
Citation: Lu, M.; Zhang, P.

Real-World Video Super-Resolution

with a Degradation-Adaptive Model.

Sensors 2024, 24, 2211. https://

doi.org/10.3390/s24072211

Academic Editor: Marcin Woźniak
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Abstract: Video super-resolution (VSR) remains challenging for real-world applications due to
complex and unknown degradations. Existing methods lack the flexibility to handle video sequences
with different degradation levels, thus failing to reflect real-world scenarios. To address this problem,
we propose a degradation-adaptive video super-resolution network (DAVSR) based on a bidirectional
propagation network. Specifically, we adaptively employ three distinct degradation levels to process
input video sequences, aiming to obtain training pairs that reflect a variety of real-world corrupted
images. We also equip the network with a pre-cleaning module to reduce noise and artifacts in the
low-quality video sequences prior to information propagation. Additionally, compared to previous
flow-based methods, we employ an unsupervised optical flow estimator to acquire a more precise
optical flow to guide inter-frame alignment. Meanwhile, while maintaining network performance,
we streamline the propagation network branches and the structure of the reconstruction module
of the baseline network. Experiments are conducted on datasets with diverse degradation types to
validate the effectiveness of DAVSR. Our method exhibits an average improvement of 0.18 dB over a
recent SOTA approach (DBVSR) in terms of the PSNR metric. Extensive experiments demonstrate the
effectiveness of our network in handling real-world video sequences with different degradation levels.

Keywords: real-world video super-resolution; degradation-adaptive; pre-cleaning; lightweight
network; deep learning

1. Introduction

Sensors play a crucial role in numerous aspects of our everyday lives, finding appli-
cations in diverse fields such as environmental monitoring, traffic management, medical
health, and robotics [1–3]. Although video sensors have been designed to operate efficiently
in environments with a low latency and complexity, they continue to impose restrictions
on the quality of input videos. In order to tackle this challenge, various video processing
techniques have been employed for restoration, including video super-resolution [4–8]
and video denoising [9–11]. These methods strive to improve the overall quality of video
input, ensuring clearer and more refined outputs across different applications.

Video super-resolution (VSR) is an active area of research within the visual domain,
which aims at enhancing the resolution of low-resolution (LR) videos [12]. Due to the
introduction and application of convolution neural network (CNN) methodologies, the de-
velopment of VSR algorithms has been progressing. For instance, in the pioneering work of
SOFVSR [13], the motion-compensated low-resolution input undergoes processing within
an optical flow reconstruction network, ultimately generating high-resolution video frames.
TDAN [7] implicitly integrates motion information into low-quality frames, which can
be extracted without computing the optical flow. BasicVSR uses a bidirectional propa-
gation network, which relies on optical flow alignment and is employed to aggregate
information across the spatio-temporal dimension [6]. However, most of these ignore
complex degradation processes in the real world. They assume an ideal degradation
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process (bicubic downsampling) from HR to LR [14], which leads to performance drops
when processing real-world videos because of mismatched degradation. In contrast, blind
video super-resolution aims to restore low-resolution images suffering from unknown and
complex degradations [15]. The remarkable work of Real-ESRGAN enhances the image
perceptual quality, which introduces complex degradation operations including noise, blur,
and down-sampling [16]. However, its recovery ability is limited by the practical usage.
In particular, it generates better details in severely degraded LR inputs than in mildly
degraded LR inputs.

Considering the aforementioned challenges, we propose a novel video super-resolution
framework (DAVSR), which adaptively restores video sequences with varying degrees of
degradation. Similar to Real-ESRGAN, our goal is to improve the quality of real-world
low-resolution (LR) videos through synthesizing training pairs with a practical degradation
process. Real-ESRGAN solely employs second-order degradation processes to synthe-
size its training data [16], lacking the ability to effectively capture the characteristics of
mildly degraded low-resolution (LR) videos. This motivates us to expand the degrada-
tion model into an adaptive degradation model to restore LR videos degraded to various
degrees. Specifically, we use “first-order” degradation modeling to synthesize training
pairs for mildly degraded LR videos and “high-order” degradation modeling for severely
degraded videos. The “first-order” degradation results from complex combinations of dif-
ferent degradation processes, including camera blur, sensor noise, and video compression.
The “high-order” degradation is represented through the application of multiple repeated
degradation operations.

