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Abstract: Heart failure is a prevalent cardiovascular condition with significant health implications,
necessitating effective diagnostic strategies for timely intervention. This study explores the potential
of continuous monitoring of non-invasive signals, specifically integrating photoplethysmogram (PPG)
and electrocardiogram (ECG), for enhancing early detection and diagnosis of heart failure. Leveraging
a dataset from the MIMIC-III database, encompassing 682 heart failure patients and 954 controls, our
approach focuses on continuous, non-invasive monitoring. Key features, including the QRS interval,
RR interval, augmentation index, heart rate, systolic pressure, diastolic pressure, and peak-to-peak
amplitude, were carefully selected for their clinical relevance and ability to capture cardiovascular
dynamics. This feature selection not only highlighted important physiological indicators but also
helped reduce computational complexity and the risk of overfitting in machine learning models.
The use of these features in training machine learning algorithms led to a model with impressive
accuracy (98%), sensitivity (97.60%), specificity (96.90%), and precision (97.20%). Our integrated
approach, combining PPG and ECG signals, demonstrates superior performance compared to single-
signal strategies, emphasizing its potential in early and precise heart failure diagnosis. The study
also highlights the importance of continuous monitoring with wearable technology, suggesting a
significant stride forward in non-invasive cardiovascular health assessment. The proposed approach
holds promise for implementation in hardware systems to enable continuous monitoring, aiding in
early detection and prevention of critical health conditions.
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1. Introduction

Around 65 million people worldwide suffer from heart failure, a chronic, progressive,
and incurable illness that causes about 7 million deaths annually [1]. Heart failure can
manifest due to various factors, including inadequate myocardial relaxation, impaired
ejection, or a combination of these issues. Furthermore, several underlying disorders
such as coronary artery disease, hypertension, atrial fibrillation, heart valve irregularities,
excessive alcohol consumption, infections, and idiopathic cardiomyopathy, in addition to
structural heart abnormalities, can precipitate heart failure [2]. In individuals with heart
failure, the heart loses its ability to effectively pump a sufficient volume of blood to meet
the body’s organ and tissue oxygenation requirements [3].

The global incidence of heart failure is experiencing an upward trend, particularly in
developed nations, constituting a significant public health concern [4]. In the United States,
the present count of adults afflicted by heart failure stands at approximately 6.2 million,
with a projected 46% increase anticipated by 2030 [5]. Factors contributing to this surge
encompass an aging population, enhanced management of chronic illnesses, advancements
in acute coronary syndrome treatments, and improved care for heart failure patients [6].
Europe is similarly affected, with an estimated 15 million individuals grappling with heart
failure, leading to over 3 million hospitalizations annually. The substantial prevalence and
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recurrent hospitalization patterns associated with heart failure impose noteworthy eco-
nomic burdens on both healthcare systems and society, with annual healthcare expenditures
in the United States exceeding USD 30 billion [4].

Preventing heart failure and other cardiovascular diseases (CVDs) is significantly more
successful when prevention and therapy are initiated promptly. Unfortunately, in the early
stages of heart failure, many patients are asymptomatic, leading to missed opportunities for
optimal treatment and an increased risk of complications. Nevertheless, certain physiologi-
cal signals, such as electrocardiogram (ECG) and photoplethysmography (PPG), undergo
alterations influenced by blood pressure levels [7,8]. These changes primarily manifest
as morphological shifts in physiological signals, providing insights into the functional
status of the heart and vascular system. Lifestyle modifications are integral to heart failure
management, with dietary changes, exercise, and sodium restriction playing pivotal roles.
Adherence to heart-healthy diets and engaging in regular physical activity contribute not
only to symptom relief but also to increased life expectancy [9,10]. The INTERHEART
study, exploring the impact of lifestyle factors on cardiovascular outcomes, highlights the
profound influence of dietary habits and physical activity on overall cardiac health [11].

Figure 1 shows the ECG and PPG signals graphically. The waveforms of the ECG
signal are shown at the top where the primary ECG peaks are indicated by dark circles.
The PPG signal and associated waveform are shown beneath and the peaks corresponding
to systole and diastole are shown by the dark circles in the subfigure.
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Although so much research has been conducted on heart failure, most of them apply
either echocardiogram or photoplethysmogram signals in their study. A paper introduced
the concept of a non-invasive assessment method for the detection of ischemic heart disease
patients from fingertip photoplethysmogram (PPG) signal. A unified feature set pertaining
to heart rate variability (HRV) and PPG waveform morphologies was established to dif-
ferentiate between individuals with and without CAD. For classification, they employed
the support vector machine (SVM). Using a corpus of 112 people chosen from the MIMIC
II dataset, their methodology achieves sensitivity and specificity ratings of 82% and 88%,
respectively, in identifying CAD patients. They also obtained 73% and 87% sensitivity
and specificity ratings from a different dataset of 30 patients who were gathered from an
urban hospital utilizing a commercial oximeter device [12]. The findings from a study on a
Hybrid Lightweight 1D CNN-LSTM architecture for automated ECG beat-wise classifica-
tion offer promising implications for advancing the field of automated ECG classification,
which makes it very suitable for embedded systems designs that can be used in clinical
applications for monitoring heart diseases in a faster and more efficient manner [13]. A
conditional Generative Adversarial Network (GAN) model (P2E-WGAN) was designed to
reconstruct/synthesize realistic ECG signals from PPG signals; the results demonstrate the
model’s potential for providing a paradigm shift in telemedicine by bringing ECG-based
clinical diagnoses of cardiovascular disease to individuals via simple PPG assessment
by wearables [14]. The synthesis of ECG waveforms from PPG signals using the P2E-
WGAN approach has several potential applications and implications for clinical practice
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and medical device development such as enabling wearable devices equipped with PPG
sensors to potentially provide continuous and long-term monitoring of ECG signals in
daily life settings leading to the development of intelligent healthcare systems for clinical
diagnoses of cardiac diseases and anomalies in real time through machine learning and
cloud computing.

