a significant threat.

(2) We use a DT to respond to known spam and enhance the low spam detection rate of
anomaly detection.

(3) We increase the detection rate of known spam and normal tweets by performing
tailored anomaly detection for each subset containing data not classified as spam by
the DT.

(4) We propose a scalable spam detection framework that focuses on known or unknown
spam, depending on the current situation.

The remainder of this paper is organized as follows. Previous studies on misuse and
anomaly detection methods for spam are reviewed in Section 2 and the necessity of the
proposed hybrid method is discussed. The proposed Twitter spam detection method is
introduced in Section 3. Finally, the experimental results are presented in Section 4 and our
conclusions as well as directions of future research are discussed in Section 5.

2. Literature Review
2.1. Misuse Detection

Numerous ML methods have been proposed for detecting social media spam and this
remains an active topic of research [2]. Many ML-based spam detection studies have been
proposed based on misuse detection. Traditional misuse detection methods utilize DTs,
naïve Bayes methods, SVMs, and random forests (RFs). DL methods actively studied in
recent years, such as convolutional neural networks (CNNs), recurrent neural networks
(RNNs), and deep neural networks (DNNs), have also been widely used. ML and DL
algorithms for misuse detection extract features from labeled data that have already been
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classified as spam or normal data. Owing to the diversity of features extracted from
social media, many studies have applied ML and DL-based techniques after extracting
appropriate feature sets. Most feature sets include features obtained from Twitter content;
information can also be extracted from Twitter accounts. Recently, some studies have
analyzed relationships among accounts using social graphs as well as message contents
using text mining and used the results as features.

The most fundamental feature of ML-based methods is the statistical information
obtained from tweets. Statistical information is considered because typical spam employs a
social engineering technique that transforms the text narratives of tweets [13]. Therefore,
spam detection is possible by using statistical characteristics as features. For example, spam
tweets tend to include multiple hashtags and URLs or contain the word “spam”. Thus,
these characteristics can be used as features [16]. Chen et al. analyzed six million tweets and
suggested the following features: number of tweets posted, number of retweets, number of
hashtags, number of user mentions, number of URLs in the tweet, proportion occupied by
URLs in the tweet, and number of letters and numbers contained in the tweet [17]. Multiple
spam-detection studies have analyzed features extracted based on hashtags, extractable
statistical information, and basic text information, although different studies have used
slightly different features [18,19]. Some studies have considered the statistical information
within the text as well as the text itself, using text-mining methods such as word2vec or long
short-term memory to detect spam [20,21]. Further, a method based on text mining was
proposed to prevent illegal URLs from being disseminated via short-message services [22].
Recently, a spam detection technique utilizing large language models using contextualized
embeddings such as BERT and ELMo has also been proposed [23]. Features obtained from
tweets have been used for text spam detection in various studies because they intuitively
reflect spam characteristics and are relatively easy to extract.

Several other studies have focused on spammers posting spam tweets. Spammers
often exhibit characteristics different from normal users, e.g., they usually have recently
created accounts and few followers. Wu et al. proposed a spammer detection method based
on the account’s age, number of followers, followed accounts, and rating [12]. Because an
account’s statistical information, which intuitively reflects characteristics that signal it as a
spam account, can be extracted easily, some studies have used this in conjunction with the
statistical information of an account’s tweets (as described above) as the feature set [24–26].

Spam detection studies have also been conducted based on combinations of the
aforementioned features or completely novel features, with the number of DL-based studies
on the rise. A spam detection method that uses an ensemble of CNNs after extracting
account information, tweet information, and tweet n-grams as features was proposed
in [27]. Jain et al. proposed a method for detecting Twitter spam using a semantic CNN and
word2vec [28]. Another study detected social bots using DNNs and active learning based
on various features, such as metadata, interaction, and content [29]. Some studies have used
CNNs to detect aggressive behavior on social media [30], and DL-based methods, such
as CNNs, have also been proposed to detect malicious images, such as deepfakes [31,32].
Meanwhile, some studies have suggested social graph-based methods that detect spam
accounts by analyzing inter-account relationships [33–35]. Recently, a spam detection
technique using Transformer has also been proposed based on the multi-head attention
mechanism [36].

Although misuse detection methods use different features and techniques, they re-
spond well to known attacks. However, as these methods rely solely on learning existing
attack patterns, they may struggle to detect variations, evolved versions, or combinations of
known attacks. In particular, ML-based misuse detection methods typically struggle with
respect to newly emerging attacks [37]. Spam detection methods using anomaly detection
have been proposed to overcome this shortcoming.
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2.2. Anomaly Detection

Anomaly detection methods are widely used for identifying abnormal data in var-
ious security tasks, such as spam detection. Anomaly detection detects new attacks by
identifying abnormal samples after learning the features of normal data [38]. Traditionally,
clustering algorithms have been used for anomaly detection. In recent years, DL-based
autoencoders have also been used for this task in various fields.