Recently, Huang et al. [17] showed that temporal redundancy brings adverse effects to
the information propagation in most existing VSR methods. For example, this information
also leads to exaggerated artifacts, arising from the accumulation of errors during propa-
gation. As a result, we used an image pre-cleaning module [18–20] to reduce the adverse
effects of noise and artifacts on propagation. Furthermore, to establish accurate connections
among multiple frames, we have integrated an unsupervised optical flow estimator to
make the most of its potential. Finally, to balance performance and the computational cost,
we simplified the propagation network and reconstruction module of BasicVSR, further
reducing model complexity.

The primary contributions of this work are outlined below:

• We propose a degradation-adaptive process to model more practical degradations,
which notably boosts the model’s capability to enhance the resolution of videos
affected by various degradation levels. It can attain a superior visual performance
compared to prior works, making it more applicable in real-world scenarios.

• Moreover, we present an exquisite image pre-cleaning module for removing degrada-
tions in the input images prior to information propagation. It can reduce the adverse
effects of temporal redundancy in video super-resolution.

• Finally, the introduced unsupervised optical flow estimator mitigates the inaccuracies
in optical flow encountered with previous methods. Furthermore, a new lightweight
reconstruction block is proposed to further reduce the complexity. Many experimental
results validate the superiority of the proposed method over state-of-the-art methods.

The remainder of this paper is structured as follows: Section 2 introduces some
related works on video super-resolution. In Section 3, the proposed DAVSR network is
described in detail. Section 4 demonstrates the experimental results of our method. Finally,
the conclusions and future work are presented in Section 5.

2. Related Work
2.1. Real-World Video Super-Resolution

The goal of video super-resolution is to reconstruct high-resolution video frames from
the low-resolution ones. Most existing VSR methods are trained with predefined degrada-
tions, such as bicubic downsampling. However, they exhibit significant deterioration when
confronted with unknown degradations in practical applications. Meanwhile, scaling from
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VSR to real-world VSR is not trivial due to the difficulty of modeling complex degradations
in the wild. To solve this problem, recent blind super-resolution [14,15,21,22] proposes a
solution where the inputs are assumed to be degraded through a recognized process charac-
terized by unknown parameters. Specifically, they train the network through a predefined
process with unknown parameters. Despite the fact that this network can restore some
degraded videos, it is still insufficient for real-world generalization. Fortunately, Wang et al.
proposed a second-order degradation process to simulate complex degradation, including
blur, noise, compression, and other factors. These methods exhibit an encouraging per-
formance in real-world super-resolution. However, we have observed that they generate
better details in severely degraded low-resolution (LR) inputs compared to those with mild
degradation. In this work, we explore the process of degradation modeling and propose a
novel video super-resolution framework, which adaptively recovers videos with different
levels of degradation.

2.2. Optical Flow Estimation

To explore the temporal dependency between consecutive video frames, numerous
video super-resolution methods based on deep learning estimate optical flows from low-
resolution (LR) frames for motion compensation. The quality of the optical flow directly
influences the efficacy of these methods. With the advancements in deep learning, some
optical flow estimation methods trained by CNN networks achieve better results than
non-learning methods. The model’s generalization ability is constrained by the domain
difference between the optical flow of the synthetic dataset and the real-world dataset.
Therefore, Yu et al. [23] initially proposed an unsupervised method for optical flow learning,
emphasizing brightness constancy and motion smoothness. Wang et al. [24] propose using
an unsupervised optical flow estimator to bypass the necessity for labeled data. Further,
for the problem of large motion and model occlusion, they proposed a new warping module
to improve the performance of the unsupervised optical flow method. Although these
methods [23–25] have become sophisticated, the estimated optical flow accuracy is still
worse than that of SOTA supervised methods. In addition, they have not solved the
difficulty of estimating an accurate optical flow from severely degraded inputs. We enhance
the quality of the low-quality (LQ) flows by employing a knowledge distillation approach
to learn high-quality (HQ) image characteristics.