In another study, the authors introduced a non-invasive and cost-effective method for
detecting coronary artery disease (CAD) via photoplethysmography (PPG), suitable for at-
home monitoring. The analysis focuses on extracting distinguishing features from the time
domain of the PPG signal and its second derivative. CAD patients were classified using
a support vector machine-based classifier. The study evaluated the approach using ICU
patient data from the MIMIC-II dataset and achieved a sensitivity of 85% and a specificity
of 78% in identifying CAD patients [15]. A study was conducted on time-domain features
from PPG signals to differentiate between subjects with and without diseases using various
classification methods. The study evaluated ten metrics from the confusion matrix, and the
Boosted Tree classifier outperformed the others, achieving an accuracy of 94%, sensitivity
of 95%, specificity of 95%, and precision of 97% [16].

The UCI dataset repository was utilized to extract ECG features for use in a study that
focused on heart failure prediction using the multi-criteria weighted vote-based classifier.
The experimental outcomes validate the efficacy of the proposed ensemble classifier in
handling a wide range of attribute types, with a notable high diagnostic accuracy of 87.37%.
Furthermore, the classifier demonstrated impressive sensitivity at 93.75%, specificity at
92.86%, and an F-measure of 82.17%. These findings underscore the potential of this clas-
sifier as a valuable tool for accurate and comprehensive heart disease prediction [17]. A
cross-domain joint dictionary learning (XDJDL) framework for synthesizing ECG wave-
forms from PPG signals was suggested in a study; the experimental results demonstrated
the possibility of providing an affordable preliminary diagnosis screening from PPG sig-
nals and long-term, user-friendly ECG monitoring to help with early identification and
screening for specific heart illnesses [18]. A Heart Disease Prediction System (HDPS) was
developed aimed at assisting medical practitioners in diagnosing heart diseases. The sys-
tem selects 13 relevant features from clinical data, constructs an artificial neural network
based on these features, and creates a user-friendly interface. The HDPS offers output
through various means, including ROC curve displays, execution time, accuracy, sensitivity,
and specificity. Impressively, the HDPS achieved an 80% classification accuracy, indicating
its potential as a valuable tool for heart disease diagnosis [19]. The detrended fluctuation
analysis (DFA) method was used by Kamath et al. [20] to compute the short-term (20 s)
ECG segments for CHF and normal hearts. The method produced 98.4% and 98% average
sensitivity and specificity rates, respectively.

The combination of PPG and ECG signals for disease diagnosis has shown promising
results. Yao et al. extracted 70 features from these signals for blood pressure estimation
and used mutual information coefficient analysis to identify a highly discriminative feature
subset [21]. Vandecasteele et al. utilized Heart Rate Variability (HRV) and Pulse Rate
Variability (PRV) from ECG and PPG for predicting epileptic seizures, indicating the po-
tential of these combined signals in seizure detection [22]. Additionally, ECG and PPG
signals have been used to estimate respiratory sinus arrhythmia, revealing variations in
heart rate due to breathing [23]. Findings from a study on the development and testing of
a tri-modal device for monitoring cardiovascular parameters to aid in the diagnosis and
monitoring of cardiovascular diseases emphasized the reliability and stability of devices
in monitoring cardiovascular disease diagnosis [24]. In a study on alcohol consump-
tion, Wang et al. combined ECG and PPG features, achieving a high accuracy of 95% in
their study [25].

This study bridges a notable research gap by introducing a novel approach that
integrates PPG and ECG signals for heart failure assessment. While previous studies
have traditionally analyzed these signals independently, our innovative methodology
leverages their combined power, offering a comprehensive evaluation of cardiac health.
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This approach not only enhances diagnostic accuracy but also holds the potential to detect
heart failure at an earlier stage, promising to transform the field of cardiac healthcare.

The integration of photoplethysmography (PPG) and electrocardiography (ECG) sig-
nals in our study serves to address the complementary nature of these modalities in
assessing cardiovascular health [26]. ECG signals primarily focus on the electrical activity
of the heart, providing detailed information about arrhythmias, electrical abnormalities,
and cardiac rhythm [27]. However, ECG may lack direct insights into peripheral vascular
resistance and the pulsatile component of blood flow. In contrast, PPG signals are sensitive
to changes in peripheral vascular resistance and offer information about the pulsatile nature
of blood flow [28]. Integrating multiple signals enhances the reliability of the monitoring
system. In case one sensor faces limitations or artifacts, the other can provide complemen-
tary information, reducing the risk of false negatives or positives. Wearable technologies
incorporating both PPG and ECG sensors enable efficient arrhythmia detection, remote
monitoring, and early detection of heart failure, potentially reducing morbidity and mortal-
ity rates associated with cardiovascular diseases [27,29]. By combining both signals, our
assessment model aims to compensate for the limitations of each modality. The integration
allows us to comprehensively evaluate both electrical and hemodynamic features, provid-
ing a more accurate assessment and understanding of heart function and contributing to
the accuracy of heart failure assessment. The rationale behind using both signals lies in
their synergistic ability to capture a broader spectrum of physiological features, ensuring a
more robust evaluation compared to relying on either signal independently. For instance,
in the case of heart failure, ECG might indicate arrhythmias, whereas PPG could unveil
signs of impaired cardiac output. By coalescing these insights, the clinician gains a more
comprehensive understanding of the heart’s performance and potential issues. Combining
the attributes of both ECG and PPG signals is imperative to harness the comprehensive
advantages derived from their respective features.

The contribution of this paper can be summarized in the following three points:

• This paper introduces an innovative approach by integrating photoplethysmography
(PPG) and electrocardiogram (ECG) signals for heart failure assessment. This inte-
gration leverages the unique strengths of both non-invasive monitoring methods to
enhance diagnostic accuracy and enable early detection of heart failure.

• The study underscores the clinical relevance of this integrated approach, emphasizing
its potential to improve patient care, offer personalized treatment plans, and reduce
healthcare costs. By preventing advanced heart failure complications, it has the
potential to generate substantial cost savings for healthcare systems.

