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Abstract: Video-based person re-identification (ReID) aims to exploit relevant features from spatial
and temporal knowledge. Widely used methods include the part- and attention-based approaches
for suppressing irrelevant spatial–temporal features. However, it is still challenging to overcome
inconsistencies across video frames due to occlusion and imperfect detection. These mismatches
make temporal processing ineffective and create an imbalance of crucial spatial information. To
address these problems, we propose the Spatiotemporal Multi-Granularity Aggregation (ST-MGA)
method, which is specifically designed to accumulate relevant features with spatiotemporally con-
sistent cues. The proposed framework consists of three main stages: extraction, which extracts
spatiotemporally consistent partial information; augmentation, which augments the partial informa-
tion with different granularity levels; and aggregation, which effectively aggregates the augmented
spatiotemporal information. We first introduce the consistent part-attention (CPA) module, which
extracts spatiotemporally consistent and well-aligned attentive parts. Sub-parts derived from CPA
provide temporally consistent semantic information, solving misalignment problems in videos due
to occlusion or inaccurate detection, and maximize the efficiency of aggregation through uniform
partial information. To enhance the diversity of spatial and temporal cues, we introduce the Multi-
Attention Part Augmentation (MA-PA) block, which incorporates fine parts at various granular levels,
and the Long-/Short-term Temporal Augmentation (LS-TA) block, designed to capture both long-
and short-term temporal relations. Using densely separated part cues, ST-MGA fully exploits and
aggregates the spatiotemporal multi-granular patterns by comparing relations between parts and
scales. In the experiments, the proposed ST-MGA renders state-of-the-art performance on several
video-based ReID benchmarks (i.e., MARS, DukeMTMC-VideoReID, and LS-VID).

Keywords: video-based person re-identification; spatiotemporal learning; attention mechanism;
complementary learning

1. Introduction

Person re-identification (ReID) is an essential application in large-scale surveillance
systems and smart cities, aiming to identify individuals across different times and locations
amidst varying conditions (e.g., camera views, occlusion, background clutter, illumination,
scale, and body pose). With the growth of video surveillance systems, advanced video
ReID methods [1–8] have been attracting attention due to their potential to offer larger
capacity for achieving more robust performance. In contrast to image-based ReID, which
relies solely on a single image, video-based approaches harness a richer source of temporal
information. Consequently, most video-based methods [6–14] predominantly concentrate
on feature extraction and aggregating such spatiotemporal knowledge.

Previous methods commonly fall into two categories: part-based [14–17] and attention-
based approaches [4,7,11,13,18–20]. These methods segment global features into partial
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information and then derive a single feature vector by leveraging relationships among rele-
vant spatial and temporal knowledge. Specifically, the methods [14,15] spatially separate
images or global features into fixed partitions. Ref. [14] employed horizontal separation
and utilized the graph convolutional network (GCN) [21] to aggregate spatial and tem-
poral dimensions. Similarly, Ref. [15] employed horizontal separation at multiple scales
to divide details and aggregate them through hypergraphs at various granularity levels.
Despite these efforts, challenges persist due to temporal misalignment caused by object
occlusion or inaccurate detection algorithms during feature aggregation. When features
are separated into horizontal parts, they inconsistently include unnecessary information
along the temporal axis during occlusion or detection errors (Figure 1a). Such inconsis-
tencies, particularly in video ReID, potentially lead to interference in features and result
in inaccurate outcomes. Alternatively, attention mechanisms such as [22–25] have been
widely utilized to enhance feature representation by accentuating relevant regions while
suppressing irrelevant areas. Recent video-based ReID approaches [18,19] have explored
attention-based partitioning methods to leverage diverse attention parts. However, these
methods typically create sub-attentions separate from the fixed main attention, resulting in
imbalanced information across parts and restricting the number of semantic part divisions.
They may tend to prioritize parts with abundant information, potentially overlooking
finer details of targets with relatively lesser information. This could result in inaccurate
outcomes when crucial parts of the target are occluded. To overcome the above problem,
we aim to extract enhanced ReID features by fully exploiting detailed information in the
spatiotemporal information by ensuring uniform information quantity across parts and
maintaining consistent semantic information temporally.

Figure 1. Comparison of the (a) part-based approach and (b) proposed consistent part-attention
(CPA) method. As shown in the figure, the part-based approach has a different amount of relevant
spatial information with some interferences for each part, whereas the CPA method provides only key
information uniformly. When temporal misalignment occurs, the part-based approach demonstrates
inconsistent human parts. In contrast, CPA consistently offers semantic information about the
same part.
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In this paper, we introduce the consistent part-attention (CPA) module, which effectively
manages uniform spatiotemporal information without interference or noise. Notably, CPA
learns uniform attention in spatiotemporal dimensions solely through self-information
and a few priors, eliminating the need for hard labels such as human parsing or skeleton
data. As illustrated in Figure 1b, the CPA module not only eliminates interference and
noise in spacetime, but also ensures consistent delivery of semantic information to the
model, averting uneven information distribution and ensuring the thorough capture of fine
target details.

Addressing the challenge of video ReID entails leveraging both spatial and temporal
knowledge across various granularities. To this end, we employed the Multi-Attentive
Part Augmentation (MA-PA) scheme to obtain multi-granularity information with various
attention scales. Multi-granularity information [15,26] has shown promise in incorporating
detailed features in videos. The MA-PA generates multi-granularity attention by recombin-
ing fine attention from CPA. As shown in Figure 2a, merging segmented part information
can alter and diversify semantic meanings (i.e., when the target is small, distinguishing
facial or footwear details at a smaller scale becomes challenging; however, combining these
with parts related to shirts or pants extends semantic information to upper and lower body
regions). This empowers the model to capture robust information across a spectrum of
semantic meanings, from fine-grained to broader details.

Figure 2. Illustration of spatiotemporal multi-granularity. (a) Part-attention-based spatial granularity
synthesizes diverse semantic attention at multiple granular levels by combining sub-part attentions.
(b) Long-/short-term-based temporal granularity comprises granularities with varying sampling
intervals to adopt the context of different sequences for the long and short terms.