2.3. Image Pre-Cleaning

The effectiveness of existing video super-resolution algorithms largely relies on lever-
aging temporal information from adjacent frames. Inspired by Huang et al. [17], the intro-
duction of temporal redundancy can negatively impact information propagation. Therefore,
it is crucial to eliminate degradations before propagation which is beneficial for suppressing
artifacts in the outputs. While analogous concepts have been discussed within the realm
of single-image super-resolution (SISR) [18,19,26,27], they have not undergone a thorough
exploration in the realm of VSR. Furthermore, we devise a dynamic pre-cleaning process for
video frames with different levels of degradation. For mildly degraded low-quality video
sequences, we can use a cleaning strategy once to remove redundant temporal information.
Excessive cleaning can result in the loss of valuable information. In particular, the temporal
redundancy introduced by the degradation process in video sequences is mitigated through
the utilization of a pre-cleaning module prior to network propagation. A series of ablation
experiments were conducted to confirm the effectiveness of our pre-cleaning module.

3. Proposed Method

In this section, we propose an unsupervised flow-aligned degradation-adaptive net-
work for real-world video super-resolution, which we have denoted as DAVSR. As depicted
in Figure 1, the proposed method is composed of four modules: the degradation-adaptive
module, the image pre-cleaning module, the feature alignment module, and the reconstruc-
tion module. Let yi represent the input video sequence, which go through a degradation
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module to generate xi, the low-quality video sequence derived from yi. Subsequently, xi
passes through an alignment and reconstruction module to yield the super-resolution video
sequence SRi.

In the following sections, the details of the proposed module are introduced.
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Figure 1. The architecture of the DAVSR network, when the number of input frames N = 3. Degrada-
tion process: aims to generate low-resolution frames.

3.1. The Degradation-Adaptive Model

When the classical degradation model is employed to synthesize training pairs [28], it
becomes challenging to acquire high-quality real-world LR–HR image pairs. The network
model exhibits limitations in learning from image pairs that faithfully represent real-
world scenarios, leading to suboptimal performance in the restoration of corrupted video
sequences under real-world conditions. The classical degradation model incorporates
typical fundamental degradations, such as blur, resize, and compression, and can be
considered as first-order modeling. However, degradation processes in real-world scenarios
are highly diverse, comprising a multitude of steps such as camera imaging systems,
internet transmission, etc. Inspired by Wang et al. [16], it becomes evident that a complex
degradation process cannot be effectively modeled with a first-order approach. A higher-
order modeling process is proposed to simulate the intricate degradation processes found in
the real world, denoted by S. The degradation space S is composed of a series of degradation
process D = [D1, D2, ..., Dn]. Specifically, our method incorporates a range of degradation
operations, including noise (both Poisson noise and Gaussian noise) [29], various forms of
blurring (isotropic, anisotropic, Gaussian filter), resizing (both bicubic and bilinear), and
JPEG and video compression. As in Equation (1), let y stand for the original high-resolution
(HR) frame, where D represents a set of various degradation operations and X corresponds
to the derived low-resolution (LR) frame after undergoing degradation. Depending on the
specific application scenarios, customization of the degradation process is feasible, such as
the inclusion of additional noise or adjustments in degradation factor parameters.

X = Dn(y) = (Dn...D2D1)(y) (1)

In contrast to Real-ESRGAN, we have introduced video compression into the degra-
dation process. This is because video compression implicitly takes into account the spatio-
temporal information of video frames, bringing benefits to the degradation. While the
second-order degradation process utilized in Real-ESRGAN can generate an extensive
degradation space, effectively adapting to videos with diverse degradation levels remains
challenging. Hence, we divide the degradation space S into three levels, represented as
[S1, S2, S3], by configuring the parameters D accordingly. Among these, S3 is generated by
second-order degradation, while S1 and S2 are, respectively, produced by first-order degra-
dation processes with different parameters. As depicted in Figure 2, the S1 degradation
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process is visible. The S3 degradation space corresponds to videos with severe degradation,
the S2 degradation space corresponds to videos with moderate degradation, and the S1
degradation space corresponds to mild degradation. Therefore, our degradation space S
better captures real-world degradation processes.

Video 
CompressionBlur NoiseResize

• Resize
- bicubic
- bilinear

• Gaussian noise
• Poisson noise

• Gaussian filter
- isotropic 
- anisotropic

• Video

Figure 2. The S1 degradation process. The S3 degradation process involves two repeated degrada-
tion processes.

