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Abstract: Wearable sensors could be beneficial for the continuous quantification of upper limb motor
symptoms in people with Parkinson’s disease (PD). This work evaluates the use of two inertial
measurement units combined with supervised machine learning models to classify and predict a
subset of MDS-UPDRS III subitems in PD. We attached the two compact wearable sensors on the
dorsal part of each hand of 33 people with PD and 12 controls. Each participant performed six
clinical movement tasks in parallel with an assessment of the MDS-UPDRS III. Random forest (RF)
models were trained on the sensor data and motor scores. An overall accuracy of 94% was achieved
in classifying the movement tasks. When employed for classifying the motor scores, the averaged
area under the receiver operating characteristic values ranged from 68% to 92%. Motor scores were
additionally predicted using an RF regression model. In a comparative analysis, trained support
vector machine models outperformed the RF models for specific tasks. Furthermore, our results
surpass the literature in certain cases. The methods developed in this work serve as a base for
future studies, where home-based assessments of pharmacological effects on motor function could
complement regular clinical assessments.

Keywords: Parkinson’s disease; motor symptoms; MDS-UPDRS; wearable devices; inertial measurement
unit; machine learning; random forest

1. Introduction

Parkinson’s disease (PD) is currently the fastest-growing neurodegenerative disease in
the world, clinically defined by a typical triad of motor symptoms, including bradykinesia,
extrapyramidal rigidity, and/or rest tremor. Currently, over 10 million people worldwide
are affected by PD, and this number is expected to increase substantially to over 17 million
people by 2040 [1,2]. To date, however, no disease-modifying interventions have been
identified, and therapy is limited to symptomatic and supportive treatment. Moreover, the
long-term use of dopaminergic treatment, in parallel with disease progression, eventually
leads to motor fluctuations, imposing a significant burden on patients and caregivers in
terms of quality of life [3–5].

Assessing the severity of symptoms and progression in PD is crucial for managing
the disease effectively [6,7]. Typically, symptoms are scored by a trained physician em-
ploying the Movement Disorder Society (MDS) Unified Parkinson’s Disease Rating Scale
(UPDRS) [8]. Part III of the MDS-UPDRS serves as the most common standard assessment
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tool for quantifying motor symptoms in PD. The scale consists of 18 items rating rigidity,
bradykinesia, tremor, speech, posture, gait, and balance. Each item is rated on a 5-point
scale with separate scores assigned to each side of the body. The scale corresponds as
follows—0 for no symptoms, 1 for slight, 2 for mild, 3 for moderate, and 4 for severe
impairment. MDS-UPDRS III requires patients to perform various activities and movement
tasks to assess symptoms such as tremor and bradykinesia [8–10]. While standardised
training is offered for this scale, healthcare practitioners may still vary in their scoring
of patients, resulting in intra-rater and inter-rater variability, which may impact on the
reliability and reproducibility [11,12]. Furthermore, this qualitative method is labour- and
resource-intensive when scoring each symptom by an expert in movement disorders [12,13].

The use of wearable technology to characterise clinical features has the potential to
significantly improve the reliability, reproducibility, and accessibility of motor symptom
assessment in PD [14–17]. Passive monitoring systems, for example, could autonomously
assess motor symptoms through regular task-specific movements at home to reduce bias
in subjective scoring [18–20]. Additionally, those systems could decrease the frequency
of in-person clinic visits while offering a more comprehensive insight into symptoms
throughout the day, thereby optimising treatment strategies and the management of PD
symptoms [7,16,21]. Objective methods proposed to assess bradykinesia and tremor of-
ten employ accelerometer and gyroscope sensors [22–25], mobile devices (e.g., smart-
phones/watches) [26,27], and video-based motion capture systems [28–31]. In a recent
study, finger tapping (MDS-UPDRS item 3.4) was assessed in 37 people with PD using
index finger accelerometry [19]. An open-source tool was then developed for the automated
assessment of bradykinesia. The tool detected tapping blocks in over 94% of cases and
predicted motor scores correlated positively with expert ratings in over 70% of cases [19].
In another PD study, motor scores for hand resting tremor (MDS-UPDRS item 3.17) were
predicted with 85.5% accuracy using a custom-built wearable device assembled with an ac-
celerometer and a gyroscope [32]. Aside from inertial sensors, smartphone-based methods
for capturing finger-tapping tasks have shown reliable correlations with MDS-UPDRS mo-
tor scores [26,33]. Similarly, video-based recordings of movements are useful for predicting
expert-rated MDS-UPDRS motor scores [34,35]. Their reliance on patient self-recording
and lack of external validation, however, limits comparability and reproducibility [34].