Sohrabi and Karimi used various clustering techniques to detect spam in Facebook
comments [39]. Another study proposed the Twitter spam detection framework, INB-
DenStream, which outperforms conventional clustering techniques, such as CluStream,
DenStream, and StreamKM++ [40]. Research has also been conducted to detect obfuscated
words in spam messages using the rule-based hash forest algorithm and rule encoding
techniques [41]. Currently, misuse detection-based spam identification methods outnumber
anomaly detection-based ones significantly, as the latter ones do not perform well in
isolation. In particular, clustering algorithms, which are the most popular algorithms for
anomaly detection, exhibit low detection rates and high FP rates when used in isolation [2].
Some studies have proposed hybrid methods based on learning both labeled and unlabeled
data to overcome this disadvantage.

Singh and Batra proposed a spam detection method based on probabilistic data
structures, reducing the number of computations using filters based on URL and hashtag
information [42]. Yilmaz and Durahim proposed a solution utilizing semi-supervised
learning. This solution can determine spam reviews based on features extracted from the
review text and reviewer product network [43]. A hybrid system for anomaly detection was
also proposed to identify abnormal users on social networks [44]. Compared to traditional
ML-based solutions, these solutions exhibit greater applicability as they also learn unlabeled
data. However, as known attack data are used for detection, these methods still struggle to
detect new types of attacks.

To detect new spam, adjustments to the data learning cycle have also been proposed. In
the spam detection method proposed by Sedhai and Sun, a module that updates the model
was constructed to respond to new spam [45]. Further to this, some studies have proposed
periodically updating the learning model to respond to new types of spam [12,25]. Because
these methods include spam detection and update modules, they can learn new types of
spam robustly; however, their vulnerabilities can be exposed depending on the update
cycle. Responding to such vulnerabilities can be difficult when new spam appears faster
than the update cycle. In order to compensate for the shortcomings of anomaly detection
when used in isolation, this study proposes a hybrid method that uses anomaly detection
to detect new spam and combines it with misuse detection to improve performance.

3. Materials and Methods
3.1. Model Design Overview

This study proposes a framework that utilizes both anomaly and misuse detection
to detect new spam effectively, exhibiting a high detection rate and low FP rate. As illus-
trated in Figure 1, the proposed framework consists of three modules: (i) a known spam
detection module based on DT, (ii) an unknown spam detection module based on anomaly
detection, and (iii) a scalable spam detection system. In this paper, ‘known spam’ refers to
collected tweets already labeled as spam and ‘unknown spam’ refers to spam tweets with
characteristics different from those of normal tweets as well as previously known spam.

First, a DT is used to detect known spam effectively. During Stage 1, known spam is
filtered out with a high detection rate, and the unfiltered data are grouped into multiple
subsets with similar properties. An anomaly detection algorithm trained only on a normal
model is applied to each subset. This enables normal and unknown spam data to be distin-
guished. In this study, in addition to the widely used one-class SVM, we use an autoencoder
for anomaly detection to improve the detection rate for new spam. Furthermore, the pro-
posed spam detection system can be adjusted based on the requirements by adjusting the
cost arising from the classification error in the DT during the first stage. The detection
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of known or unknown spam can be facilitated by adjusting the DT target accordingly.
The cost-based scalable system is implemented in Stage 1; however, we categorize it as a
separate module to explain its theory and usefulness in detail. The modules are discussed
in detail in the following subsections.

Figure 1. Overall decision-making process of the proposed framework.

3.2. Known Spam Detection Using DT

During the first stage, the proposed framework detects known spam effectively. We
use a robust algorithm, e.g., DT, for classification, regression, and multi-output tasks
following training using a complex dataset [46]. It is crucial to ensure that known spam is
detected by the framework’s DT and that the remaining data are transmitted to Stage 2.

During Stage 1, our framework first creates a tree structure by learning known spam
and normal data. Subsequently, incoming tweets are verified using this tree. Spam detection
is considered to be successful if the incoming tweet is classified as known spam by the DT.
If an input is not classified as known spam, it can be classified as a normal or unknown
spam tweet via anomaly detection in the second stage.

As depicted in Figure 1, the DT begins with the tree’s root, creates child nodes via
branches, and continues branching out to the leaf nodes that make predictions. The final
prediction is determined at a leaf node at the end of the tree, which has no further child
nodes. While branching out, the threshold values of the features are selected at their
respective nodes. The data are transmitted to the lower-left or -right nodes, depending on
whether the feature’s threshold is exceeded or not.