• The significant improvements achieved by the proposed integrated method in contrast
to the results obtained from individual ECG and PPG signals underscore the potency
of combining these two modalities. This not only enhances diagnostic accuracy but
also highlights the potential for early detection in the assessment and management of
heart failure.

The rest of this paper follows this structure: The study’s methodology, which includes
data collecting, signal processing, feature extraction, feature importance analysis and
selection, and classification, is covered in detail in Section 2. Section 3 is dedicated to
presenting the outcomes and discussions of various classification models and distinct
feature sets. Finally, Section 4 provides an in-depth exploration of the strengths and
limitations of this work, while Section 5 offers a comprehensive conclusion that highlights
the clinical relevance of our study’s findings.

2. Materials and Methods

The foundational block diagram of our proposed approach for heart failure assessment
is shown in Figure 2, which involves the integration of PPG and ECG signals and employs
machine learning algorithms for classification. The methodology encompasses the follow-
ing steps: (i) acquisition of ECG and PPG signals as the primary inputs of the algorithm;
(ii) preprocessing of the ECG and PPG signals which include denoising and eliminating
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artifacts; (iii) extraction of informative features from the preprocessed signals; (iv) nor-
malization of the dimension of the extracted features; (v) feature importance analysis and
selection; (vi) partitioning and classification of the data; and, ultimately, (vii) comparative
evaluation with prior research and studies. The subsequent subsections go into further
depth about each of these blocks.
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2.1. Dataset and Signal Pre-Processing

The data utilized in this research were sourced from the MIMIC-III (Medical Informa-
tion Mart for Intensive Care) database, a comprehensive repository containing information
from a large cohort of Intensive Care Unit (ICU) patients [30]. All the physiological data
utilized in this study were obtained simultaneously for a coherent representation of car-
diovascular dynamics from the Philips CareVue Clinical Information System, with data
collected from models M2331A and M1215A. We obtained proper consent for data ex-
traction from MIMIC-III for research purposes, as indicated by Record ID 51903504, and
adhered to ethical guidelines by completing the web-based training course provided by
the National Institutes of Health Protecting Human Research Participants. The dataset
comprises a total of 1636 instances, including 954 control subjects and 682 heart failure
patients with varying degrees of heart failure, ranging from mild to severe. The patients
were identified based on ICD-9 codes related to heart failure, ensuring a broad spectrum
of cardiac pathologies. This approach aimed to enhance the robustness and sensitivity
of our presented method to different stages of heart failure. By incorporating a diverse
range of cases, our machine learning model was trained to recognize patterns and features
across the continuum of cardiac damage, enabling a more comprehensive evaluation. The
inclusion of patients with varying levels of heart failure is a deliberate choice to enhance
the model’s sensitivity to different stages of heart failure. As shown in Table 1 (below), the
inclusion criteria involved patients aged 20 years or older at the time of ICU admission.
Exclusions were made for patients below this age, those lacking an ICU record, or missing
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data for echocardiography or photoplethysmogram. The mean age of the included patients
was 51.6 ± 9.9 years, with 41.1% being women and 58.9% men.

Table 1. Subject characteristics (n = 1636).

Heart Failure (682) Non-Heart Failure Patients (954)

Age [yr]
20–40 29.7 ± 5.7 24.08 ± 4.7
40–60 50.5 ± 5.9 56.66 ± 9.5
>60 74.6 ± 8.8 54.60 ± 10.1

Gender
Male 402 (58.9%) 444 (46.6%)

Female 280 (41.1%) 509 (53.4%)

Weight
Male 78.8 ± 17.6 78.5 ± 17.5

Female 78.6 ± 17.4 78.4 ± 17.9

Height [cm] 172.3 ± 13.7 169.4 ± 11.9
BMI [Kg/m2] 26.5 ± 9.7 27.5 ± 3.2

Three main sources of interference generally endanger the quality of the ECG signal:
(A) the power-line noise at 50 or 60 Hz, which makes up the majority of the noise power
in these signals and is essentially stationary; (B) the signal’s baseline wandering, which
is referred to as the breathing artifact and manifests as a low-frequency component in
the time domain (this can cause analog circuitry to become saturated or lose some of its
effective precision, which can erode the accuracy of digitalization); (C) non-stationary,
high-frequency noises resulting from muscle contractions. We created a preprocessing
block to filter and denoise the signals in order to eliminate the degrading impacts of noise
and artifacts from the raw signals. First, we addressed baseline wander and motion artifacts
by applying a high-pass filter with a cut-off frequency of 150 Hz. This filter effectively
removed low-frequency components related to baseline drift and motion artifacts while
retaining the higher-frequency components essential for heart function and cardiac event
analysis. Notably, recordings with abnormalities or noise, such as missing peaks, pulsus
bisferiens, no signal (sensor-off), etc., were excluded. The retained signal fragments had
more than 30,000 points, equivalent to 4 min of data at a 125 Hz adoption rate.

2.2. Feature Extraction

Feature extraction constitutes the procedure of uncovering meaningful patterns and
insights within raw data, thereby crafting a more informative representation that refines
the accuracy of prognosis and diagnosis [31]. In the realm of machine learning and data
analysis, feature extraction revolves around the conversion of input data into a collection
of features suitable for utilization as inputs in models or algorithms. The features extracted
from physiological signals play a crucial role in the accuracy and specificity of disease
estimation or diagnosis. Various methods, such as the wavelet approach [32], have been
employed for feature extraction. In specific cases, deep learning approaches, like the
artificial neural network—long short-term memory (ANN-LSTM) network, have been
utilized for extracting features from successive ECG and PPG signals, demonstrating
efficacy in estimating blood pressure [33]. Other studies have employed an extensive
feature extraction approach combining PAT features with PPG features for hypertension
prediction [34]. Additionally, calibration methodologies have been applied in some studies
for cuffless blood pressure estimation, effectively eliminating correlations between subjects’
blood pressure and pulse transit time (PTT), particularly suitable for short intervals and
applications like monitoring blood pressure during exercise tests [35]. These diverse
approaches highlight the importance of tailored feature extraction methods based on the
specific diagnostic requirements or health parameters under consideration. In the present
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study, MATLAB software (version R2022b), designed and distributed by MathWorks
(Natick, MA, USA), was employed for conducting the feature extraction process.