One of the key challenges, apart from collecting sufficient labelled data to model the
manifestations of motor symptoms [36], is to objectively assess motor symptoms based on
all relevant clinical movement tasks in people with PD. In addition, achieving this with a
minimal number of unobtrusive wearable sensors for future home monitoring solutions
aims to address the practical challenges associated with resource-intensive clinical assess-
ments [13,18]. This could ease time constraints in clinical settings and reduce healthcare
costs. To move towards this goal, the focus of this feasibility study is to develop an objective
method for assessing motor scores (MDS-UPDRS III scores) on all relevant arm and hand
movement tasks (MDS-UPDRS III tasks). Each hand was equipped with a single, compact,
wearable inertial measurement unit (IMU) sensor consisting of a 3-axis accelerometer, a
3-axis gyroscope, and a 3-axis magnetometer. Despite the accessibility and relatively low
cost of wearable motion sensors, to the best of our knowledge, there are no published
methods for classifying and predicting motor scores across six clinically structured move-
ment tasks using a single wearable motion sensor attached to each hand. Therefore, we
assessed the performance of two compact wearable IMUs in combination with supervised
machine learning (ML) models for classifying and predicting MDS-UPDRS III scores for
six MDS-UPDRS III tasks.

2. Materials and Methods
2.1. Study Population and Study Design

Clinical and sensor-based data were collected during the regular study visits of partic-
ipants in the Luxembourg Parkinson’s study. This nationwide, monocentric, observational,
and prospective cohort study has been recruiting and is following up patients with PD, all
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other forms of atypical parkinsonism, and controls longitudinally. To this moment, more
than 1600 participants have been recruited, comprising more than 800 patients with PD or
atypical parkinsonism and more than 800 controls. Controls were defined as individuals
above 18 years without signs of a neurodegenerative disorder, active cancer, or pregnancy.
The detailed recruitment strategy, diagnostic criteria, and inclusion/exclusion criteria of
the Luxembourg Parkinson’s study were described extensively in Hipp et al., 2018 [37].
For this study, a population of 33 patients with PD according to the UK PD Brain Bank
Criteria [38] and 12 controls were selected based on their willingness to participate in the
sensor assessment during regular sequential visits. No additional exclusion and inclusion
criteria were applied. The group of 33 PD patients covers all motor-symptom-related sub-
types, including 14 mixed subtypes, 13 kinetic-rigid subtypes, and 2 tremor-predominant
subtypes. In four patients, the subtypes were not specified. Ethical approval for data
and sample collection and written informed consent were obtained from all participants.
Demographic and clinical characteristics of both study groups are shown in Table 1.

Table 1. Demographic and clinical characteristics of study participants.

PD (n = 33) Controls (n = 12)

Age at assessment (years, mean ± SD) 69.8 ± 8.7 60.8 ± 9.8
Sex (numbers male/female) 29/4 1/11
Time since diagnosis (years mean ± SD) 5.2 ± 4.6 Not applicable
Hoehn and Yahr Scale (mean ± SD) * 2.2 ± 0.7 0
MDS-UPDRS I total score (mean ± SD) 9.1 ± 4.6 7.9 ± 7.3
MDS-UPDRS II total score (mean ± SD) 10.5 ± 7.1 1.3 ± 2.8
MDS-UPDRS III total score (mean ± SD) * 40.9 ± 12.7 4.8 ± 3.5
MDS-UPDRS IV total score (mean ± SD) 1.5 ± 2.8 0
Total sum of MDS-UPDRS I-IV (mean ± SD) 61.9 ± 19.0 14.1 ± 10.9
Montreal Cognitive Assessment (mean ± SD) * 24.1 ± 3.5 27 ± 2.8
Levodopa Equivalent Daily Dose (mean ± SD) 499.1 ± 459.4 Not applicable
Time since last L-DOPA intake (minutes mean ± SD) 155.9 ± 113.1 Not applicable

* Assessment in medication ON state for PD.

Participants were seated in a chair with a backrest (and no armrests) and were asked
to perform six MDS-UPDRS III tasks related to arm and hand movements (data collection
protocol in Supplementary Material, Table S1). The descriptions of the visually guided
movements are shown in Table 2, including Arm at Rest (AR), Outstretched Arm (OA),
Finger to Nose (FN), Hand Movement (HM), Pronation/Supination (PS), and Finger Tap-
ping (FT). Patients performed the tasks as quickly as possible with fingers spread as wide
as possible. Each movement task was performed for at least 10 s with two repetitions,
and motor symptoms were assessed by the study physician in the medication ON condi-
tion. AR, OA, and FN were additionally repeated by performing a dual task where the
MDS-UPDRS III task was combined with a subtracting numbers aloud task. The dual task
served to amplify the underlying tremor, if present, in the task AR, OA, and FN with the
corresponding rating by the study physician. All rating conditions were compliant with
the MDS-UPDRS III instructions.

Table 2. Subset of MDS-UPDRS III tasks performed by participants during the visits of the assessment
of PD symptoms.