3.2. The Image Pre-Cleaning Module

Inspired by Huang et al. [17], the introduction of temporal redundancy can have
adverse effects on information propagation. Therefore, removing degradations prior to
propagation is crucial, as it aids in suppressing artifacts in the outputs. A simple pre-
cleaning module is proposed to suppress degradation; its effectiveness is shown by the
experimental results. Our pre-cleaning module consists of 15 cascaded residual blocks.
The residual blocks are illustrated in Figure 3.

C
on

v2
d

C
on

v2
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U

Residual Block

Figure 3. The pre-cleaning module consists of 15 cascaded residual blocks.

The degraded images are passed to the pre-cleaning module to remove redundant
temporal information. xi represents the i-th image of the input sequence, x̂i is the clean
image, and PreC is pre-cleaning module, as in Equation (2).

x̂i = PreC(xi) (2)

Given BasicVSR’s remarkable achievements in video super-resolution (VSR) facilitated by
feature propagation, we employ an identical residual block as a pre-cleaning module. Fur-
thermore, to achieve a more lightweight module, we use a streamlined reconstruction mod-
ule while maintaining performance. Subsequently, the clean images are forwarded to the
VSR network for super-resolution. To guide the training of the image pre-cleaning module,
we employ the Charbonnier loss [30] to constrain the output of the pre-cleaning module.

yi = S({x̂i}) (3)

3.3. Unsupervised Optical Flow Estimator

The feature alignment module in VSR primarily adopts optical flow-based alignment
methods. As analyzed in Section 2, the quality of optical flow significantly impacts the per-
formance of these methods. However, previous supervised flow-based methods are limited
by the distinction in the domain between synthetic optical flow and real-world optical flow
datasets. Consequently, we introduce an unsupervised optical flow estimator [31]. Our
purpose is to construct an optical flow network Fl capable of accurately estimating motion
information Fx

12 from low-quality videos {x1, x2}.

Fx
12 = Fl(x1, x2) (4)
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Based on the fact that the motion information displayed is more accurate between high-
quality (HQ) frames {y1, y2}, we employ the optical flow between HQ video frames to guide
the training of the optical flow estimator Fl . Firstly, we train a teacher optical flow estimator
Ft on the high-quality frames. Once this optical flow estimator Ft converges, it is then
frozen and employed as the teacher network in the subsequent phase. Fy

12 represents the
optical flow field for two consecutive frames in the HQ videos. As previously mentioned,

Fy
12 = Ft(y1, y2) (5)

and the optical flow information between successive frames of HQ frames is more precise.
We employ the more precise Fy

12 as a pseudo-label for the flows Fx
12 and introduce the

concept of the distillation loss: the upsampling operation Up ensures that Fx
12 matches the

dimensions of Fy
12 in the VSR task.

Ldis(Fx
12, Fy

12) = ∑ | Fy
12 − Up(Fx

12) | (6)

3.4. Lightweight Reconstruction Module

In the realm of non-blind VSR, BasicVSR exhibits remarkable performance in the
feature alignment module. Inspired by this, to strike a balance between computational
complexity and performance in DAVSR, we aim to make its feature alignment module
lightweight while maintaining an unchanged performance. Neural networks are composed
of blocks, and the feature alignment module within BasicVSR conforms to this architectural
convention. Each block is composed of common components, i.e., 3 × 3 convolution, ReLU,
and shortcut. To maintain a simple structure, our guiding principle is not to introduce
entities unless necessary. ReLU, the activation function employed in the BasicVSR block,
is widely adopted in the domain of computer vision. However, recent state-of-the-art
(SOTA) methods mostly adopt gated linear units (GLUs) as the activation function. Given
their advantages in the low vision field, we contemplated replacing ReLU with a GLU.
The formulation for gated linear units is expressed as follows, where X represents the input
feature map, σ is a non-linear activation function, f and g are linear transformers, and ⊙
indicates element-wise multiplication:

Gated(X, σ, f , g) = f (X)⊙ σ(g(X)) (7)

Although incorporating GLUs into the baseline may enhance the performance, it concur-
rently raises the block complexity, contradicting our original purpose. To solve this, we
optimize the function structure, specifically adopting the GELU:

GELU(x) = xϕ(x) (8)

From Equations (7) and (8), it is evident that the GELU is a specific instance of a
GLU. f, g can be regarded as the same function as input and output and σ is regarded as ϕ.
Drawing a parallel, we hypothesize from a different standpoint that GLUs could be seen as
a generalization of activation functions, potentially serving as a replacement for nonlinear
activation functions. Even if σ is removed, Gated(X) = f (X)⊙ g(X) inherently contains
nonlinearity. Therefore, we believe that directly partitioning the feature maps along the
channel dimension and multiplying them is equivalent to a GLU. This formula is expressed
in Equation (9), offering a simplicity that exceeds the implementation of the GELU.

SimpleGate(X, Y) = X ⊙ Y (9)

Considering the recent popularity of transformer architectures within the realm of com-
puter vision, the attention mechanism has been widely employed in recent SOTA methods.
We incorporate channel attention into the reconstruction block as it enables capturing global
information and exhibits efficient computation. A simplified channel attention mechanism
can be expressed as follows, where X is an input feature map, pool represents the global
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average pooling operation, and mlp is a fully connected layer. The global pooling layer
conducts dimension compression operations, while mlp is used for calculating the channel
attention. In comparison to the block structure employed in BasicVSR, our proposed block
structure is shown in Figure 4. The forthcoming ablation experiments will confirm that,
even with a more lightweight design, our model achieves a comparable performance.

CA(X) = σ(mlp(pool(X))) · X (10)

Conv2d

ReLU

Conv2d

Conv2d

ReLU

Conv2d

Conv2d

SimpleGate

Conv2d

Conv2d

Conv2d

SimpleGate

BasicVSR’s Block Our Block

CA

Figure 4. BasicVSR’s block contains the most common elements. Our reconstruction module replaces
ReLU with SimpleGate, eliminating the presence of a non-linear activation function, and introduces a
channel attention mechanism.

4. Experimental Results

In this section, we compare the proposed method with the state of the art both quan-
titatively and qualitatively, including image models ESRGAN [32], TDAN [7], IKC [33],
and Real-ESGRAN [16] and video models RealVSR [34] and DBVSR [15]. The experimental
details are outlined below.

4.1. Testing Datasets

Existing non-blind VSR methods are assessed on specific synthetic datasets, which
cannot reflect the performance of the real-world video resolution enhancement. The testing
datasets evaluated by some blind super-resolution methods are only specifically designed
synthetic data. For instance, IKC is assessed by synthetic LR images that are blurred and
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downsampled. As far as we know, a comprehensive low-resolution video dataset, encom-
passing noise degradations and diverse blurs, is currently unavailable. For quantitative
evaluation, we synthesized LR–HR pairs by subjecting the validation datasets to three
levels of degradation in vid4 [35] and vimeo-90k [36]. An illustration depicting video
frames with different types of degradations is shown in Figure 5. Specifically, the three
degradation types for vid4 and vimeo-90k include (1) Type I: a first-order degradation
model equipped with blur, noise with Gaussian σ [1, 10], and video compression. It corre-
sponds to slightly corrupted frames. (2) Type II: a first-order degradation model equipped
with blur, noise with Gaussian σ [1, 20], resize, and video compression. It corresponds
to moderately corrupted frames. (3) Type III: a two-order degradation model, a repeated
first-order degradation model, which corresponds to real-world badly corrupted frames.
Although the proposed three-level degradation model is not flawless, it strives to cover
the entire degradation space of the real world. We contend that the performance of testing
datasets can reflect the advantages of our method.

(a) HR (b) Type-Ⅰ (c) Type-Ⅱ (d) Type-Ⅲ

Figure 5. Images with different levels of degradation in vid4 and vimeo-90k.