To capture temporal relations, we employed the Long-/Short-term Temporal-Augmentation
(LS-TA) module, which obtains multi-granularity temporal information. LS-TA conducts
time sampling at different intervals to harness the overall temporal advantage. Long- and
short-term temporal cues have been utilized for temporal modeling due to their respective
crucial patterns [19,27,28]. As shown in Figure 2b, varying sampling intervals yield distinct
features. For instance, short-term clues reflect the target’s motion patterns, while long-term
cues effectively alleviate occlusion. Consequently, LS-TA yields diverse temporal features,
enabling the model to extract robust features in various situations. After augmenting spatial
and temporal granular cues, we propose the Spatiotemporal Multi-Granularity Aggregation
(ST-MGA) to exploit densely separated spatial and temporal clues simultaneously. ST-MGA
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investigates the relations between multi-granular and part information from both spatial
and temporal cues. Since the granular part features refined in the previous process contain
all the information in spatiotemporal dimensions without interference, ST-MGA can extract
robust and complementary features in any situation.

To summarize, our main contributions are as follows. We designed a consistent part-
attention (CPA) module to provide spatiotemporally consistent and well-aligned part atten-
tion. To exploit the multi-scale granularity, we introduce Multi-Attention Part Augmentation
(MA-PA), which uses the fine part features from CPA to synthesize semantic parts at
multiple scales spatially. We also suggest Long-/Short-term Temporal Augmentation (LS-TA)
for considering relations at various temporal scales. The temporally consistent part in-
formation through CPA allows LS-TA to have the full advantage of temporal knowledge.
Using the spatiotemporal multi-granularity part information, we propose Spatiotemporal
Multi-Granularity Aggregation (ST-MGA), which performs partwise and scalewise aggre-
gation. The ST-MGA method investigates the relations between multi-granular and part
information from both spatial and temporal cues and encourages complementary features
for video person ReID. In the experiments, we validated the effectiveness of our approach
on multiple benchmarks. Our approach outperforms previous state-of-the-art methods on
several video ReID benchmarks and shows more accurate attention parts than the existing
part-based approaches.

2. Related Work
2.1. Video-Based Person ReID

In recent years, video-based person ReID [7,14,15,17–20,26–43] has garnered signif-
icant attention due to the abundant temporal and spatial cues available in videos. The
predominant approach in video ReID is extracting and aggregating dynamic spatiotempo-
ral features. Some methods employ recurrent architectures [5,6,44] for video representation
learning to leverage temporal cues. Refs. [28,45] utilized 3D-convolution [46,47] for spatial–
temporal feature learning. A temporal attention mechanism [8,9,20,48] has also been
proposed for robust temporal feature aggregation. In recent research, to contain richer
temporal and spatial information, many methods [20,39–42] have been proposed. Ref. [39]
presented a statistic attention (SA) block to capture long-range high-order dependencies
of the feature maps. Ref. [40] used hierarchical mining, which mines the characteristics of
pedestrians by referring to the temporal and intra-class knowledge. Ref. [41] proposed
a saliency and granularity mining network to learn the temporally invariant features.
Ref. [42] implemented a two-branch architecture to separately learn the pose feature and
appearance feature and concatenated them together for more discriminative representation.
Ref. [20] removed interference and obtained key pixels and frames by learning attention-
guided interference-removal modules. A simple literature survey of the previous methods
is shown in Table 1.

Recently, refs. [7,26] focused on aggregating diverse partial information, both spatially
and temporally. To obtain partial spatial cues, certain approaches have adopted horizon-
tal partitioning [14–17] or explored diverse attention mechanism [7,11,18,19]. However,
most of these methods cannot fully exploit the potential of spatiotemporal knowledge.
Horizontal partitioning often struggles to maintain information consistency in cases of
temporal misalignment due to an inaccurate detector. The diverse attention mechanisms
have an unbalanced information distribution regarding attention, leading to inefficient
aggregation. To exploit the full advantage of spatiotemporal information, we first propose
a straightforward, yet effective framework, called consistent part attention (CPA), designed
to ensure the consistency of partial information and lead to efficient aggregation in the
spatial and temporal dimensions. Then, we efficiently the aggregate spatiotemporal partial
information using the Spatiotemporal Multi-Granularity Aggregation (ST-MGA) scheme to
extract complementary video features.
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Table 1. Methodology of video-based person re-identification.

Reference Source Methodology

M3D [28] AAAI’19 Proposed multi-scale 3D-convolution layer to refine the temporal features
STA [7] AAAI’19 Proposed spatial–temporal attention approach to fully exploit discriminative parts

GLTR [27] ICCV’19 Proposed global–local temporal representation to exploit multi-scale temporal cues
RGSA [29] AAAI’20 Designed relation-guided spatial-attention module to explore discriminative regions
FGRA [30] AAAI’20 Proposed frame-guided region-aligned model to extract well-aligned part features

MG-RAFA [26] CVPR’20 Suggested attentive feature aggregation with multi-granularity information
PhD [31] CVPR’20 Proposed Pompeiu–Hausdorff distance learning to alleviate the data noise problem

STGCN [14] CVPR’20 Jointly optimized two GCN branches in spatial and temporal dimensions for complementary information
MGH [15] CVPR’20 Designed a multi-granular hypergraph structure to increase representational capacities

TCLNet [18] ECCV’20 Introduced a temporal-saliency-erasing module to focus on diverse part information
AP3D [32] ECCV’20 Proposed appearance-preserving 3D-convolution to align the adjacent features at the pixel level
AFA [33] ECCV’20 Proposed adversarial feature augmentation, which highlights the temporal coherence features

SSN3D [34] AAAI’21 Designed a self-separated network to seek out the same parts in different frames
BiCnet-TKS [19] CVPR’21 Used multiple parallel and diverse attention modules to discover diverse body parts

STMN [35] ICCV’21 Leveraged spatial and temporal memories to refine frame-/sequence-level representations
STRF [36] ICCV’21 Proposed spatiotemporal representation factorization for learning discriminative features
SINet [37] CVPR’22 Designed SINet to enlarge attention regions for consecutive frames gradually