Movement Label Description of the Movement MDS-UPDRS Reference

Task 1 AR Forearms/hands rest on lap 3.17.1 and 3.17.2
Task 2 OA Outstretched arms and hands with spread fingers 3.15.1 and 3.15.2
Task 3 FN * Nose touching via index finger 3.16.1 and 3.16.2
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Table 2. Cont.

Movement Label Description of the Movement MDS-UPDRS Reference

Task 4 HM Opening and closing the palm of the hands 3.5.1 and 3.5.2
Task 5 PS Arm supination and pronation (aligned with hands) 3.6.1 and 3.6.2
Task 6 FT Tapping between thumb and index finger 3.4.1 and 3.4.2

* This task begins and ends with forearms and hands resting on the lap.

2.2. Sensor Setup

Following the aim of this feasibility study to develop an objective method for scoring
motor symptoms, a compact wearable sensor prototype (miPod v1, Portabiles HealthCare
Technologies GmbH, Erlangen, Germany) was attached to each participant’s hand using
small strips of adhesive tape. The hardware platform of the sensor device contains various
electronic components and is assembled with a 9-axis IMU consisting of a 3-axis accelerom-
eter (16-bit, setting ±8 G), 3-axis gyroscope (16-bit, setting ±2000 degrees per second),
and 3-axis magnetometer (13-bit, ±1200 µT). miPod weighs about 12 g, and its polymer
case has a size of approximately (35 × 25 × 8) mm in length, width, and thickness [39].
The sensor devices were placed in the centre of the back of each hand to measure the
participants’ movements during the execution of the tasks AR, OA, FN, HM, and PS. To
measure participants’ movement during the FT task, the wearable IMUs were then attached
to the intermediate phalanges of each index finger. Placing the sensors on the dorsal part
of each hand has been proven to be effective for training symptom detection models for
bradykinesia and tremor in PD [36].

2.3. Data Processing

IMU sensor data were recorded at a frequency of 200 Hz, read out from the internal
sensor memory (1 GB NAND flash) via Micro USB cable, and analysed offline with custom-
written software in PythonTM (Version 3.8.8, Python Software Foundation, Wilmington,
DE, USA) and MATLABTM (R2022a, MathWorks Inc., Natick, MA, USA). The data were
downsampled to 50 Hz to reduce data size and improve computational efficiency. This
sampling rate has proven to be suitable for analysing human body movements measured
by accelerometers [40]. A visual inspection of the spectral components of the measured arm
and hand movements revealed that those movements contained frequency components
below 20 Hz. Dimensionality was reduced by calculating the Euclidean norm (signal
magnitude) for each sensor type (i.e., accelerometer, gyroscope, and magnetometer). A
digital Butterworth lowpass filter (3-pole IIR, 10 ms delay) with a cut-off frequency of 20 Hz
was then applied to each time series data of the 9-axis IMU.

Each movement task was recorded for approximately 10 s. An epoch of 5 s was
then manually isolated from each recording (centre position) to remove unstable signal
components on both sides. Next, each epoch was divided into two equal parts to capture
movement variability within each segment, as bradykinesia typically manifests as a pro-
gressive reduction in speed and amplitude of repetitive movements toward the end of a
clinical task [41].

2.4. Feature Extraction

Time and frequency domain features were computed for each data segment to train
supervised ML models for classification and prediction tasks. The defined set of features
corresponds to a recently published study with similar objectives [13]. Welch’s power
spectral density was estimated to compute frequency domain features within a range of 0
to 10 Hz. Table 3 shows the set of features that were computed for each half-segment. All
features were standardised by removing their mean and scaling them to the unit variance
(z-score).
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Table 3. Features categorisation for ML models.

Feature Category Features Number of Tri-Axial
Features

Number of Magnitude *
Features

Time Root mean square, range, mean,
variance, skew, kurtosis 18 6

Frequency

Dominant frequency, relative
magnitude, moments of power spectral
density (mean, standard deviation,
skew, kurtosis)

18 6

Entropy Sample entropy 3 1
Total for each sensor type 39 13

* The features were derived from the magnitude signals (Euclidean norm) of each sensor type within the IMU.

2.5. Machine Learning Models

Random forest (RF) ML models were developed and trained on the magnitude features
(Table 3) of each sensor type for both classification and regression tasks. The model type
was chosen due to its ability to handle imbalanced datasets and its advantages, such as high
performance, a low number of hyperparameters, and the ability to reduce overfitting [42].
Support vector machine (SVM) models were implemented for comparative analysis, and
both RF and SVM models were additionally trained on all axis features of the IMU. These
results can be found in Supplementary Tables S2–S6 and Figures S5 and S6, including an
overview of all trained models in Table S8.