4.2. Training Details and Quantitative Metric

All experiments were performed within the PyTorch framework, with training facil-
itated by NVIDIA 3090 GPUs. Following previous works [15], we employed the REDS
dataset [37] for training. For efficiency, we employed the lightweight SR network as our
backbone and adaptive degradation processes for simplicity and effectiveness. We adopted
the Adam [38] optimizer to train the network. The training process is divided into two
stages: Initially, we trained the network using the distillation loss of optical flow and output
loss for 300K iterations with a learning rate of 10−4. After training the network, we fine-
tuned the network with the perceptual loss Lperceptual and the adversarial loss Ladversarial on
different levels of degradation for 200K iterations. The generator was assigned a learning
rate of 5× 10−5, while the discriminator was set a learning rate of 10−4. Following common
practice, we utilized the widely adopted the PSNR and SSIM as the evaluation metrics.
The PSNR (peak signal-to-noise ratio, where higher values indicate a better quality) is
commonly used to measure the quality of reconstructed images after compression, typically
represented in dB [39]. The SSIM (structural similarity index, where higher values indicate
a better quality) is commonly employed to measure the similarity between two images,
with its values ranging between 0 and 1 [40].

4.3. Comparison to the State of the Art
4.3.1. Quantitative Comparison

Due to the fact that VSR methods demonstrate superior performance exclusively on
degraded video frames through bicubic interpolation, and despite the increased complexity
in the degradation space of recent blind VSR methods, their performance remains con-
strained when applied to video frames with varying degrees of degradation in real-world
scenarios. To demonstrate the superiority of our degradation-adaptive model, we con-
duct experimental comparisons on datasets with different levels of degradations. Type
III degradation corresponds to videos with severe degradation, type II degradation cor-
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responds to videos with moderate degradation, and type I degradation corresponds to
videos with mild degradation. Moreover, these three types of degraded video frames can
effectively represent a diverse range of damaged video frames encountered in the real
world. Specifically, Table 1 illustrates the restoration performance of various methods under
different degradation types, assessed through the evaluative metrics of the PSNR and SSIM.
As shown in Table 1, current methods demonstrated superior performance solely under
specific degradation conditions, while exhibiting shortcomings in alternative scenarios.
In comparison to other methods, our method exhibits q stable and superior performance
under three types of degraded images. Meanwhile, as shown in Table 2, a comparison
of the inference speed for different networks was conducted. It can be observed that the
size of our model (DAVSR) is 36.8% of DBVSR. However, our network’s inference speed
is slightly faster compared to this. Moreover, the inference speed is five times faster than
RealVSR. Therefore, our network processing speed has an advantage compared to the other
two blind video super-resolution algorithms.

Specifically, ESRGAN and RealVSR exhibit a favorable performance on bicubic-
downsampled datasets, while experiencing a notable decline in performance on other
degraded video frames. For instance, ESRGAN exhibits a performance enhancement of
12% when applied to bicubic-degraded data in comparison to its performance on type I and
type II datasets. Even as a blind VSR method, RealVSR exhibits a 9% performance decline
on datasets of type III. Recent blind super-resolution methods have shown remarkable
restoration effects on severely damaged images. However, a decline in performance is
observed when confronted with ’type I’ and ’type II’ degradation, involving mild noise and
blurring. Our proposed method, DAVSR, maintains a consistent performance on datasets
with different degradation types, exhibiting only a performance decline for type III datasets
compared to Real-ESRGAN.

Table 1. Comparison of different methods’ quantitative performance on vid4 datasets with different
degradations. The optimal results are indicated in bold. ‘Types I’, ‘II’, and ‘III’ are employed to signify
datasets characterized by mild, medium, and severe degradations, respectively. ‘Bicubic’ denotes the
vid4 dataset with bicubic interpolation.

D-Type ESRGAN TDAN IKC RealVSR DBVSR Real-
ESRGAN DAVSR

Bicubic 25.03/0.721 26.16/0.782 24.89/0.712 26.65/0.795 26.87/0.805 26.93/0.809 27.04/0.816
Type-I 20.36/0.522 26.20/0.783 24.72/0.703 26.51/0.784 26.74/0.798 26.84/0.803 26.95/0.810
Type-II 21.98/0.587 25.87/0.770 24.55/0.696 26.44/0.779 26.66/0.796 26.78/0.801 26.83/0.803
Type-III 23.21/0.604 23.14/0.602 23.08/0.597 24.12/0.652 24.27/0.658 25.45/0.751 25.32/0.744

Table 2. Comparison of different methods’ inference speeds with an input size of 180 × 320.