CAVIT [38] ECCV’22 Used a contextual alignment vision transformer for spatiotemporal interaction
SANet [39] TCSVT’22 Introduced the SA block, which can capture long-range and high-order information
HMN [40] TCSVT’22 Designed hierarchical mining network which can mine as many characteristics
SGMN [41] TCSVT’22 Designed a saliency- and granularity-mining network for discovering temporal coherence

BIC+LGCN [42] TCSVT’23 Used a branch architecture to separately learn appearance features and human pose
IRNet-V [20] TCSVT’23 Proposed an interference-removal framework for removing various interferences

2.2. Attention for Person ReID

The attention mechanism, as discussed in [22–25], has been widely used in person
ReID to enhance representation by emphasizing the relevant features and suppressing
irrelevant ones. In image-based ReID, Refs. [49–58] learned attention in terms of the
spatial or channel dimension. In some studies of video-based ReID, temporal attention
is performed to weigh and aggregate frame-level features [5,9,59]. Moreover, Ref. [26]
proposed joint spatial and temporal attention to exploit relations at multiple granularities.
Recently, Refs. [18,19] proposed diverse spatial-attention modules to enhance video repre-
sentation. The diverse attention modules focus on different regions for consecutive frames.
However, they create sub-attention parts separate from the attention of the main frame,
which restricts the number of semantic attention parts and results in each part containing
an inconsistent amount of information. This limitation leads to inefficiencies in aggregating
diverse features because the focus remains on the main attention part. Unlike the above
methods, the proposed CPA provides uniform spatial information and temporally coinci-
dent cues about the diverse attention parts, leading to efficient aggregation in the spatial
and temporal dimensions.

2.3. Spatiotemporal Aggregation

Capturing spatial and temporal information is critical to learning comprehensive rep-
resentations of videos effectively. The most-used approach [4,18,27,32,34] involves using
convolutional neural networks (CNNs) to extract spatial features from individual video
frames and integrating these features with temporal modeling. Various methods, such as
RNNs, 3D-CNNs, GCNs, and attention mechanisms, can be employed for spatiotemporal
aggregation. Ref. [28] introduced a compact 3D convolutional kernel that facilitates multi-
scale temporal feature learning by incorporating long-term temporal modeling and refining
appearance features through spatiotemporal masking. Ref. [19] focused on capturing
visual features by considering the spatial details and long-distance context information,
which are combined using a multi-scale temporal kernel in the 3D convolutional layers.
Ref. [60] proposed graph convolution to directly propagate cross-spacetime and cross-scale
information, capturing high-order spatial–temporal correlations. Ref. [35] addressed the
problem of spatial distractors by memorizing them and suppressing distracting scene
details while using temporal attention patterns to aggregate the frame-level representation.
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Ref. [61] learned spatiotemporal information attention using ConvLSTM [62] to explicitly
capture and aggregate spatiotemporal information in video-based industrial smoke emis-
sion recognition. Ref. [63] explored spatial correlations within each frame to determine the
attention weight of different locations and also considered temporal correlations between
adjacent frames.

3. Methodologies

In this section, we propose Spatiotemporal Multi-Granularity Aggregation (ST-MGA)
methods with the proposed spatiotemporally consistent cues. We introduce the preliminar-
ies in Section 3.1. Then, we describe the proposed consistent part-attention (CPA) module,
which aims to provide spatiotemporally consistent information by using a simple, but effec-
tive attention approach, in Section 3.2. For multi-granular spatial and temporal information,
we introduce Multi-Attention Part Augmentation (MA-PA) and Long-/Short-term Temporal
Augmentation in Section 3.3. Last, we present ST-MGA for spatiotemporally complementary
features in Section 3.4.

3.1. Overview

To improve video-based person ReID, we aimed to extract consistent spatial and
temporal cues, and aggregated this information for complementary feature extraction. The
overall framework of the proposed approach is illustrated in Figure 3. As the input video
clip, we randomly sampled T frames as V = {I1, I2, · · · , IT}. Then, we extracted video
features F ∈ RT×C×H×W through the CNN backbone (e.g., ResNet-50 [64] pretrained on
ImageNet [65]), where H, W, and C represent the height, width, and number of channels,
respectively. To extract the part cues, we employed the CPA module, which ensures that
extracted attentions contain consistent spatiotemporal semantic information. Using CPA,
we obtained Ns sub-attentions, A = {an|n = 1, 2, · · · , Ns}. Subsequently, we extracted
multi-granular parts using the MA-PA method. MA-PA augments multi-granular attention
with varying scales by utilizing attention parts from CPA. Augmented multi-granular
attention was applied to F to generate NP granular features. To consider temporal relations,
we also jointly augmented Nt long- and short-term features using LS-TA by combining
multi-scale temporal cues. We define part features after MA-PA and LS-TA as P̂ and P̃,
respectively. Leveraging Np × Nt multi-granular features, we propose ST-MGA, which
exploits spatial and temporal relations and aggregates different levels of part features.
Finally, after partial and temporal averaging of the aggregated features, we extracted
the complementary video features, Zc ∈ RC. The notations and their corresponding
descriptions are presented in Table 2.

Table 2. Notations and descriptions.

Notations Descriptions

V Input video
T Length of V
F Output feature from backbone
A Set of part attentions from CPA
Ȧ Set of residual part attentions in CPA
P Set of part-attentive features
Â Set of augmented part attentions from MA-PA
P̂ Set of augmented spatial attentive features after MA-PA
a′ Temporal attention value in LS-TA
P̃ Set of augmented multi-granular features after LS-TA

ZF Global averaged feature from backbone
ZT Temporal aggregated feature from T-MGA
ZC Final complementary video feature from S-MGA
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Figure 3. Overview of our framework. We sampled T frames in the video sequence and extracted
features F from the CNN backbone. We first extracted sub-attentions A through the CPA module
with spatiotemporally consistent information. For multiple spatial granularities, we augmented part
attention Â by combing A hierarchically. Subsequently, we extracted the part-attentive features P̂
by applying Â and the max-pooling operation to F. We jointly augmented P̂ to P̃, which contain
long-/short-term features, to consider temporal relations. Leveraging the augmented-spatiotemporal-
part features, we exploited all video cues by aggregating the part features spatially (S-MGA) and
temporally (T-MGA). Last, we extracted the complementary video person ReID features.