The feature extractor block is responsible for extracting three distinct categories of
informative features from both PPG and ECG signals. The features extracted are broadly
classified into three groups: The first category is centered on physiological parameters,
including metrics such as augmentation index, heart rate, arterial stiffness index, and heart
rate variability parameters (pNN50, NN50, RMSSD, and SDNN); physiological features
delve into parameters related to the body’s physiological responses. The second group
of features encompasses amplitude-related attributes, such as pulse pressure, systolic
pressure, diastolic pressure, and P-wave characteristics; these features provide insights into
the signal’s strength and intensity. The third category involves interval-related features,
including peak-to-peak interval, QRS interval, and RR interval, the interval features offer
information about the durations between specific points within the signal.

In accordance with the physiological underpinnings of heart failure and its relationship
with ECG and PPG signals, we identified and extracted 13 pivotal features. These features
encapsulate essential cardiovascular information and were extracted from both ECG and
PPG signals within each cardiac cycle to facilitate heart failure evaluation. The extracted
characteristics are represented visually in Figure 3, while Table 2 furnishes a comprehensive
overview of each feature’s class and the clinical importance/implications. It is essential to
highlight that the PPG features extracted in this study are solely based on the identification
of three readily discernible points, specifically the peak of the first derivative of PPG, the
foot, and the peak of the PPG waveform.
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Table 2. Summary of the features and the clinical importance/implications.

Class of Feature Features Information Provided

Class 1
(Amplitude features)

Pulse Pressure
Systolic Pressure
Diastolic Pressure

P-wave

Monitoring these amplitude
features over time can provide
insights into the progression of

heart failure and the effectiveness of
therapeutic interventions aimed at

managing vascular resistance.

Class 2
(Interval information)

Peak-to-peak interval
QRS interval
RR interval

Changes in these intervals can
indicate alterations in cardiac
function and hemodynamics
associated with heart failure.

Researchers can gain insights into
the pathophysiology of heart failure

and assess the severity of
the condition.

Class 3
(Physiological features)

Augmentation Index
HRV Parameters (pNN50,

NN50, RMSSD, and SDNN)
Heart Rate

They offer insights into heart
function, blood flow, arterial

stiffness, and autonomic nervous
system activity.

Table 3 (below) demonstrates how morphological changes in cardiovascular features
serve as indicators of structural or functional irregularities in the heart. In individuals with
chronic heart failure (CHF) and acute myocardial infarction (AMI), heart rate variability
in the time domain provides valuable prognostic information. Key parameters include
the standard deviation of normal beat intervals (SDNN) and pNN50, representing the
percentage of adjacent NN intervals differing by more than 50 ms. An SDNN value of less
than 50 ms or pNN50 lower than 3% is indicative of high risk, 50 to 100 suggests moderate
risk, and a value over 100 ms or a pNN50 greater than 3% is considered normal [36]. The
QRS interval, another predictor of heart failure, generally ranges between 0.06 and 0.12 ms
in healthy individuals. A prolonged QRS interval may indicate delays in the ventricular
depolarization process. The RR interval, denoting the time between consecutive R waves in
the QRS signal, is a critical parameter for assessing ventricular rate. In healthy individuals,
normal ECG values for the RR interval typically range between 0.6 and 1.2 s. Prolonged RR
intervals, defined as > 1.5 s, are commonly observed in patients with atrial fibrillation [37].

Pulse pressure, representing the difference between systolic and diastolic blood pres-
sure, and systolic pressure, an indicator of pulsatile changes in blood volume due to arterial
blood flow, typically range between 0.5 and 10 mmHg and 80 and 120 mmHg, respectively,
in healthy subjects. During heart failure, the arterial system undergoes changes, leading to
increased stiffness. Elevated augmentation index values are indicative of increased wave
reflections, reduced arterial compliance, and impaired vascular function, all of which are
associated with heart failure. Structural and electrical changes in the heart can affect atrial
function, which in turn causes P-wave abnormalities, such as increased duration or altered
shape, which may signify atrial remodeling, a common feature in heart failure patients.

Heart rate (HR) also serves as a predictor of cardiovascular, cerebrovascular, and
all-cause mortality [38]. A normal resting heart rate for adults ranges between 60 and
100 beats per minute. Increased heart rate has been associated with elevated cardiovas-
cular risk and total mortality. The relationship between increased heart rate and adverse
cardiovascular events remains significant even after adjusting for major cardiovascular risk
factors, indicating the independent prognostic value of heart rate in various populations
and clinical conditions.
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Table 3. Features and the normal values for a healthy adult.

Feature Description Duration Disease Diagnosis

Pulse pressure Difference between the systolic and diastolic
blood pressure 0.5–10 mmHg Atherosclerosis

Congestive heart failure

Systolic pressure Indicator of the pulsatile changes in blood
volume caused by arterial blood flow 80–120 mmHg Artery stiffness

Heart failure

P-wave Atrial depolarization 0.08–0.11 s Heart failure

Diastolic pressure Represents the amplitude of the signal during
the diastolic phase of the cardiac cycle <80 mm Ischemic heart disease

Cardiomyopathy

Peak-to-peak interval Represents the duration between successive
peaks in a signal 0.6–1.2 s Atrial fibrillation

Heart failure

RR interval The interval between two successive R-waves of
the QRS complex ventricular rate 0.6–1.2 s Paroxysmal atrial fibrillation

Congestive heart failure

Augmentation index The difference between systolic and diastolic
blood pressure 20–80 Heart failure

Heart rate
A measure of the number of times the heart

contracts or beats within a specific time frame,
usually one minute

60–100 bpm Heart failure
Atrial fibrillation

QRS interval Ventricular depolarization 0.08–0.11 s
Heart failure
Tachycardia

Acute coronary syndrome

RMSSD
NN50

pNN50

Shows how active the parasympathetic system is
relative to the sympathetic nervous system

19–48 ms
5–25 ms
5–18%

Heart failure
Hypertension
Arrhythmia

Coronary artery disease

2.3. Feature Normalization

To address the scale differences in features extracted from PPG and ECG signals, which
represent distinct heart failure indicators, this study utilized min–max normalization on
the entire dataset. This crucial preprocessing step ensured that all feature values were
uniformly scaled within a range of 0 to 1, preventing analytical inaccuracies and anomalies
during model training. The normalization method employed followed a straightforward
mapping equation to achieve this standardization:

Xnorm =
x − min(x)

max(x)− min(x)
(1)

This process not only promotes model stability and efficiency but also mitigates the
impact of outliers, enhancing the reliability of our heart failure evaluation model.