Typical DT training algorithms include Gini impurity-based classification and regres-
sion tree (CART) [47] and entropy-based C4.5 [48]. These methods create similar trees;
CART performs calculations slightly faster than C4.5, which requires logarithmic computa-
tions [46]. In this study, we implement a CART-based DT. The CART algorithm divides the
training dataset into two subsets using the threshold value, tk, of each feature, k. The cost
function that must be minimized to identify the pair, (k, tk) is as follows:

J(k, tk) =
mle f t

m
Gle f t +

mright

m
Gright, (1)
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where J denotes the cost function based on the values of k and tk, Gle f t/right denotes the
Gini impurity of the left/right subset, and mle f t/right denotes the number of samples in the
left/right subset.

The Gini impurity is used to determine the DT branches. The goal is to identify the
split with the lowest impurity value. If the Gini impurity is 0, the node consists of only
one class. Values of the Gini impurity closer to zero are considered to be better. The Gini
impurity of the i-th node is calculated using the following equation:

Gi = 1 −
n

∑
k=1

Pi,k
2, (2)

where pi,k denotes the percentage of samples belonging to class k of the training samples at
the i-th node. The DT used in our framework classifies spam into known and unknown
spam classes, corresponding to k = 1 or 2, respectively. CART determines the final tree
structure by repeatedly dividing the training dataset using the aforementioned steps.

CART is trained to distinguish known spam from other tweets during Stage 1. The
known spam tweets detected in Stage 1 and the remaining data transmitted to Stage 2 are
classified during the test process. To this end, we construct a scalable system using cost-
based DTs, which can be specialized to focus on either existing or new spam, depending
on the current situation. This functionality is explained in detail in Section 3.4. One
advantage of this approach is that known spam can be detected using CART in Stage 1.
Another advantage is that a DT is a white-box model, where the decision-making method
is Intuitive and easily comprehensible [46]. As DTs perform well and the computation of
the predictions is verifiable, the data transmitted to Stage 2 can be effortlessly grouped into
multiple subsets with similar characteristics. Furthermore, this improves the detection rate
during Stage 2 because anomaly detection is performed for each subgroup. In Section 3.3,
we explain this improvement in the detection rate.

3.3. Unknown Spam Detection Using Anomaly Detection

The DT detects known spam in Stage 1, and the remaining data are transmitted to
Stage 2. In Stage 2, anomaly detection is performed to classify normal tweets and unknown
spam types. In the learning process, subsets of known spam and subsets of normal tweets
are divided at the terminal leaf nodes of the DT. Anomaly detection is applied to each
subset of normal tweets to learn the normal patterns. In the subsequent test stage, the data
transmitted to Stage 2 are verified using the normal model corresponding to the leaf node
where they are located to classify them as normal data or unknown spam.

As described earlier, when anomaly detection is used in isolation, it exhibits poor
detection rate and high FP rate. An examination of the actual data reveals that the patterns
of normal tweets are also highly diverse. If these diverse normal tweets are modeled using
one model, the model is trained to be sensitive to normal tweets’ characteristics, increasing
the FP rate. Conversely, the spam detection rate decreases if the normal model is smoothed
excessively to reduce the FP rate. To circumvent these problems, similar normal data are
classified into separate subsets using a DT in this framework. Subsequently, the normal data
of each subset are modeled. Normal data are learned by concentrating on each decomposed
region and subsequently used for detection, thereby increasing detection performance.
This improvement is illustrated in Figure 2, with (i) an illustration of learning the entire
normal dataset and using it for detection and (ii) an illustration of learning and modeling
the normal data of the subsets of each decomposed region and using them for detection.
This framework exhibits high accuracy because it models normal data more precisely.

We use a one-class SVM and an autoencoder for anomaly detection. The one-class
SVM is a variation of the SVM method known for its high performance and was devel-
oped for anomaly detection. It creates a hyperplane enveloping the region of data with
one class. This method is selected owing to its suitability for outlier detection [46]. In
addition to the traditional method, a DL-based autoencoder, which has been recently im-
plemented as an anomaly detection method, is also used. The proposed framework can
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detect known and unknown spam effectively using a DT and a one-class SVM or using a
DT and an autoencoder, respectively. The two anomaly detection methods are described in
the following subsections.

Figure 2. Comparison of anomaly detection based on the entire normal dataset and anomaly detection
based on individual subsets of normal data.

3.3.1. One-Class SVM

One-class SVMs are widely used in detecting structural damage [49], faults [50], and
network intrusion [51]. They are derived from typical SVM classifiers and were proposed
by Schölkopf et al. [52]. When a typical kernel SVM classifier separates two classes, it maps
all samples to a high-dimensional space. Then, it identifies a hyperplane that separates the
two classes in the high-dimensional space using the SVM classifier. The one-class SVM
algorithm separates the samples in the high-dimensional space from those in the original
space because only one class of samples exists. It then identifies a hyperplane enveloping
all the samples. If a new sample does not lie within this region, it is deemed to be an
abnormal data point [46].