3.2. Spatiotemporally Consistent Part Attention

Given the t-th global features Ft ∈ RH×W×C, we first optimized the global attention
through a learnable model. We extracted the global attention value ag

t for the t-th frame
from the global-attention module GA composed as follows:

ag
t = Sigmoid(W2ReLU(W1Ft)), (1)

where W1 ∈ R
C
γ ×C and W2 ∈ R1× C

γ are implemented by 1 × 1 convolution with shrink
ratio γ followed by BN. Subsequently, we can extract global attentive features Pg ∈ RC as:

Pg =
1
T

T

∑
t=1

(P(Ft + ag
t ⊙ Ft)), (2)

where the symbol ⊙ represents elementwise multiplication and P is the global max-pooling
operation. To optimize ag, we applied the batch hard triplet loss [66] and softmax cross-
entropy loss with Pg as the input. The two loss formulas are denoted as Lg

tri and Lg
CE.

After obtaining ag, we optimized the CPA by using ag. As illustrated in Figure 4, CPA
composes Ns part-attention modules PA, which extract Ns different semantic sub-attentions
At = {an

t }
Ns
n=1. Each PA module has the same structure as GA, with different parameters.

To encourage each attention focus to have different semantic information, we define the
following priors: (i) the features applied by each attention must be semantically classifiable
for each other; (ii) the sum of all sub-attention parts should be global attention; (iii) each
sub-attention part should contain a uniform amount of information.

Based on the first prior, we designed a part classifier that classified Ns parts as the
class ID. We first extracted the part-attention features P = {Pn}Ns

n=1 in the same way as Pg
with the corresponding attention. Then, we trained each attentive feature to be classifiable
by setting a different label yn, a one-hot vector for the n-th attentive part. To this end,
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we employed the softmax cross-entropy loss with input Pn. We define this loss formula
as follows:

LPCE = E[−log(p(yn|Pn))], (3)

where p(yn|Pn) is the predicted probability that input Pn belongs to its part label yn. LPCE
encourages each attention to focus on different relevant areas because each attentive feature
must be semantically classifiable despite being applied to the same input features.

Figure 4. Learning framework for the consistent part-attention (CPA) module. The CPA includes
one global-attention module, GA, to extract global attention ag, Ns part-attention modules, PA, and
one part classifier, CP. In CPA, we used ag to encourage each attention part to be optimized based on
predefined priors.

Before applying the second and third priors, we introduced a technique to extract
precise part-attention information. The technique is that sub-attentions only learn the
residual from the background value of the global attention when directly inducing each
attention part. The rationale behind this approach is to focus on the relevant region only,
rather than the background. If background information is not excluded, arbitrary attention
is slightly highlighted on the background region as the interest, making interference
during aggregation. The goal is for each attention part to have equal importance; thus, we
proceeded with learning by extracting only the residuals from the background values of
the global attention. By excluding the background information, attention is directed to the
relevant areas only. We analyze this in Section 4.

As shown in Figure 4, we first define the minimum of ag of the background score
and obtained the residual global attention, ȧg, by removing it. We define the residual part
attentions as Ȧ = {ȧn}Ns

n=1, which are learned by focusing only on the semantic area and
ignoring unnecessary parts (e.g., the background and occlusions). We utilized ȧ and ȧg

to impose constraints on the second and third priors. First, we designed the L1 distance
loss, which sets the sum of all residual part attentions Ȧ equal to ȧg. Additionally, we
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encouraged the spatial sum of each residual part attention to match the spatial sum of ãg

divided by Ns. We combined the first and second loss formulas as follows:

LPA = ||
Ns

∑
n=1

ȧn − ȧg||+
Ns

∑
n=1

||
K

∑
k=1

ȧn
k −

1
Ns

K

∑
k=1

ȧg
k ||, (4)

where K = H × W. LPA simply, but strongly satisfies the prior we predefined. Further-
more, LPA encourages an emphasis on the position of relevant and uniform importance in
each part.

The overall loss function for training CPA is formulated as follows:

LCPA = Lg
tri + Lg

CE + LPA + λLPCE, (5)

where λ is a scaling parameter for weighting LPCE. The attention parts extracted using
CPA represent temporally consistent semantic cues with uniform spatial importance. We
leveraged these attention parts instead of the previous simple horizontal partitions to take
full advantage of this in the video. In subsequent sessions, we will denote Ã as A for
convenience.

3.3. Multi-Granularity Feature Augmentation

To further improve video feature representation, we augmented diverse spatial and
temporal cues at multi-granular levels. With the efficient CPA module to obtain consistent
part attention A, we applied Multi-Attentive Part Augmentation (MA-PA), which uses A as
a sub-attention to generate the parent attention. Following [15], we hierarchically combined
the sub-attention into a granular scale m ∈ {0, 1, 2, · · · , M}. To avoid excessive duplication
of certain parts, we prevented overlapping when combining sub-attentions, as shown
in Figure 2a. The parent granular attention comprises the non-duplicated combination
of child sub-attentions. We define the t-th augmented part attention as Ât = {Am

t |m =
0, 1, 2, · · · , M}, where Âm

t = {âm,n
t |n = 1, 2, · · · , 2m}. âm,n

t represents attention to the n-th
part of the m-th scale, and each scale has 2m part attentions. Subsequently, we obtained
NP = ∑M

m=0 2m attentive features P̂ in each frame as follows:

p̂m,n
t = P(Ft + âm,n

t ⊙ Ft), (6)

where p̂m,n
t /âm,n

t is the n-th part feature/attention with scale m and P is the global max-
pooling operation. As with P̂, each part feature at the same granular level contains uniform
semantic information.