2.4. Feature Importance Analysis and Feature Selection

The input feature vectors for both PPG and ECG were further reduced using the relief
feature algorithm (ReliefF) [39,40]. The ReliefF algorithm is a filter-style feature selection
technique that estimates weights by taking the nearest neighbor into account. In practical
applications, this enhanced relief derivative, referred to as ReliefF, is the most frequently
utilized version [41]. The study employed the ReliefF algorithm to further reduce input
feature vectors derived from both PPG and ECG signals. ReliefF is a well-established feature
selection method known for its robust performance in multi-class classification scenarios
and its capacity to handle noisy datasets with missing values. This improved variant,
ReliefF, incorporates k nearest neighbors (KNN) from each class to estimate feature weights,
enhancing the accuracy of weight estimation, particularly in noisy dataset settings [42]. The
study initially used the ReliefF algorithm to assess the relevance of features within PPG
and ECG signals individually as illustrated in Figure 4 (below). This analysis identified
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key features within each modality for heart failure assessment, aiding in the determination
of which modality (ECG or PPG) offered better discriminatory power. However, this
individual analysis had a limitation in that it might not capture interactions or synergies
between PPG and ECG features. To overcome this limitation, the study conducted a
combined feature importance analysis on a feature set that included both ECG and PPG
data (illustrated in Figure 5 below). This holistic approach provided a comprehensive
view of feature importance, taking into account the contributions of both modalities. This
comprehensive perspective offered insights into the significance of individual features
within each signal and the collective impact of combining features from both PPG and ECG.
Ultimately, this holistic view sheds light on the roles of each modality and highlights the
potential advantages of integrating them in the context of heart failure evaluation.
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The analysis of ECG data illuminates the pivotal role played by several key features
as discriminators among different classes, particularly in individuals with heart failure.
The heartbeat feature, reflecting the frequency of heartbeats, serves as a fundamental
indicator of cardiac activity, with deviations signaling disruptions in the pumping function.
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The RR interval, indicative of the time between successive R-peaks, offers insights into
heart rate variability, highlighting irregularities in cardiac rhythm. The QRS interval,
representing ventricular depolarization duration, provides information on the heart’s
electrical conduction system. Features such as RMSSD, SDNN, and pNN50, which gauge
short-term variability, overall variability, and the percentage of significant variations,
respectively, offer crucial information on autonomic function and cardiovascular regulatory
mechanisms. Altered patterns in these features among individuals with heart failure
contribute to a comprehensive understanding of the physiological changes associated
with the condition. The examination of feature importance derived from PPG signals
accentuates the clinical relevance of systolic pressure, diastolic pressure, peak-to-peak
interval, and pulse pressure in the PPG waveform for heart failure assessments. These
features bear intricate connections to the heart function. In the realm of heart failure,
where cardiac function is frequently compromised, alterations in the morphology of these
features serve as indicative markers of the physiological changes associated with the
condition. Systolic pressure, representing the maximum arterial pressure during systole,
and diastolic pressure, indicating the minimum arterial pressure during diastole, offer
a comprehensive view of blood pressure dynamics. The peak-to-peak interval captures
variations between consecutive peaks, reflecting the pulsatile nature of blood flow. Pulse
pressure, as a fundamental feature in the PPG waveform, provides information about the
strength and regularity of the pulsatile signal. Comprehending the subtle variations in
these characteristics greatly enhances the clinical applicability of PPG-based assessments
by contributing to the nuanced assessment of heart failure. The selected features above
for PPG (four features) and ECG (six features) were used for classifications involving the
analysis of independent signals.

The feature selection process for the integration of PPG and ECG signals involved a
meticulous examination of absolute values to identify features of substantial significance
in the context of heart failure assessment. From the initial pool of extracted features, a
refined set of ten (10) features was selected. Notably, systolic pressure, diastolic pressure,
peak-to-peak interval, NN50, pNN50, P-wave, heart rate, QRS complex, RR interval, pulse
pressure, and augmentation index emerged as pivotal contributors to the classification
task. The consideration of absolute values was paramount, ensuring a comprehensive
evaluation of these features and capturing the essential dynamics of the cardiovascular
system. These selected features exhibit notable clinical relevance, aligning with established
physiological indicators of heart failure. ReliefF played a key role in highlighting their
importance, emphasizing their ability to distinguish patterns associated with heart failure.
The chosen features contribute to the overall effectiveness and clinical relevance of the
heart failure assessment model, enhancing its interpretability and accuracy in classifying
instances of the condition.

2.5. Data Partitioning and Classical Machine Learning

Data partitioning is a crucial step in supervised machine learning, aiding in the train-
ing, optimization, and validation of predictive models. Various techniques exist for parti-
tioning datasets into subsets, each suited to different dataset sizes. In this study, the datasets
(n = 1636) were split into 75% (1227) training sets and 25% (409) testing sets. The intentional
design of the control group with a larger sample size aimed to provide a more balanced
representation of the real-world distribution, enhancing the reliability and accuracy of our
analysis. To ensure the model’s stability and generalization, a 10-fold cross-validation (CV)
procedure was applied to the training data before model optimization. During this process,
the training data were divided into ten equal-sized ‘folds.’ The model was trained and
validated ten times, with each fold taking turns as the validation set while the others were
used for training. By evaluating the model’s performance across different training data
subsets, this method helped prevent overfitting. Also, extensive hyper-parameter tuning to
optimize the model’s performance while guarding against overfitting and under-fitting was
carried out. The utilization of the cross-validation strategy mentioned earlier and ensemble
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methods further contributed to the robustness of our model. Our commitment to avoiding
over-parametrization was manifested in the comprehensive evaluation of various training
aspects, emphasizing a balanced trade-off between model complexity and generalization.
This meticulous approach allows for a fair and reliable comparison between the integrative
and single-input models. The performance of the resulting model was evaluated on a
different test set, giving an assessment of its generalization to completely unknown data.