Let us take a closer look at the process of identifying a suitable hyperplane. Let xi
denote an item in the training data; χ, the original space; and l, the number of elements in
the training data. The SVM uses the feature map ( Φ : χ → F) to transform the original
high-dimensional space into a feature space non-linearly. The one-class SVM is formulated
using the following quadratic program:

min
w,ξ,ρ

1
2
∥w∥2 +

1
vl

l

∑
i=1

ξi − ρ

subject to(w·Φ(xi)) ≥ ρ − ξi, (3)

ξi ≥ 0, i = 1, · · · , l

where w denotes the vector orthogonal to the hyperplane, ξ denotes the vector’s slack
variable, and ρ denotes the margin from the origin to the hyperplane. The parameter v
denotes the proportion of rejected training data and (1 − v)× 100 % represents the training
data included within the hyperplane. This framework creates a hyperplane of normal data
for each subset of normal data gathered during the training process. When incoming tweets
lie outside the normal hyperplane category, they are considered to be outliers and classified
as unknown tweets.

Because the one-class SVM divides the decision boundary non-linearly, it works well
even with high-dimensional datasets, such as spam data. However, the FP rate is high if all
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the data are represented within a single hyperplane with various normal data types. The
proposed method creates subsets of similar normal tweets using DT. Hence, each normal
tweet subset’s model is less complex than that for all normal tweets. Because training
and discrimination are conducted using the one-class SVM for each subset, the FP rate is
reduced and the performance of anomaly detection is increased.

3.3.2. Autoencoder

An autoencoder is a deep learning algorithm frequently used for anomaly detection.
Unlike traditional ML methods, an autoencoder reconstructs an input to be as close as
possible to the original rather than extracting its class or target value [53]. The autoencoder
achieves this by performing an encoding process that compresses the input to a code or
a latent variable, and subsequently a decoding process that yields a maximally similar
reconstruction. This process enables essential information about the data to be learned in
a compressed manner. The differences between the input and output data are compared
using encoding and decoding. Multiple hidden layers can be used during the encoding
and decoding processes, as illustrated in Figure 3 [54].

Figure 3. Autoencoder-based unsupervised anomaly detection.

Because the autoencoder restores data to be as close to the original as possible, it learns
the features of the normal region, which is the principal region related to the data. If a
normal data sample is entered as the input into the trained autoencoder, the input and
output are almost indistinguishable. However, when an abnormal data sample is entered,
the autoencoder attempts to reconstruct it as if it were a normal sample, resulting in
certain differences between the input and output. Thus, if the difference between the input
and output exceeds a certain threshold, the input can be considered to be abnormal data.
Because autoencoders do not require separate labeling and can automatically distinguish
between normal and abnormal data, they are widely used for anomaly detection in various
fields [55–59]. This study leverages these autoencoder properties to detect unknown
spam tweets.

The autoencoder comprises multiple hidden layers; its L layers can be divided into
two parts. The first and second half of the layers perform the encoding and decoding roles,
respectively. The output, z, of the l-th layer located in the autoencoder can be calculated as
follows [53]:

zl = f
(

W lzl−1 + bl
)

, (4)

where W l denotes the connecting layer’s weight matrix, zl−1 denotes the (l − 1) layer’s
output, and bl denotes the l-th layer’s bias vector. Moreover, f (x) denotes an activation
function, which is often taken to be the sigmoid or softplus function [53,60].

The autoencoder is used to determine the difference between the input and recon-
structed values, allowing us to determine whether a data sample is normal or abnormal.
The outlier factor OFi is proposed to check whether a data sample is an outlier [61]. OFi
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is defined to be the average reconstruction error for all features of the i-th data sample
as follows:

OFi =
1
n

n

∑
j=1

(
xij − oij

)2, (5)

where x and o represent the input and output, respectively, and n represents the total
number of features. If the extracted outlier factor exceeds a certain threshold, the data
sample is considered to be an outlier, i.e., a new type of abnormal data. Various methods
have been proposed to determine the threshold, ranging from methods using the mean (µ)
and standard deviation, median (med) and standard deviation, and first (Q1) and third (Q3)
quartiles [60]. Since Q3 − Q1 describes a dataset’s degree of dispersion, µ + 1.5(Q3 − Q1)
and med + 1.5(Q3 − Q1) can be used as thresholds.

In the autoencoder, multiple layers are often used for anomaly detection because this
approach handles high-dimensional data effectively [57]. This study uses a multilayer-
based autoencoder to increase the detection rate of unknown spam in the second stage, as
illustrated in Figure 1. Furthermore, the detection performance is improved because DT is
first used to divide normal tweets into multiple subsets according to their characteristics,
and anomaly detection is subsequently performed using the autoencoder for each subset.