Using augmented spatial attentive features P̂, we employed Long-/Short-term Tem-
poral Augmentation (LS-TA) to augment long- and short-term features jointly. As shown in
Figure 2b, the importance of long- and short-term temporal relations can vary depending
on the sequence context. However, simple temporal processing is often inefficient due to
temporal inconsistencies such as misalignment between adjacent frames [32]. In our study,
we have already addressed these temporal inconsistency problems with the proposed CPA;
therefore, we can proceed with the temporal granularity aggregation without concern.
To this end, we first applied temporal attention from each frame level by predicting the
framewise scores as follows:

p̃t = p̂t + a′t ⊙ p̂t, (7)

a′t = Sigmoid(W ′
2ReLU(W ′

1haypt)), (8)

where a′t is the temporal attention value, W ′
1 ∈ R

C
γ ×C and W ′

2 ∈ R1× C
γ are implemented by

1D-convolution with a kernel size of 1, and γ is the shrink ratio. Then, following [19], we
conducted a temporal-select operation {S t′ : P̂ → P̃t′ ∈ RT×C}, where S is the frame-select
operation of a 1D-temporal convolution [67] with a kernel size of 2t′+ 1 and t′ ∈ 1, 2, · · · , T′
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is the temporal granular scale. We varied t′ to obtain multiple temporal granular features
at different intervals from short to long term. With LS-TA, we generated NT = T × T′

temporal granular features in each part and combined them with the granular part, and a
total of NP × NT spatiotemporal granular cues were stored. We leveraged these granular
cues to exploit the spatiotemporal coverage in the video.

3.4. Spatiotemporal Multi-Granularity Aggregation

To extract optimal video person ReID features, it is important to effectively aggregate
the multi-granular information from the spatial and temporal information. From this
view, we propose a Multi-Granularity-Aggregation (MGA) module that fully exploits the
spatiotemporal cues. The structure of MGA is illustrated in Figure 5. MGA primarily
comprises partwise and scalewise aggregators. The partwise aggregator has M parallel
branches with the same structure, where M is the simplified scale number. For each scale
of the granularity level, we represent N part features as p̃m

i ∈ RN×C, where i = {1, · · · , N}
and N is the simplified number of parts. The partwise relation matrix in the m-th scale
Rm ∈ RN×N can be defined as a dot-product affinity as follows:

Rm
i,j =

exp(φ( p̃m
i )

Tω( p̃m
j )/τ)

∑N
k=1 exp(φ( p̃m

i )
Tω( p̃m

k )/τ)
, (9)

where φ and ω are linear functions and τ is the temperature hyperparameter. With the
relation matrix Rm, we calculated partwise aggregated features as ϕ( p̃)T Rm, where ϕ is a
linear function. Then, the output features were extracted using average pooling of all part
cues, followed by the residual addition. After the partwise aggregator, we concatenated M
outputs, denoted as Y ∈ RM×C.

Figure 5. The architecture of Multi-Granularity Aggregation (MGA). As the input P̃, partwise
aggregation proceeds first at each granular scale. Then, the granular features X are aggregated using
a scale-attention block. Last, MGA extracts complementary video ReID features, Z. Temporally, N
and M are changed to T and T′, respectively.

With input Y, scalewise aggregation proceeds using a scalewise aggregator. To aggre-
gate all granular scale cues on Y, we designed a scale-attention (SA) module that predicts
the scalewise attention score to weigh the aggregation. We normalized the learned attention
scores from the SA module via the softmax function across scale dimensions and obtained
the scale-attention score As ∈ RC×M:

As = SA(Y) = So f tmax(Wθ2(ReLU(Wθ1Y))/τ), (10)

where Wθ1 ∈ R
C
η ×C and Wθ2 ∈ R1× C

η are a fully connected layer with shrink ratio η
and τ is the temperature hyperparameter. Afterward, we extracted complementary video
representation Z ∈ RC using scalewise attention As to aggregate all scale features as follows:
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Z =
M

∑
m=1

As ⊙ Y +A(Y). (11)

We applied MGA separately in the spatial (S-MGA) and temporal (T-MGA) informa-
tion. S-MGA aggregates partwise and scalewise based on spatially attentive-part features,
whereas T-MGA is based on the temporal-part features. As illustrated in Figure 5, T-MGA
has the same structure as S-MGA, with N and M replaced by T and T′, respectively. By
applying T-MGA and S-MGA, we extracted final video features ZC, enhanced by exploiting
the spatiotemporal cues across each scale.

For the reliable learning of each stage, we used three types of features Z′ = {ZF, ZT, ZC},
where ZF is the global features of the backbone, ZT represents the temporally aggregated
features from T-MGA, and ZC denotes the final complementary video features from S-MGA.
The overall joint objective is defined as follows:

Ltotal = ∑
z∈Z′

(Lz
CE + Lz

tri) + LCPA, (12)

where LCE is the softmax cross-entropy loss and Ltri is the batch-hard triplet loss [66]. In
the inference phase, we only used the complementary video person ReID features, ZC.

4. Experiments

In this section, we extensively evaluate the proposed framework in video-based person
ReID scenarios. We conducted comprehensive experiments on three benchmark datasets,
and provide a detailed analysis of the results. Additionally, we included extensive ablation
studies to investigate the effectiveness of our approach further.

4.1. Datasets and Evaluation Metric

We evaluated the proposed framework on three challenging video ReID datasets:
MARS [2], DukeMTMC-VideoReID (Duke-V) [68], and LS-VID [27]. MARS is one of the
large-scale benchmark datasets for video ReID, which contains 17,503 tracklets of 1261 iden-
tities and an additional distractor of 3248 tracklets. There are substantial bounding box
misalignment problems to make it more challenging. Duke-V is a widely used large-scale
video ReID dataset captured by 8 cameras with 4832 tracklets of 1404 identities. LS-VID is
the most recent large-scale benchmark dataset for video ReID. It contains 3772 identities
and 14,943 tracklets captured by 15 cameras. There are many challenging elements, such
as varying illumination and bounding box misalignment, to make it close to a real-world
environment, A summary comparison is illustrated in Table 3. For the evaluation, we used
only the final complemented video ReID features ZC during the inference stage. Moreover,
we assessed the performance using Rank-1, Rank-5, and Rank-10 accuracy for cumulative
matching characteristics (CMCs) and the mean average precision (mAP). Rank-k and the
mAP are the most popular evaluation metrics for person ReID. Rank-k measures the accu-
racy by evaluating whether the correct match appears within the top-k-ranked results. To
this end, for each query, an algorithm will rank all the gallery samples according to their
distances. The mAP evaluates how well the system ranks the retrieved matches for each
query. It considers both precision and recall, providing a comprehensive assessment of the
re-identification system’s performance across different query scenarios.