In this study, nine (9) machine learning algorithms were implemented for classifica-
tion and performance analysis using the Weka software (Version 3.9.6). Weka (Waikato
Environment for Knowledge Analysis) is a cross-platform open source, renowned for its
popularity in the realm of machine learning. Developed by the University of Waikato, this
Java-based software (Java 11.0) offers a versatile platform for various data analysis and
machine learning tasks [43].

Each machine learning algorithms were implemented in this study based on its specific
strengths and suitability for the study’s goals, including handling complex features, dealing
with noisy data, and providing insights into feature importance or relationships within
the dataset; the combination of these diverse algorithms also allows for a comprehensive
evaluation of heart failure using the extracted PPG and ECG features.

3. Results and Discussion

As previously described, the evaluation of each model involves a 10-fold cross-
validation (CV) of dataset samples, ensuring that there is no overlap between the training
and testing data. To assess the classification performance, precision, recall, accuracy, and
F-measure were computed using the following metrics:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Specificity =
TN

TN + FP
(3)

Sensitivity (Recall) =
TP

TP + FN
(4)

F1-score =
2 × (Recall × Precision)

Recall + Precision
(5)

In this context, TP denotes a set of correctly identified test results, FP represents a set
of test results incorrectly identified, TN signifies a set of correctly rejected test results, and
FN stands for a set of test results incorrectly rejected. For this study, we computed and
compared the results from a single ECG signal and a single PPG signal with the results
obtained from the integration of both PPG and ECG signals for heart failure evaluation.

3.1. Result from Classification with Features Extracted from Single PPG Signal

The features extracted from the PPG signals were employed to compute the perfor-
mance metrics using the various machine learning algorithms discussed in the previous
section. PPG signals inherently capture dynamic alterations in blood volume and vascular
attributes, thus providing distinctive insights into cardiovascular health from an alternative
vantage point. The outcomes of this approach were highly promising, as evident below.

From Figure 6 below, Random Forest stands out as the top performer with an impres-
sive accuracy of 97.10%, sensitivity of 97.05%, specificity of 96.88%, precision of 96.28%,
AUC value of 97.20%, and F1-score of 96.66%, indicating its strong ability to correctly
classify individuals with and without heart failure. It also excels in sensitivity, specificity,
precision, and AUC, demonstrating its comprehensive effectiveness in evaluating heart
failure. While Random Forest takes the lead, it is worth noting that other models, such as
support vector machine (SVM), K-nearest neighbor, and decision tree, also deliver com-
mendable performances with accuracies ranging from 93% to 96%. However, Random
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Forest consistently outperforms these alternatives in most performance metrics, reinforcing
its position as the optimal choice for heart failure classification.
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3.2. Result from Classification with Features Extracted from Single ECG Signal

The result presented in the figure below shows the various machine learning models’
performance obtained from the classification of features extracted from a single ECG signal.

In Figure 7 (below), the findings prominently highlight the exceptional performance
of the multi-layer perceptron (MLP), a feedforward artificial neural network character-
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ized by its multiple layers of interconnected nodes. It showcases the highest accuracy at
96.40%, underscoring its impressive capability in accurately discerning individuals with
and without heart failure. Furthermore, the MLP model excels across various evaluation
metrics, including sensitivity (96.70%), specificity (96.00%), precision (95.30%), and F1-score
(95.60%). These results signify its comprehensive effectiveness in classifying heart failure
cases with precision. Notably, other models such as K-nearest neighbor, AdaBoost, and
Random Tree also deliver commendable performances, achieving accuracies in the range of
84% to 92%. These models exhibit a balanced trade-off between sensitivity and specificity,
demonstrating their ability to identify heart failure cases while keeping false positives at
a minimum.
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3.3. Result from Classification of Integrated Features Extracted from PPG and ECG Signals

Integrating ECG and PPG signals offers a significant advantage, as it harnesses the
wealth of complementary information they provide. ECG, being a gold standard for as-
sessing heart rate and rhythm irregularities, is adept at capturing electrical activity. On
the other hand, PPG captures changes in blood volume and vascular characteristics, of-
fering insights into cardiovascular health from a different perspective. By combining
these signals, we amalgamate intricate details of the circulatory system, resulting in a
more holistic evaluation that transcends the limitations of individual signals. The re-
sult obtained from the classification of the novel approach of combining these signals is
represented below.

Table 4 (below) shows the comparison of these evaluation/performance metrics on the
selected machine learning models. From the displayed result, the support vector machine
model outperforms other machine learning models. The evaluation/performance metrics;
accuracy, sensitivity, specificity, precision, AUC, and F1-score obtained are 98%, 97.60%,
96.90%, 97.20%, 98.40%, and 97.70%. Figure 6 displays the radar plot of these performance
metrics achieved in the various machine learning algorithms.

Table 4. Performance of various machine learning models for heart failure (HF) classification with
the integration of ECG and PPG signals.

Model

Performance Metrics

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Precision
(%) AUC (%) F1-Score

(%)

SVM 98.00 97.60 96.90 97.20 98.80 97.70

Random Forest 96.80 96.70 96.90 96.20 99.60 96.40

K-NN 94.90 79.30 95.70 94.80 95.30 86.20

Random Tree 96.90 96.70 96.80 96.20 96.80 98.50

AdaBoost 96.90 96.80 96.80 85.10 99.60 91.87

BayesNet 95.50 95.70 95.50 94.60 96.80 95.20

Decision Tree 96.00 95.70 96.40 95.70 96.80 95.70

NaiveBayes 91.20 91.30 91.00 89.40 95.20 90.30

MLP 96.50 96.80 96.50 95.70 99.80 96.30

3.4. Comparison of Results Obtained

Performance metrics obtained from this novel approach to the integration of the PPG
and ECG signal were also tested and compared to the results obtained from the performance
of PPG and ECG signals independently. Figures 6 and 7 illustrate the performance results
obtained from the classification performed on these signals independently.