Four RF models were developed for certain purposes. Each movement task was
treated as a distinct class in each of the models. The first model aimed to distinguish
between the movement tasks, as outlined in Table 2. In contrast to this multiclass approach,
the second model was designed as a binary classifier to differentiate between patients and
controls with a motor score of zero and patients with a non-zero motor score. Similar
to the first approach, the third model also employed a multiclass solution with a focus
on classifying patients’ non-zero motor scores. Unlike the previous three models, the
fourth model used an RF regression technique. This model was built to predict individual
non-zero motor scores.

To optimise the performance of the RF models, a grid search approach was employed.
A range of possible parameters was manually specified for hyperparameter tuning. The
hyperparameters considered for tuning included the number of estimators (trees, 10:5:150),
the maximum depth of trees (5, 16, 28, 40), the minimum samples required to split an
internal node (2, 5, 10), and the minimum samples required for leaf nodes (1, 2, 4). Boot-
strapping was enabled. Selected hyperparameters for both model types can be found in the
Supplementary Section hyperparameters and in Table S7. To assess the performance of the
RF models with dependable hyperparameters, repeated stratified k-fold cross-validation
was employed, with fours fold repeated five times. This method ensures that each fold’s
class distribution is representative of the entire dataset, mitigating a potential bias intro-
duced by imbalanced classes.

As a performance metric, receiver operating characteristic (ROC) curves were com-
puted for each classification model, and the averaged area under the ROC (AUROC) values
were calculated to provide an overview of overall performance. Note that a balanced
dataset was used for classifying MDS-UPDRS III tasks, and the overall accuracy was com-
puted as a performance metric. Boxplots were employed to visualise the prediction of
individual MDS-UPDRS III scores.

3. Results

A total of 540 measurements were performed on 45 participants. Although each
participant performed the six clinically structured tasks on each hand (Table 2), 32 tasks
spread across 6 participants (1 control and 5 PD) were not accurately recorded due to
sensor-related issues. Corresponding records from these contaminated tasks were removed.
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This resulted in an imbalanced dataset of 508 tasks for 45 participants for motor score
classification and prediction. The classification of the movement tasks was performed
on a balanced dataset (subset) consisting of 28 people with PD and 11 controls. The
39 participants represent a complete dataset in which six movement tasks were accurately
recorded on each hand.

The frequency of motor score ratings for each MDS-UPDRS III task is illustrated for all
participants in Figure 1. Movement tasks AR, OA, and FN do not possess ratings of motor
score 4, while OA and FN do not possess ratings of motor score 3. Given the significant
imbalance in the dataset, certain motor score categories were excluded for classification
purposes. Specifically, motor scores 2 and 3 in AR, motor score 2 in OA, motor score 4 in
HM, and motor score 4 in FT were omitted from the analysis to ensure a more balanced
and manageable dataset.
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Figure 1. Frequency of motor score ratings for each movement task. The number of motor score
{0,1,2,3,4} ratings of 45 participants were for Arm at Rest (AR) {60,21,2,1,0}, Outstretched Arm
(OA) {35,47,2,0,0}, Finger to Nose (FN) {48,31,5,0,0}, Hand Movement (HM) {14,25,35,9,1}, Prona-
tion/Supination (PS) {18,17,21,23,5}, and Finger Tapping (FT) {13,21,38,14,2}. Note that the data set
only contains controls with motor score {0}.

The relationship between motor symptom ratings and MDS-UPDRS III tasks in the
context of patient-specific variability is visualised in the scatter plot matrix in Figure 2. The
diagonal elements show individual histograms for each MDS-UPDRS III task, illustrating
the frequency distribution of motor symptom ratings specific to each task. In contrast,
the off-diagonal elements show scatter plots highlighting the correlations between motor
score ratings associated with different movements for each patient. Correlations emerged
between certain subsets of patients, for example, for the HM and FT tasks, indicating that
these two movements may share common symptom characteristics.

3.1. Classification of MDS-UPDRS III Tasks

The performance of the RF model in classifying movement tasks is shown in the
confusion matrix in Table 4. The model correctly classified the six MDS-UPDRS III tasks
with an overall accuracy of 94.2%. An overall accuracy of 90.3% was achieved with the
SVM model (Supplementary Table S2).
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Figure 2. Correlations between movement tasks and motor symptom ratings. To illustrate how
patient ratings relate to different movements, the average rating was calculated separately for each
patient and each movement, resulting in intermediate values in this scatter plot matrix. The plot
visualises the variability in symptom expression, and patients may experience different levels of
severity within each task, as reflected in the MDS-UPDRS III subitems.

Table 4. Performance of a random forest model trained on all magnitude features within the IMU for
MDS-UPDRS III tasks classification.