Table 3. Statistics between different video ReID datasets.

MARS Duke-V LS-VID

# Identities 1261 1404 3772
# of Videos 20,751 4832 14,943
# of Cameras 6 8 15
B-Box DPM manual FRCNN
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4.2. Implementation Details

Following the common practices in ReID [19,27,32,69], we used ResNet-50 [64] trained
by ImageNet classification [65] as the backbone of the proposed model for a fair and
effectiveness validation. Similar to [69,70], we removed the last down-sampling operation
to enrich granularity, resulting in a total down-sampling ratio of 16. We employed a
random sampling strategy to select 8 frames for each video sequence with a stride of
4 frames. Each batch contains 16 identities, each with 4 tracklets. The input frames were
resized to 256 × 128. Random horizontal flip and random erasing [71] were used for data
augmentation. The training process utilizes the Adam [72] optimizer for 150 epochs. The
learning rate was initialized to 3.5 × 10−4 and decayed every 40 epochs using a decay
factor of 0.1. For the hyperparameters of the proposed framework, a greedy search was
conducted about λ and τ to increase reproducibility and transparency. λ is the weight for
LPCE of Equation (5), and τ is the temperature hyperparameter, which indicates sensitivity
to the relation of Equations (9) and (10). As shown in Figure 6, we set λ to 0.1 and τ to
0.05 as the optimal parameters. The shrink ratios γ and η were set to 16 and 4, respectively.
The framework was implemented with PyTorch1.4 [73] on one GeForce RTX 3090 (Nvidia,
Santa Clara, CA, USA).

Figure 6. Sensitivity analysis on hyperparameters for (a) λ and (b) τ in MARS [2].

4.3. Ablation Study
4.3.1. The Influence of CPA

We first evaluated the effect of the proposed CPA module with different components
of loss functions and techniques. To extract spatiotemporally consistent information,
we suggest three priors and approaches with LPCE, LPA, and a residual technique (res).
We conducted only spatial aggregation with three granular-part attentions (1, 2, and
4 partitions). LPCE encourages the attentions from CPA to focus on different sub-areas.
In Table 4, employing LPCE brings 0.3%/0.8% mAP/Rank-1 gains, which is the same as
the part-based approach (in the second row in Table 5). Thus, employing LPCE can only
successfully separate the attention parts and lead to aggregation between separate part
information. LPA performs a comparison with the global attention and spatially unifies the
amount of information in each attention, which allows separate attentions to focus on the
more semantic areas, making all attention parts useful in the aggregation. However, the
comparison with the global attention inevitably includes some scores for the background;
thus, LPA alone does not ensure that the attention parts focus on the fully semantic area.
To address this problem, learning only the residuals excluding the background scores (res)
results in a 1.6%/1.8% mAP/Rank-1 performance increment in the last row of Table 4. The
improvement proves that CPA is effective.
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Table 4. Performance of consistent part-attention (CPA) module in MARS [2] under different loss com-
ponents. Bold denotes best performance.

LPCE LPA res mAP Rank-1 Rank-5 Rank-10

85.2 89.1 86.7 97.5
✓ 85.5 89.9 96.9 97.7
✓ ✓ 85.6 90.1 96.9 97.9
✓ ✓ ✓ 86.8 90.9 97.4 98.0

For a more detailed analysis of CPA, we provide a few contextual comparisons to
visualize how the methods within CPA affect the actual attention map. A comparison of
the attention map visualizations for CPA is presented in Figure 7. Using only LPCE to
learn to be classifiable for each attention (2nd row) results in partitions separated by a
constant amount, like the horizontal partition (1st row). However, it concurrently generates
significant unnecessary background scores. When LPA is added without the residual
technique, although it contains information about the same part with a different situation or
identity, certain specific parts still retain unnecessary information, such as the background
or occlusion area. This observation indicates that some parts have learned to carry attention
scores for irrelevant information from global attention. When the complete CPA framework
is applied, the attention remains consistent across all situations, effectively suppressing
extraneous information. This shows that CPA eliminates occlusions and misalignments,
providing consistent attention regardless of various contexts.

Figure 7. Comparison of attention map visualizations for consistent part-attention (CPA) analysis be-
tween different situations (e.g., general, occlusion, misaligned, and pose variations). When applying
the full CPA, each situation displays a proper and uniformly divided attention map.

Table 5. Comparison between part-based method and consistent part attention (CPA) in MARS [2].
Bold denotes best performance.

Model mAP Rank-1 Rank-5 Rank-10

Baseline 85.2 89.1 86.7 97.5
Part 4 85.5 89.9 96.9 97.7
Part 8 85.6 90.1 96.9 97.9
CPA 2 86.5 90.7 97.0 97.8
CPA 4 86.7 91.4 97.0 97.9
CPA 8 86.7 91.6 97.1 98.1

4.3.2. Comparison of Part-Based and CPA Models

We conducted experiments to compare the proposed CPA framework with the previ-
ous part-based approach. With the same MGA module, we only separated the components
of different partitioning methods and the number of parts. The results are presented in
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Table 5. Compared with the baseline, the CPA model with 4 partitions achieved a 1.5%/2.3%
mAP/Rank-1 increment on MARS. Compared with the part-based approach with the same
4 partitions, the model achieved a 1.2%/1.5% mAP/Rank-1 performance increment. The
model achieved the best performance for 8 partitions of CPA with a 1.5%/2.5% mAP/Rank-
1 increment compared to the baseline. All CPA partitions achieved more remarkable
performance than previous horizontal part-based approaches. This result indicates that
the proposed CPA method is more informative than the simple horizontal partition by
suppressing unnecessary background information and representing only relevant regions.
As shown in Figure 8, depending on the number of parts, each attention part uniformly fo-
cuses on the most salient semantic part (e.g., Figure 8c, each attention focuses on a semantic
part, such as the head, shirt, pants, and shoe). However, if attention parts are separated too
much, each part has very little information, making it difficult to determine the semantic
area, as depicted in the third image in Figure 8d. The superiority of the proposed CPA
approach over the part-based method is observable in the first and last rows in Figure 7.