3.4. Scalable Spam Detection System

In the first stage, the proposed framework detects known spam using DT. Anomaly
detection is performed on the remaining data, separating them into normal and new spam
tweets. In most spam-detection studies, classification is performed during the ML stage,
after which the system is terminated. In contrast, our framework detects known spam
tweets in Stage 1 and classifies the remaining data as new spam and normal tweets in
Stage 2. Therefore, the detection rate of known spam in Stage 1 determines the system’s
performance quality. If spam is detected based on strict criteria in Stage 1, known spam
will be detected well, but the FP rate will increase because uncertain normal tweets will
also be classified as spam. Conversely, if spam is detected using loose criteria in Stage 1,
much data will be transferred to Stage 2. In this case, unknown spam and normal tweets
can be detected well in Stage 2; however, the rate of detecting known spam may decrease.
Our framework is designed to be adaptable owing to intensity adjustability during Stage 1.
A cost-based DT technique is used to adjust the DT at this stage. This method sets different
costs for misclassification errors and then minimizes their sum [62,63]. Table 1 presents
these asymmetric costs.

Table 1. Asymmetric misclassification cost matrix.

Actual Positive Actual Negative

Predicted Positive C(p, p) C(n, p)
Predicted Negative C(p, n) C(n, n)

Cost-based classification uses an asymmetric cost matrix, as presented in Table 1. In
the Stage 1 DT, known spam, which is small in number, is considered positive, and all other
data are considered negative. There are two types of misclassifications—misclassification of
known spam as negative and that of unknown spam as positive, with corresponding costs
of C(p, n) and C(n, p), respectively. The goal of cost-based detection is to minimize the
misclassification cost. Errors must be avoided as much as possible by setting C(p, n) higher
than C(n, p) to maximize the detection accuracy in Stage 1. In contrast, if the detection
accuracy needs to be maximized in Stage 2, C(n, p) should be set higher than C(p, n),
sending more uncertain data to Stage 2. The cost C(p, p) corresponding to true positives
(TPs), i.e., when spam is detected as spam, and C(n, n) corresponding to true negatives
(TNs), when normal samples are detected as normal, must be set to 0. This is because
misclassification increases the cost [62].



Sensors 2024, 24, 2263 11 of 20

After all costs are set, the class of the given sample is determined by calculating the
probability that it belongs to each class. The probability that input x belongs to class j can
be determined as follows [62]:

P(j|x) = 1
∑i 1∑

i
P(j|x, Mi), (6)

where i ranges between 1 and m, and m denotes the number of new resamples. The number
of inputs for each resampling is n. Suppose Si denotes a resampling with n inputs. Then,
Mi is a model generated by applying a DT to Si. The risk arising when x belongs to class k
is defined as follows [64]:

R(k|x) = ∑
j

P(j|x)C(k, j). (7)

The aforementioned risk must be minimized when data are assigned to a class. Thus,
x is assigned to the class k if k satisfies the following equation:

argminkR(k|x). (8)

Because there are two classes for the DT during Stage 1, k is one of two classes—known
spam tweets and tweets that are not known to be spam.

In cost-based classification, the misclassification cost is inversely related to the error.
Therefore, in this study, when the current tweet spam stream is mostly known spam,
C(p, n) is set to be higher than C(n, p) to detect as much known spam as possible in Stage
1. Conversely, when the number of unknown spam is higher than that of known spam,
C(n, p) is set to be higher than C(p, n) to detect obvious known spam in Stage 1 and check
for ambiguous tweets in the anomaly detection phase during Stage 2. Thus, the proposed
method can be adapted to the conditions of the input tweets by adjusting the cost of the
pertinent error to be greater than those of other errors. Further, this effect increases with
the cost difference, which allows the system to respond to extreme situations. Figure 4
concisely illustrates spam detection using a DT during Stage 1 by adjusting the cost.

Figure 4. Example of spam detection by adjusting the cost while using a DT.

4. Results

This study proposes a framework that outperforms existing methods in terms of
detecting known and unknown spam based on a combination of anomaly detection and
DT. A real-world dataset is used to validate the framework in an environment similar
to a real application scenario, with the data being preprocessed first using a clustering
technique to extract new spam tweets. Section 4.1 provides a detailed description of
the dataset used in this study and its metrics. Section 4.2 evaluates the proposed frame-
work’s effectiveness in detecting new spam. Section 4.3 examines the cost-based scalable
framework’s performance.
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4.1. Dataset Description and Evaluation Metrics

We used a dataset released by Chen et al. [25] after analyzing 600 million tweets. This
dataset has been used in many studies because it is publicly available and consists of data
collected from a real-world environment. Among the datasets released, we used the one
with a spam-to-normal tweet ratio of 5:95 for validation in real-world conditions. The
dataset contains 100,000 tweets, 12 statistical features, and account information associated
with the tweets. Table 2 presents these features in detail.