Tasks
Predicted Class True Positive and

Negative RateAR OA FN HM PS FT

True class

AR 68 9 0 1 0 0 0.872

OA 5 73 0 0 0 0 0.936

FN 1 0 75 0 1 1 0.962

HM 0 0 1 75 1 1 0.962

PS 0 0 1 2 75 0 0.962

FT 0 0 1 1 1 75 0.962

Positive and negative
predictive value 0.919 0.890 0.962 0.949 0.962 0.974 Accuracy *

0.942

* Multiclass classification performance: Sensitivity 0.942, Specificity 0.988, Precision 0.943, F1-Score 0.942,
Matthews Correlation Coefficient 0.930, and Cohen’s Kappa 0.931. Operating points on ROC curves with
AUROC values: 0.982 (AR), 0.989 (OA), 0.997 (FN), 0.997 (HM), 0.997 (PS), and 0.998 (FT).

3.2. Classification of MDS-UPDRS III Scores

To assess the classification performance of each RF model, the averaged AUROC
values with corresponding 95% confidence intervals (CIs) were calculated.
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For binary classification, Table 5 shows the averaged AUROC values for distinguishing
between patients and controls with a motor score of zero {0} and patients with a non-zero
motor score {1,2,3,4}. Averaged AUROC values with the best result in each MDS-UPDRS
III task (marked in bold in each task column, Table 5) ranged from 72% to 92%.

Table 5. Performance of random forest models trained on the magnitude features of each sensor type.
Averaged AUROC values (with 95% CIs) for distinguishing between patients and controls with a
motor score of zero and patients with a non-zero motor score.

Sensor *
MDS-UPDRS III Tasks **

AR OA FN HM PS FT

Accelerometer 0.65
(0.59–0.73)

0.75
(0.68–0.82)

0.66
(0.59–0.74)

0.84
(0.76–0.92)

0.51
(0.40–0.62)

0.67
(0.57–0.77)

Gyroscope 0.71
(0.64–0.78)

0.77
(0.71–0.85)

0.70
(0.63–0.77)

0.72
(0.63–0.83)

0.82
(0.74–0.91)

0.77
(0.68–0.86)

Magnetometer 0.57
(0.50–0.65)

0.64
(0.56–0.72)

0.63
(0.55–0.71)

0.87
(0.80–0.95)

0.51
(0.41–0.63)

0.73
(0.64–0.83)

Accel + Gyro 0.69
(0.62–0.76)

0.77
(0.71–0.85)

0.73
(0.66–0.80)

0.86
(0.79–0.94)

0.85
(0.77–0.93)

0.71
(0.62–0.81)

Accel + Magn 0.69
(0.62–0.76)

0.75
(0.68–0.82)

0.68
(0.61–0.76)

0.90
(0.85–0.97)

0.51
(0.41–0.63)

0.73
(0.64–0.83)

Gyro + Magn 0.70
(0.64–0.77)

0.77
(0.71–0.84)

0.68
(0.62–0.76)

0.90
(0.84–0.97)

0.80
(0.72–0.89)

0.72
(0.63–0.82)

Accel + Gyro + Magn 0.72
(0.65–0.79)

0.78
(0.71–0.85)

0.72
(0.65–0.79)

0.92
(0.86–0.98)

0.82
(0.74–0.90)

0.75
(0.66–0.84)

* Performance for each sensor type and all sensor combinations. Binary classification with motor scores {0} vs. {1}
for AR and OA tasks, {0} vs. {1,2,3} for FN, HM, and FT tasks, and {0} vs. {1,2,2,3,4} for PS tasks. ** AUROC values
with the best result in each column are highlighted in bold.

The SVM models outperformed the RF models in Table 5 for the tasks listed in
Supplementary Table S3 (SVM models trained on sensor magnitude features) for PS (89%);
Table S4 (RF models trained on sensor axis features) for AR (74%), HM (93%), and FT (82%);
and Table S6 (SVM models trained on sensor axis features) for HM (94%) and FT (90%).
The results in Table 5 are comparable to those observed in the literature and occasionally
surpass them [13,19,32,36]. A detailed description of how our results surpass those in the
literature can be found in the Discussion section and in Table S9 (Supplementary Material).
Moreover, the classification performance varies depending on both the type of movement
and the sensor employed, either individually or in combination. For example, gyroscope
data alone are critical for the HM tasks; however, they offer highly relevant information
for PS. In addition to the results in Table 5, four ROC curves for the two sensor configu-
rations commonly found in IMUs are shown in Figure 3. The ROC curves of AR and OA
are not depicted in the figure as they do not involve active MDS-UPDRS III tasks. For
instance, in AR, both forearms and hands are resting on the lap, and in OA, both arms
and hands are outstretched (posture). FN and FT in Figure 3 show comparable AUROC
performance for both sensor combinations. Conversely, the HM and PS tasks displayed a
modest enhancement in classification accuracy when the three sensors were combined.