Method TDAN RealVSR DBVSR Real-
ESRGAN DAVSR

Params (M) 1.97 2.7 25.5 16.7 9.4
Runtime (ms) 138 1082 239 149 216

4.3.2. Qualitative Comparison

Figure 6 provides a comparative analysis of the qualitative aspects of different methods
applied to video frames exhibiting various degradations. Specifically, both RealVSR and
Real-ESRGAN fail to generate a satisfactory texture and realistic details on video frames
degraded by bicubic downsampling. From the perspective of the restoration results, there
is no difference between blind video super-resolution and non-blind video super-resolution
networks. This is attributed to the fact that the training data for non-blind super-resolution
underwent degradation through bicubic downsampling, resulting in an excellent perfor-
mance on low-quality video sequences subjected to the same degradation. Conversely,
the Real-ESRGAN method was trained on severely degraded datasets. Consequently,
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when applied to restore mildly damaged video frames, the network tends to amplify noise,
resulting in a simultaneous reduction in the accuracy of detail generation. In contrast, our
DAVSR is trained on datasets with different degradation types. Therefore, it exhibits a
stable performance in restoring video frames with different degrees of degradation. As il-
lustrated in Figure 6(1), our DAVSR achieves restoration closer to the high-resolution (HR)
frames and exhibits richer details. (For instance, the outline of the eaves appears more
distinct and natural, while the font of the store is sharper and more refined.) Similarly, our
network demonstrates a superior restoration performance in video frames with moderate
and severe degradation, e.g., in Figure 6(4), the sharp edge of the building window lines.

Bicubic ESRGAN TDAN IKC

RealVSR DBVSR Real-ESRGAN DAVSR(1) Bicubic

Bicubic ESRGAN TDAN IKC

RealVSR DBVSR Real-ESRGAN DAVSR(2) Type-Ⅰ

(3) Type-Ⅱ

Bicubic ESRGAN TDAN IKC

RealVSR DBVSR Real-ESRGAN DAVSR

Bicubic ESRGAN TDAN IKC

RealVSR DBVSR Real-ESRGAN DAVSR(4) Type-Ⅲ

Figure 6. A qualitative comparison of different methods on video frames with diverse degradations.
The proposed DAVSR demonstrates superior performance in recovering intricate image structures
and achieving enhanced visual quality.

4.4. Effectiveness of Pre-Cleaning Strategy

We conducted experiments to validate the effectiveness of our pre-processing strategy.
Initially, the network was trained with the inclusion of the pre-cleaning model. The de-
graded video frame sequences underwent optical flow alignment and reconstruction di-
rectly without passing through the pre-cleaning module, resulting in temporal redundancy
being introduced by the degradation process. Examples are depicted in Figure 7. The net-
work without a cleaning strategy lacks sufficient suppression of artifacts and noise, resulting
in perceptually impactful noise in the recovered images. This is attributed to the network
without a cleaning strategy, which fails to eliminate redundant temporal information, conse-
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quently amplifying noise and artifacts. Consequently, it yields a comparatively diminished
efficacy in restoration compared to the cleaning network.

Furthermore, we kept the cleaning module and explored the influence of the number
of cleaning iterations on the removal of temporal information. The restoration results for
images with degradation type I are shown in Figure 8. On the one hand, when the cleaning
module is applied only once, the noise is not removed and blurriness persists. On the other
hand, employing the cleaning module four times results in excessive noise removal, leading
to an unrealistic over-smoothing of images. We observe that for mildly degraded images,
applying the cleaning module twice is optimal. As anticipated, for images representing
degradation type III, characterized by severe degradation, the application of the pre-cleaning
module twice is insufficient. Our observations indicate that, in most scenarios, a maximum
of three iterations suffices. We ascertain that for images exhibiting degradation types I and
II, a two-fold application of the pre-processing module will suffice. Conversely, for images
representing degradation type III, a three-fold application of the module is deemed adequate.

Input No-cleaning Ours

Figure 7. Exploring the effectiveness of the pre-cleaning strategy. The cleaning module plays a crucial
role in suppressing artifacts and noise, which is essential for subsequent information propagation in
degraded low-resolution images.

Input Once cleaning

Twice cleaning Four times cleaning

Figure 8. Exploring the impact of the number of pre-cleaning module iterations. For mildly degraded
images, our network achieves optimal results when applying the cleaning strategy twice.