Table 2. Feature descriptions.

Type Feature Name Feature Description

Tweet-Based Features

no_userfavourites Number of likes received by the user who posted the tweet
no_lists Number of lists added by the user who posted the tweet

no_tweet Number of tweets posted by the user who posted the tweet
no_retweet Number of retweets of the tweet

no_hashtags (#) Number of hashtags included in the tweet
no_usermention (@) Number of user mentions included in the tweet

no_url Number of URLs included in the tweet
no_char Number of characters in the tweet
no_digit Number of numerical digits in the tweet

Account-Based Features
account_age Number of days between the date the account was first

created and the date the most recent tweet was posted
no_follwer Number of followers of the user who posted the tweet

no_following Number of accounts the user who posted the tweet follows

This study’s primary purpose is to detect newly emerging types of spam tweets. Since
spam tweets are grouped into only one class in our dataset, it is challenging to distinguish
between known and unknown spam tweets. Therefore, they are first split into four clusters
using a self-organizing map [65]. Clusters 1 and 2 represent the majority clusters, containing
1829 and 1562 spam tweets, respectively, of the 5000 spam tweets in aggregate. The tweets
are assumed to be known spam tweets. Clusters 3 and 4 contain 861 and 748 spam tweets,
respectively, and exhibit unique characteristics compared to Clusters 1 and 2.

Based on the spam tweets classified in this manner, Datasets 1 and 2 are constructed.
The 95,000 normal tweets constituting Datasets 1 and 2 are identical. However, in Dataset 1,
Clusters 1, 2, and 4 are categorized as known spam and Cluster 3 as unknown spam. The
tweets in Cluster 3 in Dataset 1 exhibit distinctly different characteristics compared to other
spam—despite their corresponding accounts being newly created, they are observed to
exhibit active tweeting activity. In order words, Cluster 3 can be regarded to represent
a previously unknown type of spammer that seeks to spread spam while acting like a
normal user. In contrast, in Dataset 2, Clusters 1, 2, and 3 are classified as known spam and
Cluster 4 as unknown spam. Cluster 4 also exhibits different characteristics compared to
other spam. Therefore, we can consider Cluster 4 as unknown spam in Dataset 2. Table 3
provides detailed descriptions of the datasets.

We use precision, recall, and F-measure as the evaluation metrics. These metrics are
calculated based on the basic TP, FP, and false negative (FN) values. Recall is a numerical
value that represents the degree to which a class is correctly classified. Precision refers to
the precision of detection and is defined to be the probability that the data point belongs to
the class in which it was classified. The F-measure is the harmonic mean of precision and
recall and represents overall performance. Precision, recall, and F-measure are calculated
as follows:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, F − Measure =
2·Recall·Precision
Recall + Precision

. (9)

The primary goal of this study is to enhance the spam detection rate while simultane-
ously reducing the FP rate, i.e., the rate at which normal tweets are incorrectly classified
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as anomalies. Here, the detection rate refers to the proportion of total spam messages
that are accurately classified by our framework. This can be expressed by the formula
TP/(TP + FN). On the other hand, the FP rate refers to the proportion of normal tweets
that are incorrectly classified as positive. This can be also represented by the formula
FP/(FP + TN).

Table 3. Composition of Datasets 1 and 2.

Cluster Main Characteristics Number Dataset 1 Dataset 2

Cluster 1

• Recent account creation date
• Extremely small number of account followers; Small

number of accounts followed
• Small number of tweets posted and likes received
• Almost no retweets
• Short tweet length, and tweets do not contain many numbers

1829 Known Spam Known Spam

Cluster 2

• Old account creation date
• Small number of followers; Extremely small number of

followed accounts
• Small numbers of likes received and tweets posted
• Almost no retweets
• Short tweet length, and tweets do not contain many numbers

1562 Known Spam Known Spam

Cluster 3

• Recent account creation date
• Many follower and followed accounts
• Many likes received and tweets posted
• Many retweets
• Long tweet length, and tweets contain numbers

861 Unknown Spam Known Spam

Cluster 4

• Old account creation date
• Many follower and followed accounts
• Many likes received and tweets posted
• Almost no retweets
• Average tweet length, and tweets contain numbers

748 Known Spam Unknown Spam

4.2. Performance Comparison of the Proposed Framework

This section compares the results of Stages 1 and 2 of the proposed method with
those of conventional methods to examine the effectiveness of the combination of DT and
anomaly detection. The effect of cost adjustment is examined in the next section.