For multiclass classification, Table 6 shows the averaged AUROC values for classifying
non-zero motor scores {1,2,3,4} in patients with PD. Averaged AUROC values with the best
result in each MDS-UPDRS III task (marked in bold in each task column, Table 6) ranged
from 68% to 85%. Performances in Table 6 decreased compared to the binary classification
in Table 5, reflecting challenges in the multiclass classification task. The SVM models
outperformed the RF models for the tasks listed in Supplementary Table S5 (RF models
trained on sensor axis features) with HM (77%) and PS (79%).
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Table 6. Performance of random forest models trained on the magnitude features of each sensor type.
Averaged AUROC values (with 95% CIs) for classifying patients with non-zero motor scores.

Sensor *
MDS-UPDRS III Tasks **

FN HM PS FT

Accelerometer 0.85
(0.79–0.91)

0.56
(0.45–0.67)

0.69
(0.59–0.79)

0.61
(0.50–0.72)

Gyroscope 0.76
(0.69–0.83)

0.55
(0.44–0.66)

0.73
(0.63–0.83)

0.65
(0.55–0.75)

Magnetometer 0.52
(0.44–0.60)

0.68
(0.58–0.78)

0.54
(0.43–0.65)

0.70
(0.60–0.80)

Accel + Gyro 0.83
(0.77–0.89)

0.58
(0.47–0.69)

0.70
(0.60–0.80)

0.66
(0.56–0.76)

Accel + Magn 0.82
(0.76–0.88)

0.62
(0.51–0.73)

0.66
(0.56–0.76)

0.70
(0.60–0.80)
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Table 6. Cont.

Sensor *
MDS-UPDRS III Tasks **

FN HM PS FT

Gyro + Magn 0.66
(0.58–0.74)

0.61
(0.50–0.72)

0.72
(0.62–0.82)

0.66
(0.56–0.76)

Accel + Gyro + Magn 0.81
(0.75–0.87)

0.61
(0.50–0.72)

0.73
(0.63–0.83)

0.71
(0.61–0.81)

* Performance for each sensor type and all sensor combinations. Multiclass classification with motor scores {1,2,3}
for FN, HM, and FT tasks, and {1,2,2,3,4} for PS tasks. ** AUROC values with the best result in each column are
highlighted in bold.

3.3. Prediction of MDS-UPDRS III Scores

RF regression models were developed to predict the individual motor scores {1,2,3,4}
of the patients with PD for two sensor configurations commonly found in IMUs. Figure 4
shows the results, wherein the legends illustrate the motor score ratings given by the study
physician. Those are referred to as ‘ground truth’ (GT) labels. The continuous numeric
values on the vertical axis of each graph in the figure display the prediction outcomes of an
RF regression model. Boxplots illustrate the accuracy, variability, and overlap of predictions
for each motor score across MDS-UPDRS III tasks. Both sensor combinations in each graph,
as shown in Figure 4, demonstrate comparable prediction performance. It should be noted
that the predicted motor scores closest to the GT scores are those that occur most frequently
in the dataset for each MDS-UPDRS III task (Figure 1).
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Random forest regression models were trained on the magnitude features derived
from the data of the two sensor configurations commonly found in IMUs offered by manu-
facturers. The box plots illustrate the accuracy, variability, and overlap of the predictions
for each motor score across the MDS-UPDRS III tasks. Motor scores closest to the ‘ground
truth’ (GT) score were the most frequent ones in each MDS-UPDRS III task.

4. Discussion
4.1. Overview of Results

In this feasibility study, a compact wearable IMU sensor was positioned on each
hand to develop an objective method for assessing motor scores in PD. To the best of our
knowledge, there has been no method published to date using our approach, specifically
for the classification and prediction of MDS-UPDRS III subitems (motor scores) across six
MDS-UPDRS III tasks. Data collection protocols were optimised to reduce the time for
setting up the sensors and carrying out the measurements. On average, each participant
devoted six minutes to complete the six MDS-UPDRS III tasks on both hands. Overall, this
implemented setting has proven to be a more practical and feasible solution for collecting
sensor data in a dynamic and fast-paced clinical environment. Sensor-based time domain
and spectral features were computed for model training. RF was chosen as the model
type due to its ability to handle imbalanced datasets. SVM was added for comparative
analysis (Supplementary Material). The six MDS-UPDRS III tasks were correctly classified
with an average accuracy of 94.2%. Averaged AUROC values, with the highest results
for each MDS-UPDRS III task, varied between 72% and 92% for distinguishing between
zero and non-zero motor scores and between 68% and 85% for classifying non-zero motor
scores in the context of PD. The classification performance varied depending on the type
of sensor employed. Motor scores were additionally predicted using an RF regression
model. However, comparing predicted individual motor scores with GT labels remains a
challenging task.