In comparison with the performance result obtained from the integration of these
features, it is evident that the integration of these signals for heart failure study provides
unique insights into cardiovascular health from an alternative vantage point.

The table above demonstrates the comparison between the results obtained from
the analysis of the integration of PPG and ECG signals versus the results obtained from
the ECG and PPG signals in isolation. When PPG data were considered in isolation, the
Random Forest model emerged as the top performer, achieving an accuracy of 97.10%.
This model demonstrated remarkable sensitivity, specificity, precision, and an F1-score, all
hovering around the 96–97% range. These metrics collectively indicated its strong potential
for accurate heart failure classification.

In contrast, the ECG data were effectively evaluated using the MLP (Multilayer Per-
ceptron) model, yielding an accuracy of 96.40%. While its accuracy was slightly lower than
that of PPG, MLP exhibited a well-balanced trade-off between sensitivity and specificity,
making it a valuable contender in heart failure assessment.
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It can also be noted that the result obtained from using the PPG signal outperformed
the result from using only the ECG signals; this can be attributed to some factors such as
PPG signals being less susceptible to interference from electrical sources and electronic
equipment compared to ECG. This characteristic ensures that PPG measurements remain
reliable and consistent in various environments, which is particularly beneficial in settings
where electrical interference may be present, allowing for dependable monitoring and
accurate assessment of heart failure without external disruptions. Also, PPG excels in
evaluating peripheral hemodynamics, offering valuable insights into blood circulation
beyond the heart, and it effectively measures changes in blood volume in peripheral blood
vessels, shedding light on the efficiency of circulation and peripheral perfusion. Given
that HF often affects peripheral blood flow, this capability is pivotal for understanding
the broader cardiovascular dynamics associated with the condition. Also, in terms of
motion tolerance, PPG’s resilience to motion artifacts is a notable advantage, particularly
for individuals with heart failure. Patients with HF may experience limited mobility
or discomfort, and PPG’s ability to maintain measurement accuracy even during subtle
movements ensures that vital data can be reliably collected. This motion tolerance en-
ables continuous monitoring without undue disruption, a crucial aspect in assessing HF
patients’ condition.

However, the most notable findings arose from the integration of both PPG and
ECG signals, where the Random Forest model demonstrated exceptional performance.
This integrated approach resulted across various evaluation metrics, including accuracy
(98.00%) sensitivity (97.60%), specificity (96.90%), precision (97.20%), AUC (97.70%), and
F1-score (98.40%), suggesting that the combination of these signals significantly enhanced
the model’s capability for heart failure detection. Moreover, an outstanding AUC of 97.70%,
indicates a superior ability to discern heart failure cases while minimizing false positives.

These outcomes highlight the potential of integrating PPG and ECG data for more
accurate heart failure assessment. These results reveal superior performance compared to
the use of these signals independently. Particularly, when assessed using the Random Forest
model, the integrated approach exhibited exceptional accuracy and overall effectiveness,
highlighting its potential significance in heart failure evaluation.

3.5. Comparison with Other Works

The performance of the proposed approach was also assessed in comparison to prior
studies that independently employed ECG and PPG for various applications. Our findings
indicate that the proposed method exhibited superior performance when contrasted with
these studies, which separately utilized ECG and PPG modalities for their distinct analyses.
The results of this comparative analysis are detailed in Table 5 below.

Table 5. Comparison between the best performing models from isolated signals vs. performance
from the integration of both signals.

Model

Performance Metrics

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Precision
(%)

F1Score
(%)

AUC
(%)

PPG Random
Forest 97.10 97.05 96.88 96.28 97.20 96.66

ECG MLP 96.40 96.70 96.00 95.30 95.90 95.60

Integration SVM 98.00 97.60 96.90 97.20 98.40 97.70

From the results below (Table 6), in comparison to previous ECG-focused studies, the
current study achieved high-performance metrics ranging between 96.40%, 96.70%, 96.00%,
95.130%, and 95.90%. Notably, the multi-layer perceptron (MLP) model in the current study
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outperformed the majority of previous ECG-based studies in terms of accuracy, sensitivity,
specificity, and precision.

Table 6. Comparison of results obtained from the existing literature.

Author Dataset Signal Features Extracted Algorithm Acc.
(%)

Sens.
(%)

Spec.
(%)

Pre.
(%)

F1-Score
(%)

Simge et al.
[44]

UCI
300 ECG Chol, trestbps, fbs,

restecg, slope

Cubic SVM
Linear
SVM
DT

Ensemble

52.3
67.3
67.7
67.0

- - - -

Ali et al.
[45] UCI ECG RestECG, Trestbps,

Chol, fbs

KNN
SVM

NaïveBayes

80
83
84

-
75
77
80

80
82
83

-

Shouman
et al. [46] CHDD ECG Chol, trestbps, fbs,

restecg

GRDT
NaïveBayes

KNN

79.1
83.5
83.2

75.6
78.0
76.7

81.6
80.8
85.1

-
-
-

-
-
-

Tu et al.
[47] UCI ECG Chol, trestbps, fbs,

restecg
Bagging

DT
81.41
78.91

74.93
72.01

86.64
84.48

-
-

-
-

Bashir et al.
[17]

CHDD
303 ECG Chol, trestbps, fbs,

restecg

Ensemble
NaïveBayes

DT
SVM

81.82
78.79
76.57
86.67

73.68
68.49
63.58
73.68

92.86
92.86
71.24
79.51

-
-
-
-

82.17
73.61
71.51
65.10

Pal et al.
[16] 50 PPG

Crest-time,
augmentation
index, pulse

pressure, S.P/D.P

BT
SVM
KNN

LR

94
85
83
83

95
83
79
83

95
87
82
85

97
83
97
82

96
87
89
85

Banerjee
et al. [12]