Datasets 1 and 2, as described in the previous section, are used to compare the pro-
posed framework’s performance with those of other methods. Our framework initially
utilizes a DT and subsequently employs anomaly detection techniques, such as autoen-
coders and one-class SVMs. These models are implemented using scikit-learn and keras.
CART-based DT is configured with a maximum depth of 10. For the autoencoder, excluding
the input layer, four hidden layers are established during the encoding process, with 16, 8,
4, and 2 neurons, respectively. For the decoding process, excluding the output layer, three
hidden layers are defined, with 4, 8, and 16 neurons, respectively. The activation function
‘elu’ is employed, along with ‘Adam’ as the optimizer and ‘MSE’ as the loss function. The
number of epochs is set to 100. For the one-class SVM, the ‘RBF’ kernel is utilized, and the
regularization parameter is set to 0.1.

The proposed framework distinguishes between known and unknown spam. Hence,
its performance is compared with those of misuse detection-based ML methods. For the
comparison, naïve Bayes, a statistical method; RF, an ensemble of several DTs; partial
decision trees (PART), a DT-based system that obtains rules from partial decision trees and
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bagging; and LightGBM, a set of DTs connected through boosting, are considered. Further
to this, the performances of the one-class SVM and autoencoder when used independently
in isolation are also compared. The algorithms are implemented using Weka [66], scikit-
learn, and Keras; and training and classification are performed using 5-fold cross-validation.

Table 4 presents the precision, recall, and F-measure scores of our framework while
classifying normal tweets, known spam tweets, and unknown spam tweets based on
Datasets 1 and 2. The framework always applies the same DT in Stage 1, but uses either the
one-class SVM or autoencoder for anomaly detection in Stage 2. The results obtained using
the DT and one-class SVM are presented in the upper part of Table 4, labeled “DT–SVM”,
and those obtained using the DT and autoencoder are presented in the lower part of
Table 4, labeled “DT–Autoencoder”. Despite slight differences in the detection results
for the three types of tweet data, the results on Dataset 1 are observed to be better than
those of Dataset 2. This difference in performance can be attributed to the higher degree if
differentiation between the characteristics of unknown spam tweets in Dataset 1. On both
Datasets 1 and 2, the results for the normal tweets were better than those for the two types
of spam. This difference can be attributed to the greater ease of learning normal data, which
accounted for most of the data. The precision and F-measure are greater than or equal to 0.9
for known spam, exhibiting good results on both datasets. Recall, which directly represents
the spam detection rate, is observed to be in the high 0.8 range, indicating good detection
performance. The unknown spam detection performance using anomaly detection is not
better than that of known spam because of the nature of anomaly detection. Furthermore,
using the autoencoder leads to better performance than using the one-class SVM. When
both DT and autoencoder are used, 87.8% of the unknown spam is detected in Dataset 1
and 85.4% in Dataset 2, indicating the viability of responding to emerging types of spam
using the proposed system.

Table 4. Overall performance of the proposed framework.

Framework Tweet Type
Dataset 1 Dataset 2

Precision Recall F-Measure Precision Recall F-Measure

DT–SVM
Known Spam 0.945 0.895 0.920 0.937 0.847 0.890

Unknown Spam 0.873 0.864 0.868 0.860 0.816 0.837
Normal 0.994 0.997 0.995 0.992 0.997 0.994

DT–Autoencoder
Known Spam 0.949 0.907 0.928 0.942 0.862 0.900

Unknown Spam 0.897 0.878 0.887 0.879 0.854 0.867
Normal 0.995 0.997 0.996 0.993 0.997 0.995

Figures 5 and 6 compare the performance of our framework with those of conven-
tional methods in terms of detection rate, with comparisons corresponding to known and
unknown spam, respectively. The charts are created using Datawrapper, a visual analytics
tool [67]. Figures 5 and 6 reveal that, despite slight variations across algorithms, the results
are better on Dataset 1. In Figure 5, LightGBM exhibits the highest detection rate for known
spam, with a detection rate of 91.8% on Dataset 1, followed by our method and RF. A
similar trend is observed on Dataset 2. The detection rate of known spam achieved by
our method is excellent and is not significantly different from that achieved by LightGBM,
which is known to perform well among misuse detection methods. Our method outper-
formed traditional misuse methods, such as naïve Bayes, PART, and RF. The one-class SVM
and autoencoder are trained with only normal data because they are anomaly detection
methods. Consequently, they exhibit a lower detection rate than our method for known
spam, confirming that anomaly detection cannot be relied upon on its own, despite be-
ing effective at detecting new types of spam. Figure 6 compares the detection rates for
unknown spam and reveals that the DT–SVM and DT–Autoencoder methods detect this
type of spam better than the traditional ones. Because the traditional misuse detection
methods do not learn unknown types of spam, their detection rate is low. Our method
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detects unknown spam better than methods that use anomaly detection in isolation. The
proposed method performs better because, as previously explained, subsets with similar
types of data obtained using DT are learned individually and then used for detection.