4.2. Comparison with Previous Work

Previous studies using accelerometers and gyroscopes have mainly focused on specific
clinical tasks to predict motor scores, such as placing the hands on the lap to assess hand
resting tremor or performing the finger-tapping test to assess bradykinesia, focusing on
decrement in rate, amplitude, or both with repetitive action [19,32,43]. Results presented
in our study (e.g., AUROC curves) are comparable to those observed in the literature and
occasionally surpass them [13,19,32,36]. For example, two studies investigated the effect of
sensor placement and combinations of inertial sensors on symptom detection (tremor and
bradykinesia) [13,36]. Binary and multiclass RF models were employed in those studies. In
another two studies, motor scores were classified and predicted, with each focusing on a
single movement task [19,32]. Different aspects from those four studies are integrated into
our work for the classification and prediction of motor scores from all relevant arm and
hand movements according to MDS-UPDRS III. A detailed comparison can be found in
Table S9 (Supplementary Material).

More recently, machine learning solutions that focus on markerless video-based motion
capture technologies have been introduced to analyse human body movements in clinical
settings [28,29,35]. However, ethical concerns about the protection of patients’ privacy arise
in studies where video data is recorded, in particular for continuous video monitoring at
home [44]. In addition, accurate detection and tracking of specific landmarks are critical to
the success of markerless motion tracking systems, as they form the basis for understanding
and analysing the subject’s movements in video data [31,45]. Complex movements involve
rapid changes in position and orientation, which can lead to the occlusion of landmarks.
Similarly, changes in camera angles, distances, and lighting conditions (e.g., shadows or
reflections) might affect the visibility of landmarks. Upcoming research could compare
sensor-based machine learning models in contrast with video-based markerless tracking
models for the quantification of MDS-UPDRS III subitems.
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4.3. Interpretability of Results

Hand movement recognition is critical for a self-managed home system to automati-
cally assess upper limb motor function in patients with PD. To move toward this objective,
we have developed an ML model to classify MDS-UPDRS III tasks. This potentially stream-
lines the process of automatically generating more training data in the future, where
patients with PD could be encouraged to perform exercise programs at home for remote
assessment of motor symptom severity by using compact wearable sensors [46]. Building
on this, we have additionally developed ML models to classify and predict MDS-UPDRS III
scores. Following this two-step approach, our aim was to simplify the data measurement
and processing pipeline by using two compact IMUs, reducing the data sampling rate to
50 Hz, and employing a suitable set of features for model training.

Based on a similar recently published study [13], these criteria drain the battery and
data storage of the sensors and might reduce the computational cost for model training.
Although our selection of a limited set of simple and interpretable features was informed
by a recent study [13], it seems evident that these features may not capture the entire com-
plexity of human body movements. Conversely to the limited set of features, each sensor
of the IMU maps a unique, measurable phenomenon associated with motor symptoms that
are consistent with the observations of the study physician. Furthermore, we divided the
sensor data into two equal segments for feature extraction. This division aimed to capture
movement variability in each segment, as motor symptoms typically expose a progressive
reduction in either the frequency or amplitude of repetitive movements toward the end of
a clinical task [47]. For example, a bradykinesia-induced decrement in fine motor control
of the hands might cause poor performance in daily routine activities, such as brushing
teeth or handwriting [13]. We often observed this decrement in rate and amplitude with
repetitive action in the FT task, and it partially correlated with the motor scores given by
the study physician.

4.4. Limitations

Despite considerable efforts to produce high-quality data in a clinical setting, col-
lecting more data for training would presumably improve the accuracy of our machine
learning models, as indicated in our results. To build our study cohort, we followed an
initial estimate to derive a similar number of patients as reported in previous research
studies [13,19,36]. It is further important to note that the number of controls and their age
profiles were not specifically matched to those of the patient group. The dataset created
reflects real-world scenarios sourced from routine clinical visits. Patients attended the
clinical assessments alongside their accompanying person (e.g., spouse), who volunteered
as a control. Another aspect to consider is the observed divergence in gender within and be-
tween groups and their potential impact on the internal validity of the study. Moreover, the
training data collected in this study were part of a standardised motor assessment [8]. It is
important to note that the results of a study on activity recognition in stroke patients using
mobile phones have demonstrated that models trained on patients’ activities performed in
a clinical setting may not generalise well to activities performed at home [46]. Although
the MDS-UPDRS III tasks were designed to closely mimic natural behaviour [8], it is still
critical to validate the performance of any symptom detection and severity prediction
model during the day-to-day activities of people with PD [7,23].