Figure 8. Visualization of part attention from the consistent part-attention (CPA) module with a
different number of partitions Np.

4.3.3. The Influence of Granularity

To assess the effectiveness of MA-PA and LS-TA as a function of granularity, we com-
pared different combinations of granularity scales in the spatial and temporal dimensions.
Table 6 shows the details. First, following [15], we experimented with spatially scaling parts
by a factor of 2. The Rank-1 performance increases steadily when more detailed spatial
granularities are captured. The scaling factors (i.e., 1, 2, 4, 8) resulted in the highest Rank-1
performance with a 2.8% increment compared to the baseline, showing that the MA-PA
approach is effective even with deep granularity. This indicates that the model is stronger
in feature extraction when semantic information is diversified. Next, we experimented with
different granular factors over temporal cues. We observed that the performance saturates
when using the optimal granular in the spatial (i.e., 1, 2, 4) and temporal (i.e., 1, 3, 5) domains,
respectively. We achieved a performance increment of 2.0%/2.9% mAP/Rank-1. This
indicates that the model supplemented it using useful information when various sampling
information was delivered over time.
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Table 6. Comparison between ‘spatial’ and ‘temporal’ scaling factors under different granularity
parts in MARS [2]. Bold denotes best performance.

Spatial Temporal mAP Rank-1 Rank-5 Rank-10

- - 85.2 89.1 86.7 97.5

1, 2 1 86.5 90.7 97.0 97.8
1, 2, 4 1 86.7 91.1 97.5 98.0
1, 2, 4, 8 1 86.7 91.9 97.2 97.8

1, 2, 4 1, 3 86.8 90.6 97.2 97.9
1, 2, 4 1, 3, 5 87.2 92.0 97.3 98.1
1, 2, 4, 8 1, 3 87.0 90.9 97.4 98.1
1, 2, 4, 8 1, 3, 5 86.9 91.2 97.4 98.0

4.3.4. Effectiveness of ST-MGA

In ST-MGA, we aggregated the partial features in the spatial and temporal domains.
First, the partwise aggregator was used to aggregate across part features, and the scalewise
aggregator combines across the granularity scales. We first compared different components
of the MGA to validate the partwise and scalewise aggregators. As listed in Table 7, we
validate different MGA components on the presence or absence of part-specific aggregators
(‘part’) and scale-specific aggregators (‘scale’). A 0.9%/0.5% mAP/Rank-1 performance
increment occurred when using only the partwise aggregator, and a 0.7%/0.4% mAP/Rank-
1 performance increment occurred when using only the scalewise aggregator. Combining
both improved the 0.9%/1.5% mAP/Rank-1 performance, indicating that the proposed
combination is more effective than simply averaging the partial features (1st row).

Table 7. Performance of ST-MGA in MARS [2] on the presence or absence of partwise aggregator
(‘Part’) and scalewise aggregator (‘Scale’) in MGA architecture. Bold denotes best performance.

Part Scale mAP Rank-1 Rank-5 Rank-10

86.3 90.5 97.1 97.8
✓ 87.2 91.0 97.3 98.1

✓ 87.0 90.9 97.3 98.1
✓ ✓ 87.2 92.0 97.3 98.0

To further validate ST-MGA, we conducted comparative experiments on the influence
of each MGA in the spatial (S-MGA) and temporal (T-MGA) domains. Table 8 presents
the details. Compared with the baseline, S-MGA achieved a 1.7%/1.8% mAP/Rank-1
increment on MARS. Compared to a simple horizontal partition (P-MGA), S-MGA per-
formed better with a 1.0%/0.4% mAP/Rank-1 increment. Combining T-MGA and P-MGA
showed little performance difference compared with T-MGA. The reason may be that
T-MGA does not work well for simple horizontal parts due to problems such as temporal
misalignment. In contrast, when T-MGA and S-MGA were used together, a 1.1%/1.2%
mAP/Rank-1 performance increment occurred compared to only using T-MGA. This result
is because S-MGA only deals with semantic information through CPA, so the effect of
T-MGA is complementary. To verify which order is better between T-MGA and S-MGA,
we made comparisons of the above two different orders. For the Rank-1 metric only,
T-MGA → S-MGA outperformed by 0.5% compared to using S-MGA → T-MGA. As a
result, it was verified that the proposed model was effective by exploring knowledge in the
spatial and temporal domains, regardless of order, and we used T-MGA → S-MGA with
relatively high Rank-1 performance as the optimal model.
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Table 8. Performance of ST-MGA in MARS [2] under different spatial and temporal combinations.
Bold denotes best performance.

Model mAP Rank-1 Rank-5 Rank-10

Baseline 85.2 89.1 86.7 97.5
P-MGA 85.9 90.5 96.5 97.6
S-MGA 86.9 90.9 97.2 98.1
T-MGA 86.1 90.8 97.0 97.8
T-MGA → P-MGA 86.0 90.9 96.9 97.8
S-MGA → T-MGA 87.2 91.5 97.3 98.1
T-MGA → S-MGA 87.2 92.0 97.3 98.0

4.4. Comparison and Visualization
4.4.1. Comparison with the State of the Art

As presented in Table 9, we compared ST-MGA with state-of-the-art methods on
the MARS, Duke-V, and LS-VID datasets. For the MARS [2] dataset, ST-MGA reached
87.2% mAP and 92.0% Rank-1 results, which is the best mAP and Rank-5 accuracy, and
achieved the second-best Rank-1 results. For the Duke-V [68] dataset, the best mAP and
Rank-5 accuracy were achieved at 96.8% and 99.9%, respectively. For the LS-VID [27]
dataset, the results were competitive, with the third-best mAP and Rank-1 at 79.3% and
88.5%, respectively. We noticed that ST-MGA outperformed ST-GCN [14] and MGH [15],
which use a horizontal part-based approach. Specifically, the proposed method also out-
performed TCLNet [18] and BiCnet-TKS [42], which usesimilar diverse attention-based
methods, with an improvement of up to 1.4%/2.2% and 1.2%/1.8% mAP/Rank-1 accu-
racy in MARS, respectively. Further, ST-MGA outperformed several recent models (i.e.,
SINet [37], CAVIT [38], HMN [40], SGMN [41], and BIC+LGCN [42]). In particular, the
proposed method shows higher accuracy than the complex transformer-based method [38],
which has recently attracted attention. The above results verify the effectiveness and
superiority of ST-MGA in video ReID.