MIMIC II
112 PPG Systolic peak, NN

interval, HRV SVM - 82 88 - -

Paradhker
et al. [15]

MIMIC II
55 PPG

Augmentation
index, stiffness

index
SVM - 85 78 - -

Current
Study

MIMIC III
1636

ECG
QRS interval, RR

interval, HRV, heart
rate

MLP 96.40 96.70 96.00 95.30 95.90

PPG S.P, D.P, P.P, P-to-P RF 97.10 97.05 96.88 91.20 96.66

Integration of PPG and ECG signal SVM 98.00 97.60 96.90 97.20 97.70

Note: Acc.: accuracy, Spec.: specificity, Sens.: sensitivity, Pre.: precision, KNN: K-nearest neighbor, BT: Boosted
Tree, SVM: support vector machine, MLP: multi-layer perceptron, LR: logistic regression, DT: decision tree, RF:
Random Forest. GRDT: Gain ratio decision tree, CHDD: Cleveland Heart Disease Dataset. S.P: systolic pressure,
D.P: diastolic pressure, P-to-P: peak-to-peak amplitude, and P.P: pulse pressure.

For PPG analysis, the current study achieved high accuracy, specificity, and sensitivity,
with values ranging from 96.88% to 97.10%. These results outperform several previous
PPG-focused studies in terms of accuracy, sensitivity, and specificity. The Random Forest
(RF) model stood out with the highest accuracy.

The integration of PPG and ECG signals in the current study demonstrated promis-
ing results, with accuracy ranging from 91.20% to 98.00%. These results surpassed the
majority of both ECG and PPG-focused studies, indicating that the combination of these
signals provides a substantial benefit in heart failure assessment. The Random Forest (RF)
model achieved the highest accuracy in this integrated approach, further emphasizing its
effectiveness in comprehensive heart failure evaluation.

4. Clinical Application Prospect

This study presents substantial clinical relevance. By combining the unique strengths
of these non-invasive monitoring methods, healthcare providers can significantly enhance
the accuracy and timeliness of heart failure diagnosis. The results obtained from our
study demonstrate the significant potential benefits of integrating PPG and ECG signals
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for heart failure evaluation. With an impressive accuracy of 98%, sensitivity of 97.60%,
specificity of 96.90%, and precision of 97.20%, the integrated approach outperforms the
results obtained from individual ECG and PPG signals. These findings suggest that the
integrated approach holds promise for early, precise, and non-invasive diagnosis of heart
failure. The high sensitivity implies effective identification of individuals with heart failure,
contributing to early intervention and improved patient outcomes. This non-invasive
evaluation method not only enhances patient care through timely diagnosis but also has the
potential to reduce healthcare costs by enabling more targeted interventions. Furthermore,
the accurate classification of heart failure cases paves the way for personalized treatment
strategies, tailoring medical interventions based on individual patient needs. Overall, our
study provides compelling evidence supporting the potential benefits of integrating PPG
and ECG signals for heart failure assessment, aligning with the envisioned advantages
mentioned in the abstract.

Moreover, the non-invasive nature of PPG and ECG signals allows for telemedicine and
remote monitoring, enhancing patient accessibility and addressing healthcare challenges in
remote areas. It also has the potential to reduce healthcare costs by preventing advanced
heart failure complications. Additionally, this integrated approach fosters ongoing research
and development in cardiac healthcare, promising advanced diagnostic and monitoring
tools. In summary, the integration of PPG and ECG signals has the potential to revolutionize
heart failure diagnosis and management, offering early detection, personalized care, cost
savings, and improved patient outcomes.

5. Limitations, Future Work and Conclusions

Despite its merits, the integration of PPG and ECG signals faces several limitations.
The quality and availability of PPG and ECG data can vary, impacting the reliability
of the approach. Technical expertise is required for implementing and interpreting this
integrated approach, which may not be readily available in all healthcare settings. Access
to the necessary equipment for data collection can be limited in certain healthcare facilities,
particularly in resource-constrained settings. Additionally, PPG and ECG signals are
sensitive to motion artifacts and environmental interference, which can affect data quality.
Advancements in wearable sensor technologies have made significant strides in mitigating
these challenges. Modern wearable devices are increasingly equipped with advanced
algorithms and hardware designed to reduce noise and compensate for motion-related
artifacts. This makes them increasingly viable for collecting reliable ECG and PPG data
even as patients engage in their daily activities.

It is also important to note the exploration of deep learning methods stands as a
potential avenue for future research, balancing advancements with the unique demands of
interpretability in medical applications. With the development of deep learning and other
algorithms that need high computing power, its learning capacity to automatically learn
intricate features from the data could be advantageous, which not only enables the analysis
process to no longer require a feature extraction using hand-crafted techniques but it also
has great advantages in accuracy and robustness, particularly is sufficient training data
are provided. However, we emphasize the importance of interpretability in the medical
domain and the challenges associated with acquiring extensive labeled datasets.

Our research primarily analyzed signals recorded in a resting state, as is typical in
an intensive care unit (ICU) setting, which is the environment from which the MIMIC
III data was obtained. We recognize that this approach may not capture certain cardiac
anomalies that manifest specifically during physical exertion. However, we believe that the
high accuracy of our method even with resting state data holds promising implications for
future applications, including integration with wearable technology. With wearables, it is
feasible to monitor ECG and PPG signals during various activities, potentially allowing for
the detection of exercise-induced cardiac events. We anticipate that our approach, when
applied to such dynamic data, could yield equally promising results.
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Handling of patient data raises concerns about data privacy and security, and future
works should implement stringent data protection protocols, such as employing advanced
encryption techniques for data storage and transmission and strictly adhering to interna-
tional standards such as HIPAA (Health Insurance Portability and Accountability Act) and
GDPR (General Data Protection Regulation). Additionally, access controls will be put in
place to ensure that only authorized personnel can access patient data.
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