Placing a single sensor on each hand may not capture the entire information about
the severity of a motor symptom in PD. In contrast, a previous study showed that a single
wearable motion sensor placed on the back of each hand was sufficient to detect upper limb
motor symptoms [36]. Additionally, wearable devices integrated with an accelerometer and
gyroscope, designed to be worn unobtrusively on the body (e.g., integrated into the shoe,
belt, or wrist), offer the potential to generate robust, reliable, and reproducible data, both
within and across individuals [20,36]. They could further aid physicians in saving both
effort and time by enabling comparative analysis and ensuring consistent monitoring of the
progression of motor impairments in PD. Recent studies have shown that digital biomarkers
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of disease severity have been integrated as valid surrogate biomarkers in various clinical
trials [48,49].

Moreover, the discrepancies between our model predictions and the GT scores de-
fined by the study physician may indicate nuances in the consistency of subjective motor
symptom assessments [50]. One aspect to consider here is the fact that a major limitation
across any subitem of the MDS-UPDRS is the arbitrary categorisation of an otherwise
continuous phenomenon. The sensor information appears to be more granular in terms
of subtle movements compared to this arbitrary categorisation by motor score {0,1,2,3,4}
based on a complex combination of visual assessment and visual impression. The sensor
measurements reflect the underlying subtle changes in movement, which may or may not
be evident in the assessment made by the trained study physician. In future studies, an
additional rater could be included. However, this does not resolve the issue when the two
raters differ by only one point. An intermediate motor score is not accounted for in the
MDS-UPDRS.

4.5. Future Work

Our findings demonstrate the potential of machine learning models in predicting
disease severity based on clinical sensor data. The methods developed and models trained
in this work serve as a foundation for future studies, where pharmacological effects on
motor function could complement regular clinical motor assessments. To move toward
this objective, we will focus on expanding our data cohort by incorporating new training
datasets to capture a more comprehensive view of patients’ motor symptoms, potentially
enhancing the predictive capabilities of our models. As part of this effort, we aim to modify
our MDS-UPDRS III task classifier for real-time applications. The adapted classifier will
then be implemented into TreCap, our custom-built wearable device, which is equipped
with MATLAB software (R2022a) for real-time sensor data acquisition and the management
of visually guided arm and hand movements [51]. In addition, the study’s reliance on
a limited set of simple and interpretable features may overlook the complexity of motor
symptoms and their manifestations in PD patients. Hence, we might consider employing
more complex features and feature selection methods to identify optimal features for each
motor symptom in PD for model training [52].

As a performance metric, we chose AUROC as it captures the performance of our mod-
els across all possible decision thresholds. While we have evaluated model performance
using AUROC, upcoming research could explore whether different metrics (e.g., F1 score,
positive predictive value, among others) can reproduce our results for the classification and
prediction of MDS-UPDRS III subitems. Moreover, we aim to compare our methods with
video-based markerless tracking models. Finally, the use of deep learning models could be
explored on a larger data cohort in the future.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/s24072195/s1, Figure S1: ROC curves to distinguish between zero and
non-zero motor scores. Random forest models were trained on all axis features extracted from the data
of two sensor configurations commonly found in IMUs offered by manufacturers. The averaged area
under the ROC (AUROC) values (with 95% CIs, shaded area) refer to Table S4; Figure S2: Prediction
of individual motor scores in PD. Random Forest regression models were trained on the magnitude
features derived from the data of the two sensor configurations commonly found in IMUs offered by
manufacturers. The box plots illustrate the accuracy, variability, and overlap of the predictions for
each motor score across the MDS-UPDRS III tasks. Motor scores closest to the ’ground truth’ (GT)
score were the most frequent ones in each MDS-UPDRS III task; Table S1: Data collection protocol.
The standardised clinical motor assessments were conducted by all study participants after their
routine clinical examinations in the National Centre of Excellence in Research on Parkinson’s Disease
at the Centre Hospitalier de Luxembourg. Date and time of a measurement are contained in the
’ND number’ and ’Number of Visit’ information; Table S2: Performance of a support vector machine
model trained on all magnitude features within the IMU for MDS-UPDRS III tasks classification;
Table S3: Performance of support vector machine models trained on the magnitude features of each

https://www.mdpi.com/article/10.3390/s24072195/s1
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sensor type. Averaged AUROC values (with 95 % CIs), for distinguishing between patients and
controls with a motor score of zero and patients with a non-zero motor score; Table S4: Performance
of random forest models trained on all axis features of each sensor type. Averaged AUROC values
(with 95 % CIs), for distinguishing between patients and controls with a motor score of zero and
patients with a non-zero motor score; Table S5: Performance of random forest models trained on all
axis features of each sensor type. Averaged AUROC values (with 95 % CIs), for classifying patients
with non-zero motor scores; Table S6: Performance of support vector machine models trained on
all axis features of each sensor type. Averaged AUROC values (with 95 % CIs), for distinguishing
between patients and controls with a motor score of zero and patients with a non-zero motor score;
Table S7: Hyperparameters of the random forest models in Table 5; Table S8: An overview of all
trained machine learning models in this study; Table S9: Comparison with studies in the literature.
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