Figure 5. Comparison of detection rates for known spam tweets. Results for (top) misuse detection
methods, (middle) our method, and (bottom) anomaly detection methods.

Figure 6. Comparison of detection rates for unknown spam tweets. Results corresponding to
(top) misuse methods, (middle) our method, and (bottom) anomaly detection methods.

A comparison of spam detection rates reveals that the proposed method responds well
to known and unknown spam. However, the FP rate is as important as the detection rate in
tasks such as spam detection. The FP rate at which normal tweets are categorized as spam
does not pose a security threat because spam tweets are not considered non-spam tweets.
However, a high FP rate incurs high overhead, which burdens the system, and frequent
FPs degrade confidence of security system users. Therefore, the FP rates of our framework
and traditional methods are compared for known and unknown spam in Figures 7 and 8.
The misuse detection method exhibits a relatively lower FP rate because both normal and
attack data are learned. In contrast, anomaly detection yields a high FP rate because only
normal data are learned. DT–SVM and DT–Autoencoder are hybrid methods that combine
DT and anomaly detection, and they are instrumental since they exhibit the lowest FP rates
for known and unknown spam tweets, while responding well to unknown spam.
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Figure 7. Comparison of FP rates for known spam tweets.

Figure 8. Comparison of FP rates for unknown spam tweets.

4.3. Performance Comparison Based on Cost Changes

The proposed framework can respond to given situations by adjusting the costs during
the DT stage. When the occurrence of existing spam types is high, C(p, n) is set to be high.
In contrast, if there are many new types of spam, C(n, p) is set to be high. Figures 9 and 10
depict the change in detection rate for known and unknown spam on Datasets 1 and 2. The
left sides of Figures 9 and 10 represent cases when known spam types are more common,
and C(p, n) is set to 5, 10, and 15. Here, C(n, p) is set to 1. As C(p, n) is set to be higher,
the detection rate for known spam increases as it is harder to miss. The highest detection
rate was observed when Dataset 1 was utilized with DT–Autoencoder. Setting C(p, n) to
15 resulted in a detection rate of 92.8% for known spam, which is 2.1% higher than the
detection rate of 90.7% achieved by systems that do not adjust the costs. This indicates that
increasing C(p, n) can effectively enhance the response to spam in scenarios where known
spam is prevalent. In contrast, if C(n, p) is set to 5, 10, and 15 and C(p, n) to 1, the detection
rate for unknown spam improves slightly, but not as much as that when C(p, n) is increased.
When employing DT–Autoencoder on Dataset 1 with C(n, p) set to 15, the detection rate
for unknown spam reaches 88.5%. This is slightly higher than the 87.8% detection rate for
unknown spam in systems that do not adjust the costs. This improvement can be attributed
to the cost of the DT process—the detection of unknown spam relies on anomaly detection.
Our proposed scalable framework is more effective when the threat of existing spam is
greater than that of new spam and when the detection of known spam is improved.
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Figure 9. Changes in spam detection rate with respect to changes in C(p, n) and C(n, p) on Dataset 1.

Figure 10. Changes in the spam detection rate with respect to changes in C(p, n) and C(n, p) on
Dataset 2.

5. Conclusions

This study proposes a framework designed to detect known and unknown spam
tweets effectively. The proposed method combines DT with either a one-class SVM or an
autoencoder and achieves higher detection rates than most conventional methods for both
known and unknown spam. For unknown spam, its detection rate is observed to be better
than that of traditional anomaly detection methods. Furthermore, its detection rate for
known spam is not significantly lower than that of LightGBM, which is the best-performing
conventional misuse detection method. Our method responds well to unknown spam
without a significant performance change in detecting known spam when compared to
the best misuse detection methods. Moreover, it is adaptable to environmental changes by
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adjusting the costs to different errors in the DT stage. Experimental results demonstrate
that our method responds better than existing alternatives, particularly in situations with a
high volume of known spam attacks.

In this study, we utilize features that can be easily extracted from Twitter, enhancing
the applicability of the proposed method. However, if the challenge of collection of higher-
dimensional features can be addressed effectively, their use can further enhance accuracy.
To this end, feature collection based on recently developed language models should be
investigated to enable more in-depth text analysis. Additionally, the correlations between
accounts should also be analyzed further to increase accuracy. Further to this, although the
dataset used in this study is widely used for research on spam tweet detection, it does not
reflect current trends because it was released in 2015. Further research should be conducted
on reliable open datasets that reflect current trends more accurately.

The significance of the techniques proposed in this study lies in their ability to respond
to emerging threats effectively. There is a demand for methods capable of responding
to new threats in various security fields beyond social networks, including spam emails,
malware, and malicious websites. Expanding the application scope of this research to other
domains could contribute significantly to various security fields.
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