4.5. Ablation Studies
4.5.1. Unsupervised Optical Flow Estimator

To validate the effectiveness of our unsupervised optical flow estimator, we retrained a
supervised optical flow estimator, specifically SpyNet. This is a widely used optical flow net-
work in the state of the art (SOTA), such as BasicVSR. As shown in Table 3, SpyNet trained
with an unsupervised approach can outperform the supervised counterpart by 0.13 dB
on the vid4 dataset. Furthermore, on the vimeo-90k dataset, the performance surpasses
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0.15 dB. The experiments conducted on various datasets suggest that the unsupervised
optical flow alignment method achieves better frame alignment results. Additionally, this
improvement is attributed to the utilization of optical flow between high-quality video
frames to guide the training of our optical flow estimator.

Table 3. A comparative analysis of unsupervised and supervised training approaches for SpyNet
networks in video super-resolution. “Sup” represents supervised training; “Unsup” represents
unsupervised training.

Dataset Vid4 Vimeo-90k

Method Sup Unsup Sup Unsup

PSNR(db) 26.91 27.04 34.78 34.93

SSIM 0.804 0.816 0.929 0.937

4.5.2. Lightweight Reconstruction Module

From BasivVSR’s Block to our Block: Our reconstruction module is composed of
concatenating multiple blocks. A comparison of the reconstruction block between BasicVSR
and our DAVSR is illustrated in Figure 4. Notably, we have introduced a channel attention
mechanism and replaced the ReLU activation with a simplified SimpleGate in our block
structure. Ablation studies were conducted on the vid4 and vimeo-90k datasets. We
employed the training approach mentioned in Section 4.2 for training. The effectiveness of
channel attention and SimpleGate is demonstrated in Table 4. A performance improvement
is observed when either replacing ReLU in the reconstruction module with SimpleGate
(SG) or adding channel attention (CA) to the reconstruction module for both vid4 and
vimeo-90k datasets.

Table 4. The effectiveness of channel attention (CA) and SimpleGate (SG) has been validated. In the
table, Original Block refers to the reconstruction module of BasicVSR.

ReLU → SG CA Vid4
PSNR SSIM

Vimeo-90k
PSNR SSIM

Original Block 26.82/0.803 33.74/0.925

↓ ✓ 26.98/0.812 34.56/0.931
✓ 26.92/0.808 34.37/0.929

Our Block ✓ ✓ 27.04/0.816 34.93/0.937

Number of Blocks: Due to the fact that our reconstruction module is formed by
concatenating multiple blocks, we investigated the effect of the number of blocks in the
reconstruction module on its restoration effectiveness in Table 5. To ensure the lower
bounds of the restoration performance within the reconstruction module, we designed an
experimental setup with the number of blocks ranging from 10 to 30. It is evident from
our experiments that augmenting the number of blocks to 30 does not yield a substantial
enhancement in network performance. On the contrary, the model params increase by 50%.
Clearly, the benefits of increasing the number of blocks are limited. Therefore, we set the
number of blocks in the DAVSR network to 20, reaching the optimal performance for the
reconstruction module.

Table 5. The impact of residual block quantity on the performance of the reconstruction module.

Number
of Blocks

Params (M) Vid4
PSNR SSIM

Vimeo-90k
PSNR SSIM

DAVSR
10 2.82 26.73/0.798 33.25/0.916
20 5.64 27.04/0.816 34.93/0.937
30 8.46 27.05/0.816 35.05/0.938
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5. Conclusions

In this paper, we propose degradation-adaptive blind video super-resolution, namely
DVASR, to handle various types of degraded video frames in the real world. In order to
capture various degradation processes in the real world, we propose a degradation-adaptive
model for modeling. The proposed DAVSR exhibits favorable restoration when applied
to video frames with different levels of degradation. Moreover, we utilize a pre-cleaning
strategy to mitigate the adverse effects stemming from temporal redundancy between
video frames. Meanwhile, we employ a lightweight reconstruction module to balance
the computational complexity and the performance of DAVSR. Extensive experiments on
several benchmark datasets achieve a state-of-the-art SR performance.

Due to the significantly higher computational complexity of super-resolution networks
compared to image classification and object detection networks, in the future, we will
explore more lightweight architectures and real-time super-resolution networks.
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