Table 9. Quantitative comparison with state-of-the-art methods. Red denotes best performance, and
Blue and green denote the second- and third-best performance, respectively.

Method

MARS Duke-V LS-VID

mAP Rank1 Rank5 mAP Rank-
1

Rank-
5 mAP Rank-

1
Rank-

5

M3D [28] 74.1 84.4 - - - - 40.1 57.7 -
STA [7] 80.8 86.3 95.7 94.9 96.2 99.3 - - -
GLTR [27] 78.5 87.0 95.8 93.7 96.3 99.3 44.3 63.1 77.2
RGSA [29] 84.0 89.4 - 95.8 97.2 - - - -
FGRA [30] 81.2 87.3 96.0 - - - - - -
MG-RAFA [26] 85.8 90.0 86.7 - - - - - -
PhD [31] 85.8 90.0 96.7 - - - - - -
STGCN [14] 83.7 90.0 86.4 95.7 97.3 99.3 - - -
MGH [15] 85.8 90.0 96.7 - - - - - -
TCLNet [18] 85.8 89.8 - 96.2 96.9 - - - -
AP3D [32] 85.1 90.1 - 95.6 96.3 - - -
AFA [33] 82.9 90.2 96.6 95.4 97.2 99.4 - - -
SSN3D [34] 86.2 90.1 96.6 96.3 96.8 98.8 - - -
BiCnet-TKS [19] 86.0 90.2 - 96.1 96.3 - 75.1 84.6 -
STMN [35] 84.5 90.5 - 95.9 97.0 69.2 82.1 -
STRF [36] 86.1 90.3 - 96.4 97.4 - - - -
SINet [37] 86.2 91.0 - - - - 79.6 87.4 -
CAVIT [38] 87.2 90.8 - - - - 79.2 89.2 -
SANet [39] 86.0 91.2 97.1 96.7 97.7 99.9 - - -
HMN [40] 82.6 88.5 96.2 96.1 96.3 - - - -
SGMN [41] 85.4 90.8 - 96.3 96.9 - - - -
BIC+LGCN [42] 86.5 91.1 97.2 96.5 97.1 98.8 - - -
IRNet-V [20] 87.0 92.5 - - - - 80.5 89.4 -

ST-MGA (ours) 87.2 92.0 97.3 96.8 97.6 99.9 79.3 88.5 96.1
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4.4.2. Visualization Analysis

In this section, we visualize some retrieval results from MARS [2] in Figure 9. As can
be observed, it is difficult for the baseline model to accurately distinguish people who have
a similar appearance or interference when there are an inaccurate detection, occlusion, and
uncertain pose. In these cases, the baseline model is not properly focused on the semantic
area, and includes unnecessary information about interferences and noises, resulting in
relatively low Rank-1 accuracy. The ST-MGA, on the other hand, focused on semantic areas
in each part and aggregated them, resulting in high Rank-1 accuracy, even when exposed
to relatively difficult and complex interference and noise.

Moreover, we visualize part attention using the proposed CPA module in Figure 10.
As observed, the attention parts from CPA focus on similar semantic areas, regardless of the
differences between datasets. They each focus on different semantic parts of the face, top,
bottom, and shoe and uniformly provide part cues. In occlusion situations, such as in Duke-
V, we explored only the correct semantic area, excluding the occluded part. In particular,
by focusing on the same semantic part, we can eliminate unnecessary interference in the
temporal domain. This allows ST-MGA to contribute to complementary feature extraction
by minimizing the interference in both the spatial and temporal domains.

Figure 9. The Visualization of ReID retrieval results using the baseline and the proposed ST-MGA on
MARS. For each row, the first sequence is the query, while the five sequences in the middle correspond
to the Rank-1 to Rank-5 of the baseline model, and the rest are the retrieval results of our ST-MGA.
The correct and incorrect matches are marked with green and red bounding boxes, respectively.

Figure 10. Visualization of part attentions from the consistent part-attention (CPA) module on MARS,
LS-VID, and Duke-V. Showing the original image and four separated part attentions for each image
for different datasets.
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5. Conclusions

This paper presents the ST-MGA framework, a novel approach for robust video-based
person ReID. ST-MGA effectively captures consistent spatiotemporal information to mit-
igate interference and enhances feature extraction through comprehensive utilization of
diverse spatiotemporal granular information. To tackle interference arising from spatiotem-
poral inconsistency, we introduce the CPA module, which learns from self-information and
specific priors. The CPA module efficiently separates attention parts to extract features
with spatially uniform amounts and temporally identical semantic information. Addition-
ally, our approach employs multi-granularity feature augmentation to synthesize granular
information encompassing semantic attention parts across various scales. Spatially, MA-PA
extracts various semantic granular information by synthesizing fine attention without
overlapping. Temporally, LS-TA augmented various granular features through various
time sampling intervals. Leveraging granular information with different scales, the MGA
module effectively utilizes spatiotemporal cues to extract complementary features. Within
MGA, we explored the relationships between part/scale information, aggregating them
based on relation scores. The resulting aggregated representations enable complementary
feature extraction by prioritizing pertinent semantic information while filtering out un-
necessary interference or noise. Extensive experiments corroborated the effectiveness and
superiority of our ST-MGA, highlighting its potential for advancing video-based person
ReID research.
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